
Lycée Hoche 2025-2026
ECG1 A Mathématiques

TP de Python numéro 6 :
Recherche dichotomique dans une liste triée.

Semaine du jeudi 18 décembre.

Dans ce TP, on continue le travail sur les listes. On donne un autre algorithme de tri, puis on

s'intéresse à des algorithmes sur les listes triées qui permettent de gagner en e�cacité. On va

voir une première incarnation d'une méthode qui s'applique dans des situations variées, appelée la

dichotomie.

I. Deux méthodes simples de tri

Dans cette partie, on va écrire des algorithmes assez simples permettant de trier une liste donnée, en modi�ant
la liste en entrée.

1. Tri par sélection du minimum

Cet algorithme est sûrement le plus simple pour trier une liste :

� On parcourt la liste pour trouver son plus petit élément,

� on échange cet élément avec le premier élément de la liste,

� on ne touche plus au premier élément de la liste, et on recommence à partir de la première étape, avec la
sous liste obtenue en oubliant le premier élément.

Exemple :

Si on applique cet algorithme à la liste [2,5,1,4,6,2,13], elle est modi�ée étape par étape de la manière
suivante :

� On met le plus petit élément au début à l'aide un échange : la liste devient [1,5,2,4,6,2,13]

� On recommence sans considérer le premier élément, donc seulement à partir de la �èche : [1,5
↑
,2,4,6,2,13]

La liste devient [1,2,5,4,6,2,13]

� On recommence sans considérer les deux premiers éléments, donc à partir de la �èche : [1,2,5
↑
,4,6,2,13]

La liste devient : [1,2,2,4,6,5,13]

� et ainsi de suite : [1,2,2,4,6,5,13] ("4 est échangé avec lui-même".)

� [1,2,2,4,5,6,13]

� (l'algorithme tourne encore 2 coups pour �nir, mais plus rien ne se passe).

Exercice 1. Appliquer cet algorithme, à la main, sur la liste [5,4,6,23,2,1,6]

Exercice 2. Compléter le code Python ci-dessous a�n d'implémenter le tri par sélection du minimum (remplacer
les ...), puis testez le sur des listes de votre choix.

1 def tri_minimum(L):

2 for i in range(len(L)): #i représente la position de la flèche

3 # Recherche du minimum de la liste à partir du i-ième

4 min = ...

5 for j in range(i,len(L)): #Boucle pour rechercher le minimum

6 if L[j]<L[min]:

7 ...

8 # fin de boucle : min est la position du minimum , on échange

9 ... , ... = ... , ...

10 # fin de l'algorithme : L est triée

11 return L

1

Remarque : on n'était pas forcé de mettre la ligne return(L). Si on ne la met pas, la liste se fait quand même
trier, mais la fonction ne renvoie pas la liste L.

2. Le tri à bulles

Le tri à bulles est un autre algorithme de tri. Le principe est assez simple :

� On parcourt les éléments de la liste du premier à l'avant dernier, et on les compare à leur successeur. S'ils
ne sont pas dans l'ordre croissant, on les échange. Cette étape sera appelée un parcours.

� On répète assez de fois l'opération ci-dessus pour que la liste soit triée.

Exercice 3. E�ectuer à la main le tri à bulles sur la liste [2,1,4,3,8,1]. Puis, écrire une fonction tri_bulle

en s'aidant du code à trous ci-dessous (rajouter des commentaires). Puis, tester votre code sur des listes.

1 def tri_bulle(L):

2 desordre=True

3 # desordre contient True tant que la liste n'est pas triée.

4 # A priori , la liste n'est pas triée.

5

6 #Tant que la liste n'est pas triée, on effectue des parcours.

7 while desordre:

8 # Parcours avec détection de désordre

9 desordre = False

10 for i in range(...):

11 if ... :

12 desordre=True

13 ...

14 return L

Remarque. On peut montrer (théorème) qu'une liste de longueur n sera toujours triée au bout de n − 1
parcours. Dans le code précédent, on a continué les parcours jusqu'à avoir une liste triée.

Exercice 4. Implémenter le tri à bulle sans variable desordre, en appliquant le théorème mentionné dans la
remarque ci-dessus : si L est de longueur n, alors le tri à bulle trie la liste L après n− 1 répétitions des parcours
de L.

Remarque. Cette seconde version du tri à bulles est assez simple, et doit être connue.

II. Algorithmes dichotomiques

Le mot dichotomie vient du grec : tomós signi�e "section" ou "coupure", dikha signi�e "en deux". Le principe de
dichotomie en mathématiques, c'est le principe de couper en deux une "zone de recherche". Nous retrouverons
ce principe dans des TPs ultérieurs, et dans le chapitre sur la continuité pour démontrer le théorème des valeurs
intermédiaires.

1. Recherche d'éléments

Recherche d'un élément dans une liste (rappel)

La commande Python a in L teste si un élément a appartient à une liste L, et renvoie True si c'est le
cas, False sinon.

Le problème auquel réponds la recherche dichotomique est que le temps d'exécution de cette commande peut
être très long si la liste L est grande.

Exercice 5. 1. Dé�nir la liste L7 des nombres inférieurs à dix millions, et la liste L8 des nombres inférieurs
à cent millions. Que remarquez vous sur le comportement de l'ordinateur quand on dé�nit L8 ?

2. Dé�nir la liste C8 des carrés des nombres inférieurs à cent millions. Que remarquer ?

Un petit exercice déjà fait pour vous rafraichir la mémoire.

2

Exercice 6. Coder une fonction appartient prenant en entrée un argument a et une liste L et renvoyant True
si a est un élément de la liste L, et False sinon. Ne pas utiliser la commande in pour coder appartient.

Dans l'invite de commande, tester la fonction appartient, et remarquer les temps d'exécutions, avec les listes
de l'exercice précédent :

a=10**14

b=10**16

appartient(a,L8)

appartient(b,L8)

appartient(a,C8)

appartient(b,C8)

Si on avait fait les mêmes tests avec un milliard au lieu de cent millions, il aurait fallu attendre un certain
temps (essayez si vous voulez). Quand on traite un grand nombre de données (ce qui arrive souvent en analyse
de données, un domaine prenant de plus en plus d'importance de nos jours), cette attente a un impacte sérieux
sur le déroulement du reste des opérations. Pour décrire cela, on a une notion de complexité d'un programme
informatique, qui correspond au nombre d'opérations qu'un programme donné e�ectue pour arriver à ses �ns.

La dichotomie est un principe général qu'on retrouve dans pas mal d'algorithmes particulièrement e�caces,
mais aussi dans des démonstrations mathématiques.

2. Recherche dichotomique d'un élément dans une liste triée

On va appliquer le principe de dichotomie pour écrire une fonction recherche_dicho prenant en entrée une
liste de nombres L, triée dans l'ordre croissant, et un nombre a, et renvoyant True si a est un élément de L,
et False sinon.

La recherche dichotomique d'un élément dans une liste triée

L'idée est de couper successivement la zone de recherche en deux, en utilisant que la L est triée. Voici
l'algorithme :

1. A priori, on cherche l'élément a entre les indices g=0 et d = len(L)-1.

2. Tant que la zone de recherche entre g et d contient des éléments, on suit les étapes 3 et 4. Sinon, on va a
l'étape 5.

3. On regarde l'indice m au milieu de g et d (si la longueur de L[g:d+1] est paire, on choisit une des deux
valeurs centrales, ça n'a pas d'importance).

4. On compare L[m] et a.

� Si L[m]==a, on s'arrête et on renvoie True.

� Sinon, si L[m]<a, on cherche dans la sous liste à droite de m car L est triée. On reprend à l'étape 1
avec g=m+1 sans changer d.

� Sinon, L[m]>a : on cherche dans la sous liste à gauche de m : on reprend à l'étape 1 avec d=m-1 sans
changer g.

5. Si, lors de notre recherche, la zone de recherche ne contient plus d'élément, c'est que a n'est pas dans L.

Par exemple, voici l'illustration de l'algorithme pour la recherche de 13 dans la liste [1,3,5,7,8,10,13,14,17,19].

3

Exercice 7. Écrire le code d'une fonction recherche_dicho prenant en entrée une liste de nombres L triée
dans l'ordre croissant et un nombre a, et renvoyant True si a est un élément de L, et False sinon. On s'aidera
du code à trou suivant.

1 def recherche_dicho(a,L):

2 g,d=0,len(L)-1 # On recherche initialement dans toute la liste

3

4 while g<=d: # Tant que la zone de recherche est non vide

5 m=(g+d)//2 # "milieu" de g et d

6 if L[m]== a : # Si on trouve a au milieu

7 return True

8 elif ... :

9 g= ... # Recherche dans la sous liste de droite

10 else :

11 ... # Recherche dans la sous liste de gauche

12

13 # Si la boucle while s'est arrêté sans trouver a :

14 return(False)

Remarque. On obtient une fonction recherche_dicho de complexité particulièrement intéressante (c'est-
à-dire à l'exécution rapide), qui nous permet largement de faire les tests de l'exercice 6 avec cent milliards
au lieu de cent millions.

Exercice 8. Reprendre l'exercice 6 avec cette fonction et comparer les temps d'exécution.

3. Recherche de l'indice d'un élément dans une liste triée

On peut appliquer le même principe pour donner l'indice d'une occurrence d'élément dans une liste de nombres
triée.

Exercice 9. En s'inspirant de la recherche dichotomique d'élément dans une liste triée, écrire le code d'une
fonction indice_dicho prenant en entrée un nombre a et une liste de nombres triée (dans l'ordre croissant) L,
et renvoyant en sortie l'indice d'une occurrence de a dans L si a est un élément de L, et a�chant (avec print)
le message "élément non trouvé" sinon.

Indication : On applique exactement le même principe que pour recherche_dicho, donc le code sera très
proche. Commencez par comprendre comment l'algorithme s'adapte sur une liste simple, puis adaptez le code
de recherche_dicho.

4

III. Enrichissement d'une méthode de tri

Le but de cette partie et d'enrichir l'implémentation du tri à bulles pour trier des listes plus complexes que de
simples listes de nombres, selon des critères particuliers.

Exercice 10. Écrire le code d'une fonction Python d'entête def TriLongueur(L): prenant en entrée une liste
L dont les éléments sont des listes, et triant L de sorte que ces listes soient rangées par longueurs décroissantes.

Par exemple, à la suite du code suivant :

1 L= [[3,2,1], [5,4,4,1], [1], [2,1]]

2 TriLongueur(L)

la liste L devra contenir : [[5,4,4,1], [3,2,1], [2,1], [1]].

Exercice 11. Un centre de conférence reçoit des demandes de la part de divers intervenants voulant utiliser sa
salle principale. A�n de choisir parmi ces possibilités, ce centre veut trier ces demandes selon certains critères.

Chaque demande est encodée par un triplet (d,f,p) où d est l'heure de début souhaitée de la conférence, f
son heure de �n, et p une note de prestige, de 1 à 10, qu'attribue (assez arbitrairement, si on y regarde de plus
près) le centre de conférence à chaque conférencier.

Le centre de conférence rentre toutes ces demandes dans une liste Python. Par exemple, la liste considérée sera

[(13, 15, 5), (12, 17, 6)]

s'il a reçu deux demandes : une demande pour une conférence de 13h à 15h pour une conférence de prestige 5,
et une demande de 12h à 17h pour une conférence de prestige 6.

1. Écrire le code d'une fonction Python TriDuree prenant en entrée une telle liste et renvoyant en sortie
cette liste triée par durée de conférence croissante. Les cas d'égalités seront sans importance, et la fonction
modi�era son argument en la triant au passage.

2. Écrire le code d'une fonction Python TriPrestige prenant en entrée une telle liste et renvoyant en sortie
cette liste triée par prestige décroissant. Les cas d'égalités seront sans importance, et la fonction modi�era
son argument en la triant au passage.

3. Écrire le code d'une fonction Python TriPrestigeParHeure prenant en entrée une telle liste et renvoyant
en sortie cette liste triée par "prestige par heure" décroissant. Par exemple, une conférence de 2h avec un
prestige de 6 comptera pour 3 prestige par heure. Les cas d'égalités seront sans importance, et la fonction
modi�era son argument en la triant au passage.

5

	Deux méthodes simples de tri
	Tri par sélection du minimum
	Le tri à bulles

	Algorithmes dichotomiques
	Recherche d'éléments
	Recherche dichotomique d'un élément dans une liste triée
	Recherche de l'indice d'un élément dans une liste triée

	Enrichissement d'une méthode de tri (TP n°5)

