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Correction du DS n°3

Exercice 1

1. − Montrons l'injectivité de f . Soit (x, x′) ∈ E2. Supposons que f(x) = f(x′). Alors, en composant à
gauche par g, on obtient g(f(x)) = g(f(x′)). Comme g◦f = idE , on obtient x = x′. Ainsi, f est injective.
− Ensuite, montrons que g est surjective. Soit y ∈ E. Comme g ◦ f = idE , on a y = g(f(y)).
En posant, x = f(y) ∈ F , on obtient y = g(x). Ainsi, g est surjective.

2. Soit (a, b) ∈ R2. Montrons que l'équation h(x, y) = (a, b) a une et une seule solution (x, y) ∈ R2.
Pour tout (x, y) ∈ R2, on a les équivalences suivantes :

h(x, y) = (a, b) ⇐⇒
{

4x+ 3y = a
6x− 2y = b

⇐⇒
{

4x+ 3y = a
−13y = 2b− 3a

⇐⇒

 4x = a− 3y

y =
3a− 2b

13

⇐⇒


x =

2a+ 3b

26

y =
3a− 2b

13

Donc h est bijective et h−1 est l'application (a, b) ∈ R2 7→
(
2a+ 3b

26
,
3a− 2b

13

)
∈ R2.

3. Procédons par double inclusion.
• Soit a ∈ A. On dispose alors d'un couple (x, y) ∈ R2 tel que a = (x, y) et 1 + 2x+ 3y = 0.
Posons t = x− 1 ∈ R de telle sorte que x = t+ 1. Ainsi,

1 + 2(t+ 1) + 3y = 0
puis 3y = −3− 2t

d'où y = −1− 2

3
t

On a donc a =

(
t+ 1,−1− 2

3
t

)
. Ce qui montre que a ∈ B.

• Réciproquement, soit b ∈ B. On dispose alors d'un réel t tel que a =

(
t+ 1,−1− 2

3
t

)
. De plus,

1 + 2(t+ 1) + 3

(
−1− 2

3
t

)
= 1 + 2t+ 2− 3− 2t = 0

Il vient : b ∈ A.
On a montré par double inclusion que A = B.

4. Pour n ∈ N, on note Sn =
n∑

k=0

k
(
n
k

)
2k+1. Fixons désormais n ∈ N.

- Si n = 0 : On a S0 = 0×
(
0
0

)
× 21 = 0.

- Si n ≥ 1 : Comme le premier terme de cette somme est nul,

Sn =

n∑
k=0

k

(
n

k

)
2k+1 =

n∑
k=1

k

(
n

k

)
2k+1 =

n∑
k=1

n

(
n− 1

k − 1

)
2k+1 =

n−1∑
j=0

n

(
n− 1

j

)
2j+2

en e�ectuant le changement d'indice j = k − 1. Ainsi, par linéarité et en utilisant la formule du binôme
de Newton,

Sn = n× 22
n−1∑
j=0

(
n− 1

j

)
2j = 4n× (1 + 2)n−1 = 4n× 3n−1

On obtient : ∀n ∈ N, Sn =

{
0 sin = 0
4n× 3n−1 sin ≥ 1
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5. Commençons par déterminer l'ensemble de dé�nition de h.
La fonction racine carrée est dé�nie sur R+ donc pour tout x ∈ R,

h(x) est bien dé�nie ssi x2 + x ≥ 0 ssi x(x+ 1) ≥ 0

On a le tableau de signes suivant :

x

x

x + 1

x(x + 1)

−∞ −1 0 +∞

− 0 +

− 0 +

+ 0 − 0 +

Ainsi, Dh =]−∞,−1]∪ [0,+∞[. Désormais, étudions les limites h au bord de son domaine de dé�nition.

- En +∞ : pour tout x ∈ R∗
+,

h(x) =
(
√
x2 + x− x)(

√
x2 + x+ x)√

x2 + x+ x
=

x√
x2 + x+ x

=
x

|x|
√

1 +
1

x
+ x

=
x

x

√
1 +

1

x
+ x

=
1√

1 +
1

x
+ 1

Or, 1 +
1

x
−−−−−→
x→+∞

1 donc par continuité de la racine carrée en 1,

√
1 +

1

x
−−−−−→
x→+∞

1.

Puis, par somme et inverse, on obtient h(x) −−−−−→
x→+∞

1

2
.

La courbe de h admet une asymptote horizontale en +∞ d'équation y =
1

2
.

- En −1− et en 0+ : la fonction est continue en −1 et en 0 par composition de fonctions continues sur leur
domaine de dé�nition. Il n'y a donc pas d'asymptote à la courbe en ces points.

- En −∞ : pour tout réel x ≤ −1,

h(x) = |x|
√
1 +

1

x
− x = −x

√
1 +

1

x
− x = −x

(√
1 +

1

x
+ 1

)

Or, 1 +
1

x
−−−−−→
x→−∞

1 donc par continuité de la racine carrée en 1,

√
1 +

1

x
−−−−−→
x→−∞

1.

Puis, par somme et produit on obtient h(x) −−−−−→
x→−∞

+∞.

Montrons alors que la courbe de h admet une asymptote oblique en −∞. Pour tout réel x ≤ −1,

h(x)

x
= −

(√
1 +

1

x
+ 1

)

En utilisant les limites précédentes, on a
h(x)

x
−−−−−→
x→−∞

−2

De plus, pour tout réel x ≤ −1,

h(x) + 2x =
√
x2 + x+ x =

x2 + x− x2

√
x2 + x− x

=
x

|x|
√

1 +
1

x
− x

=
x

−x

√
1 +

1

x
− x

= − 1√
1 +

1

x
+ 1

En utilisant les limites précédentes, on a h(x) + 2x −−−−−→
x→−∞

−1

2
.

La courbe de h admet une asymptote oblique en −∞ d'équation y = −2x− 1

2
.

6. On note E l'ensemble des élèves de la classe, A l'ensemble des élèves étudiant l'anglais, B l'ensemble des
élèves étudiant l'allemand et C l'ensemble des élèves étudiant l'espagnol. Comme tous les élèves étudient
au moins une langue vivante, on a

E = A ∪B ∪ C
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De plus, l'énoncé donne les cardinaux suivants :

Card(E) = 45, Card(A) = 32, Card(B) = 20, Card(C) = 28

Card(A ∩B) = 15, Card(A ∩ C) = 19, Card(B ∩ C) = 11

On veut déterminer Card(A ∩B ∩ C). D'après la formule du crible de Poincaré,

Card(A∪B∪C) = Card(A)+Card(B)+Card(C)−Card(A∩B)−Card(A∩C)−Card(B∩C)+Card(A∩B∩C)

D'où,

Card(A ∩B ∩ C) = Card(E)− Card(A)− Card(B)− Card(C) + Card(A ∩B) + Card(A ∩ C) + Card(B ∩ C)

= 45− 32− 20− 28 + 15 + 19 + 11

= 10

Il y a 10 élèves qui étudient les trois langues.

7. (a) On note E l'ensemble des résultats. Alors

E = {RRR,RRB,RBR,RBB,BRR,BRB,BBR,BBB}

Il y a donc 8 résultats possibles.

(b) L'ensemble des résultats commençant pat la couleur blanche est {BRR,BRB,BBR,BBB}.
Il y a 4 résultats commençant par la couleur blanche.

(c) L'ensemble des résultats comportant exactement 2 boules rouges est {RRB,RBR,BRR}.
Il y a 3 résultats comportant exactement 2 boules rouges

8. (a) Comme on tire n boules et qu'il y a n boules rouges et n boules blanches, on dispose d'une bijection
entre l'ensemble des résultats et {0, 1}n en associant le nombre 0 au tirage d'une boule rouge et le
nombre 1 au tirage d'une boule blanche. Or, Card({0, 1}n) = 2n. Il y a donc 2n résultats possibles

(b) Un résultat comportant exactement k boules rouges est entièrement déterminé par la position de ces
k boules rouges dans la liste de longueur n. Il y en a donc autant que de parties à k éléments d'un en-

semble de cardinal n, c'est-à-dire
(
n
k

)
. Il y a

(
n
k

)
résultats comportant exactement k boules rouges.

(c) Désormais, on décide que les boules sont discernables (par exemple, numérotées de 1 à 2n) et que
l'on note le numéro des boules obtenues sans tenir compte de l'ordre.
D'une part, il y a autant de con�gurations que de parties à n éléments d'un ensemble de cardinal 2n,
c'est-à-dire

(
2n
n

)
.

D'autre part, on peut distinguer des con�gurations en fonction du nombre de boules rouges qu'elles
contiennent. Soit k ∈ J0, nK. Si une con�guration est composée de k boules rouges, alors elle est
déterminée par les choix successifs :

� des k boules rouges : il y a autant de possibilités que de parties à k éléments d'un ensemble de
cardinal n donc

(
n
k

)
� des n − k boules blanches : il y a autant de possibilités que de parties à n − k éléments d'un
ensemble de cardinal n donc

(
n

n−k

)
Par principe multiplicatif, le nombre de con�gurations à k boules rouges est

(
n
k

)
×
(

n
n−k

)
Ces cas étant disjoints, le nombre total de con�gurations est

n∑
k=0

(
n

k

)
×
(

n

n− k

)
=

n∑
k=0

(
n

k

)2

(par symétrie des coe�cients binomiaux)

Il vient (
2n

n

)
=

n∑
k=0

(
n

k

)2
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Comme ce résultat est trivial pour n = 0, on obtient

∀n ∈ N,
(
2n

n

)
=

n∑
k=0

(
n

k

)2

Exercice 2

1. Soit k ∈ N∗. D'après l'inégalité de concavité du logarithme,

ln(k + 1)− ln(k) = ln

(
k + 1

k

)
= ln

(
1 +

1

k

)
≤ 1

k

On a montré :

∀k ∈ N∗,
1

k
≥ ln(k + 1)− ln(k)

2. Soit n ∈ N∗. Sommons les inégalités obtenues à la question précédente pour k ∈ J1, nK. Il vient :

n∑
k=1

1

k
≥

n∑
k=1

ln(k + 1)− ln(k)

= ln(n+ 1)− ln(1) = ln(n+ 1) car la somme est téléscopique

Ainsi, pour tout n ∈ N∗, Hn ≥ ln(n+1). Or, lim
n→+∞

ln(n+1) = +∞. D'après le théorème de comparaison,

lim
n→+∞

Hn = +∞

3.

1 def Harm(n):

2 L=[1]

3 for i in range(2,n+1) :

4 L.append(L[ -1]+1/i)

5 return L

4. Soit k ∈ N∗. Alors :

1

k + 1
≤ ln(k + 1)− ln(k) ⇐⇒ − 1

k + 1
≥ −(ln(k + 1)− ln(k))

⇐⇒ − 1

k + 1
≥ ln(k)− ln(k + 1)

⇐⇒ − 1

k + 1
≥ ln

(
k

k + 1

)
⇐⇒ − 1

k + 1
≥ ln

(
k + 1− 1

k + 1

)
⇐⇒ − 1

k + 1
≥ ln

(
1 +

−1

k + 1

)

Or, − 1

k + 1
> −1 donc la dernière inégalité est vraie d'après l'inégalité de concavité du logarithme. Ainsi,

∀k ∈ N∗,
1

k + 1
≤ ln(k + 1)− ln(k)

5. Soit n ∈ N∗. En e�ectuant le changement d'indice a�ne j = k + 1,

n−1∑
k=1

1

k + 1
=

n∑
j=2

1

j
=

 n∑
j=1

1

j

− 1

1
= Hn − 1.
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6. Soit n ∈ N∗. Notons Sn =
n−1∑
k=1

1

k + 1
= Hn− 1 (question précédente). En sommant les inégalités obtenues

à la question 4) pour k ∈ J1, n− 1K, on obtient

Sn =

n−1∑
k=1

1

k + 1
≤

n−1∑
k=1

ln(k + 1)− ln(k) = ln(n)− ln(1)

car la somme est télescopique. On a donc Hn − 1 = Sn ≤ ln(n), d'où

Hn ≤ ln(n) + 1.

De plus, dans la question 2) nous avons obtenu ln(n+ 1) ≤ Hn.
Par croissance du logarithme, ln(n) ≤ ln(n+ 1) d'où :

∀n ∈ N∗, ln(n) ≤ Hn ≤ ln(n) + 1

7. Pour tout n ∈ N tel que n ≥ 2, on a ln(n) > ln(1) = 0 donc grâce à la question précédente,

1 ≤ Hn

ln(n)
≤ 1 +

1

ln(n)
.

De plus,

lim
n→+∞

1 = 1 et lim
n→+∞

(
1 +

1

ln(n)

)
= 1

D'après le théorème des gendarmes, lim
n→+∞

Hn

ln(n)
= 1

8. Soit n ∈ N∗.

an+1 − an = Hn+1 − ln(n+ 1)−Hn + ln(n)

=

n+1∑
k=1

1

k
−

n∑
k=1

1

k
− (ln(n+ 1)− ln(n))

=
1

n+ 1
− (ln(n+ 1)− ln(n)) ≤ 0 d'après la question 4.

Ainsi, la suite a est décroissante.

9. Soit n ∈ N∗.

bn+1 − bn = an+1 −
1

n+ 1
− an +

1

n

= an+1 − an − 1

n+ 1
+

1

n

=
1

n+ 1
− (ln(n+ 1)− ln(n))− 1

n+ 1
+

1

n

=
1

n
− (ln(n+ 1)− ln(n)) ≥ 0 d'après la question 1.

Ainsi, la suite b est croissante.

10. On a, pour tout n ∈ N∗, bn−an = − 1

n
donc bn−an −−−−−→

n→+∞
0. De plus la suite a est croissante et la suite

b est décroissante. Les suites (an)n∈N et (bn)n∈N sont donc adjacentes. D'après le théorème des suites
adjacentes, les suites a et b convergent vers une limite commune.

11. Grâce au théorème des suites adjacentes, on sait aussi que pour tout n ∈ N∗, bn ≤ γ ≤ an.
En particulier, b2 ≤ γ ≤ a2. Or,

a2 = H2 − ln(2) = 1 +
1

2
− ln(2) = (1− ln(2)) +

1

2
≥ 1

2
> 0 et b2 = a2 −

1

2
= 1− ln(2) < 1

Par transitivité,

0 < γ < 1

5
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12. Soient n ∈ N∗ et k ∈ J1, nK. D'après la formule du triangle de Pascal,(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
donc

1

k

(
n+ 1

k

)
=

1

k

(
n

k

)
+

1

k

(
n

k − 1

)
Or,

k

(
n+ 1

k

)
= (n+ 1)

(
n

k − 1

)
d'où

1

k

(
n

k − 1

)
=

1

n+ 1

(
n+ 1

k

)

Il vient ∀n ∈ N∗, ∀k ∈ J1, nK,
1

k

(
n+ 1

k

)
=

1

k

(
n

k

)
+

1

n+ 1

(
n+ 1

k

)
13. Montrons par récurrence,

∀n ∈ N∗, P (n) : ”

n∑
k=1

(−1)k−1

k

(
n

k

)
= Hn ”

Initialisation : P (1) est vraie car

1∑
k=1

(−1)k−1

k

(
1

k

)
=

(−1)0

1

(
1

1

)
= 1 = H1

Hérédité : Soit n ∈ N∗. Supposons que P (n) est vraie et montrons P (n+1). Grâce à la question précédente,

n+1∑
k=1

(−1)k−1

k

(
n+ 1

k

)
=

n∑
k=1

(−1)k−1

k

(
n+ 1

k

)
+

(−1)n

n+ 1

(
n+ 1

n+ 1

)

=

n∑
k=1

[
(−1)k−1

(
1

k

(
n

k

)
+

1

n+ 1

(
n+ 1

k

))]
+

(−1)n

n+ 1

(
n+ 1

n+ 1

)

=

n∑
k=1

(−1)k−1

k

(
n

k

)
+

n∑
k=1

(−1)k−1

n+ 1

(
n+ 1

k

)
+

(−1)n

n+ 1

(
n+ 1

n+ 1

)
par linéarité

=

n∑
k=1

(−1)k−1

k

(
n

k

)
+

n+1∑
k=1

(−1)k−1

n+ 1

(
n+ 1

k

)
D'une part, d'après P (n),

n∑
k=1

(−1)k−1

k

(
n

k

)
= Hn

D'autre part,

n+1∑
k=1

(−1)k−1

n+ 1

(
n+ 1

k

)
=

1

n+ 1

n+1∑
k=1

(−1)k−1

(
n+ 1

k

)
par linéarité

=
1

n+ 1

[
n+1∑
k=0

(−1)k−1

(
n+ 1

k

)
− (−1)0−1

(
n+ 1

0

)]

=
1

n+ 1
(1 + (−1))n+1 +

1

n+ 1
d'après le binôme de Newton

=
0n+1

n+ 1
+

1

n+ 1

=
1

n+ 1
car n+ 1 ≥ 1

On obtient alors,
n+1∑
k=1

(−1)k−1

k

(
n+ 1

k

)
= Hn +

1

n+ 1
= Hn+1

Ce qui montre P (n+ 1) et achève l'hérédité.
Conclusion : On a montré par récurrence

∀n ∈ N∗,

n∑
k=1

(−1)k−1

n

(
n

k

)
= Hn

6
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Exercice 3

1. Soit x ∈ R. L'expression f(x) = exp

(
x ln

(
1 +

1

x

))
est bien dé�nie si, et seulement si, 1 +

1

x
=

1 + x

x
est dé�ni et strictement positif. Or, on a le tableau de signes suivant :

x

x + 1

x

x+ 1

x

−∞ −1 0 +∞

− 0 +

− 0 +

+ 0 − +

Ainsi, Df =]−∞,−1[∪]0,+∞[

2. La fonction f est dérivable sur son domaine en tant que composée de fonctions qui le sont.
De plus, pour tout x ∈ Df :

f ′(x) =

ln(1 + 1

x

)
+ x

− 1

x2

1 +
1

x

 exp

(
x ln

(
1 +

1

x

))
=

[
ln

(
1 +

1

x

)
− 1

x+ 1

]
f(x)

3. La fonction exponentielle est strictement positive sur R, donc f est aussi strictement positive sur son
domaine de dé�nition. Ainsi, u est bien dé�nie . Avec la question précédente, on a

∀x ∈ Df , u(x) = ln

(
1 +

1

x

)
− 1

x+ 1

4. La fonction u est dérivable sur son domaine de dé�nition en tant que somme de fonctions qui le sont. De
plus, pour tout x ∈ Df ,

u′(x) = − 1

x2

1

1 +
1

x

+
1

(x+ 1)2
=

−1

x(x+ 1)
+

1

(x+ 1)2
=

−1− x+ x

x(x+ 1)2
=

−1

x(x+ 1)2

donc u′(x) est du signe de −x.
A�n de dresser un tableau de variations partiel de u, étudions les limites en ±∞ de u.

On a 1 +
1

x
−−−−−→
x→±∞

1 donc par continuité du logarithme en 1, ln

(
1 +

1

x

)
−−−−−→
x→±∞

0.

Par somme, on obtient : u(x) −−−−−→
x→±∞

0. Ainsi,

x

u′(x)

u

−∞ −1 0 +∞

+ −

00 00

Par conséquent, la fonction u est positive sur Df .

7
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5. En ±∞ : On pose

g :
Df −→ ]− 1,+∞[

x 7−→ 1

x

et h :
]− 1,+∞[ −→ R

x 7−→ ln(1 + x)

x

de telle sorte que pour tout x ∈ Df , x ln

(
1 +

1

x

)
= h(g(x)). D'une part, g(x) −−−−−→

x→±∞
0.

D'autre part, par dérivabilité de la fonction logarithme en 1, h(x) −−−→
x→0

ln′(1) = 1.

Par composition, x ln

(
1 +

1

x

)
−−−→
x→0

1. Par continuité de la fonction exponentielle en 1, f(x) −−−−−→
x→±∞

e

En −1− : 1 +
1

x
−−−−−→
x→−1−

0+ car la fonction x 7→ 1 +
1

x
est positive sur ]−∞,−1[.

Par composition, ln

(
1 +

1

x

)
−−−−−→
x→−1−

−∞. Par produit puis par composition, f(x) −−−−−→
x→−1−

+∞.

En 0+ : Pour x ∈ R∗
+,

x ln

(
1 +

1

x

)
= x ln

(
x+ 1

x

)
= x ln(x+ 1)− x ln(x) = x2 ln(1 + x)

x
+ x ln(x)

D'une part, par dérivabilité de ln en 1,
ln(1 + x)

x
−−−→
x→0

ln′(1) = 1 puis par produit, x2 ln(1 + x)

x
−−−→
x→0

0.

D'autre part, d'après le théorème des croissances comparées, x ln(x) −−−→
x→0

0.

Par somme, x ln

(
1 +

1

x

)
−−−→
x→0

0. Puis, par continuité de la fonction exponentielle, f(x) −−−−→
x→0+

1.

Avec ces limites, on en déduit que :
La courbe de f admet une asymptote horizontale en +∞ et en −∞ d'équation y = e.

La courbe de f admet une asymptote verticale d'équation x = −1.

6. La fonction f est strictement positive sur Df donc pour tout x ∈ Df , f ′(x) est du même signe que u(x).
On obtient, en utilisant les questions 4 et 5 :

x

f ′(x)

f

−∞ −1 0 +∞

+ +

ee
+∞

1
ee

7. Comme lim
x→0

f(x) = 1, f est prolongeable par continuité en 0.

Comme lim
x→−1

f(x) = +∞, f n'est pas prolongeable par continuité en −1.

8
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8.

9.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 def f(x):

4 return np.exp(x*np.log (1+1/x))

5 listeX=np.linspace (2 ,50 ,1000)

6 listeY =[f(x) for x in listeX]

7 plt.plot(listeX ,listeY ,label="f")

8 plt.legend ()

9 plt.show()

Exercice 4

1. (a) Le premier point à justi�er est l'existence des suites. Notons

F :
R∗

+ × R∗
+ −→ R∗

+ × R∗
+

(x, y) 7−→
(
x+ y

2
,
√
xy

)
Par le théorème d'existence des suites récurrentes, il existe une unique suite (Un)n∈N = ((an, bn))n∈N
telle que U0 = (a, b) et pour tout n ∈ N, Un+1 = F (Un), c'est-à-dire telle que a0 = a, b0 = b et pour

tout n ∈ N, an+1 =
an + bn

2
et bn+1 =

√
anbn. Comme F est à valeurs dans R∗

+ × R∗
+, ces suites

sont strictement positives.
Notons ensuite que, pour tout n ∈ N,

an+1 − bn+1 =
an + bn

2
−
√
anbn =

an − 2
√
anbn + bn
2

=

(√
an −

√
bn
)2

2

Il en résulte que pour tout n ∈ N, an+1 ≥ bn+1, c'est-à-dire ∀n ∈ N∗, bn ≤ an

(b) Pour tout n ∈ N∗,

an+1 − an =
an + bn

2
− an =

bn − an
2

≤ 0 d'après la question précédente

Alors, (an)n∈N∗ est décroissante.

9
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Pour tout n ∈ N∗,
bn+1 − bn =

√
anbn − bn =

√
bn(

√
an −

√
bn) ≥ 0

d'après la question précédente et par croissance de x →
√
x. Alors, (bn)n∈N∗ est croissante.

En utilisant la monotonie de ces deux suites et la question précédente, on a

∀n ∈ N∗, b1 ≤ bn ≤ an ≤ a1

Par conséquent, (bn)n∈N∗ est croissante et majorée par a1, donc d'après le théorème de la limite

monotone, (bn)n converge. De même, (an)n∈N∗ est décroissante et minorée par b1 donc d'après le

théorème de la limite monotone, (an)n converge.

(c) Notons l et m les limites respectives de (an)n et (bn)n. On sait que pour tout n ∈ N, an+1 =
an + bn

2
.

Par passage à la limite, on obtient l =
l +m

2
, d'où l = m. Donc (an)n et (bn)n ont même limite.

2. (a) Soit (x, y) ∈ (R∗
+)

2. Raisonnons par disjonction de cas.
- Cas 1 : Supposons que x ≥ y. Alors, par croissance de la racine carrée,

(
√
x−√

y)2 = x− 2
√
x
√
y + y ≤ x− 2

√
y
√
y + y = x− 2y + y = x− y = |x− y|

- Cas 2 : Supposons que x < y. Alors, par croissance de la racine carrée,

(
√
x−√

y)2 = x− 2
√
x
√
y + y ≤ x− 2

√
y
√
y + y = x− 2x+ y = y − x = |x− y|

Dans tous les cas, on a (
√
x−√

y)2 ≤ |x− y| donc ∀(x, y) ∈ (R+)
2, (

√
x−√

y)2 ≤ |x− y|

(b) Montrons par récurrence,

∀n ∈ N∗, H(n) : ” an − bn ≤ a1 − b1
2n−1

”

Initialisation : H(1) est vraie car
a1 − b1
21−1

= a1 − b1.

Hérédité : Soit n ∈ N∗. Supposons que H(n) est vraie et montrons H(n+ 1).
Alors, par croissance de (bk)k∈N∗ ,

an+1 − bn+1 ≤ an+1 − bn =
an + bn

2
− bn =

an − bn
2

D'après H(n), on a

an+1 − bn+1 ≤ 1

2
· a1 − b1

2n−1
=

a1 − b1
2n

Ce qui montre H(n+ 1) et achève l'hérédité.
Conclusion : On a montré par récurrence

∀n ∈ N∗, an − bn ≤ a1 − b1
2n−1

De plus, en reprenant la question 1.a) et utilisant la question précédente,

a1 − b1 =

(√
a−

√
b
)2

2
≤ |a− b|

2

Ainsi, pour tout n ∈ N∗, an − bn ≤ 1

2
· |a− b|
2n−1

=
|a− b|
2n

.

Ce résultat est aussi vrai pour n = 0 car a− b ≤ |a− b| donc ∀n ∈ N, an − bn ≤ |a− b|
2n

3.

1 import numpy as np

2 def approx_M(a,b):

3 u = a

4 v = b

5 while abs(u-v) > 10**( -3) :

6 u,v = (u+v)/2,np.sqrt(u*v)

7 return (u+v)/2

10
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4. (a) Soit n ∈ N. En reprenant la question 1.a),

an+1 − bn+1 =

(√
an −

√
bn
)2

2
et an+2 =

an+1 + bn+1

2
=

an + bn + 2
√
anbn

4
=

(√
an +

√
bn
)2

4

D'où,

(an+1 − bn+1)an+2 =

(√
an −

√
bn
)2 (√

an +
√
bn
)2

8
=

(an − bn)
2

8

Il vient : ∀n ∈ N, an+1 − bn+1 =
(an − bn)

2

8an+2

(b) Fixons n ∈ N. Montrons par récurrence,

∀k ∈ N, H(k) : ” an+k − bn+k ≤ 8M

(
an − bn
8M

)2k

”

Initialisation : H(0) est vraie car

8M

(
an − bn
8M

)20

= 8M

(
an − bn
8M

)1

= 8M · an − bn
8M

= an − bn

Hérédité : Soit k ∈ N. Supposons que H(k) est vraie et montrons H(k + 1).

D'après la question précédente, an+k+1 − bn+k+1 =
(an+k − bn+k)

2

8an+k+2
.

Or, M ≤ an+k+2 car la suite (ap)p∈N∗ tend en décroissant vers sa limite M . Il vient

an+k+1 − bn+k+1 ≤ (an+k − bn+k)
2

8M

D'après H(k),

an+k+1 − bn+k+1 ≤

(
8M

(
an − bn
8M

)2k
)2

8M
=

8M

(
an − bn
8M

)2k+1

8M
= 8M

(
an − bn
8M

)2k+1

Ce qui montre H(k + 1) et achève l'hérédité.
Conclusion : On a montré par récurrence

∀k ∈ N∗, an+k − bn+k ≤ 8M

(
an − bn
8M

)2k

Ceci étant vrai pour tout n ∈ N, on a ∀n ∈ N,∀k ∈ N∗, an+k − bn+k ≤ 8M

(
an − bn
8M

)2k

(c) Puisque lim
n→+∞

(an − bn) = 0, on dispose d'un n ∈ N tel que
an − bn
8M

≤ 1

2
.

D'après la question précédente, on a pour tout k ∈ N∗, an+k − bn+k ≤ 8M

(
1

2

)2k

, ce qui équivaut à

∀p > n, ap − bp ≤ 8M

(
1

2

)2p−n

Remarquons que pour p > n,

8M

(
1

2

)2p−n

= 8M

(
1

2

)2p×2−n

= 8M

[(
1

2

)2−n]2p

Posons alors α = 8M > 0, γ =

(
1

2

)2−n

∈]0, 1[ et n0 = n+ 1 ∈ N, de telle sorte que

∀p ≥ n0, ap − bp ≤ α · γ2p

On a montré qu' il existe γ ∈]0, 1[, α > 0 et n0 ∈ N tels que : ∀p ∈ N∗, p ≥ n0 =⇒ ap − bp ≤ α · γ2p .
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5. Fixons deux réels strictement positifs x et y.

(a) Prenons a = x et b = x dans la dé�nition des suites (an)n et (bn)n. Alors, on observe que

a1 =
x+ x

2
= x et b1 =

√
x× x = x

Par une récurrence immédiate, les suites (an)n et (bn)n sont constantes égales à x. Elles convergent

donc vers x. Par unicité de la limite, il vient M(x, x) = x

(b) Considérons les suites :
a0 = x, b0 = y

an+1 =
an + bn

2
pourn ∈ N

bn+1 =
√
anbn pourn ∈ N

et


u0 = x, v0 = y

un+1 =
un + vn

2
pourn ∈ N

vn+1 =
√
unvn pourn ∈ N

Remarquons que,

a1 =
x+ y

2
=

y + x

2
= u1 et b1 =

√
xy =

√
yx = v1

Par une récurrence immédiate, les suites (an)n≥1 et (bn)n≥1 sont respectivement égales aux suites
(un)n≥1 et (vn)n≥1. Or, d'après la question 1.c), (an)n converge vers M(x, y) et (un)n converge
vers M(y, x). Comme ces deux suites sont égales à partir du rang 1, elles ont même limite. D'où

M(x, y) = M(y, x)

(c) Soit k un réel strictement positif. Considérons les suites :
a0 = x, b0 = y

an+1 =
an + bn

2
pourn ∈ N

bn+1 =
√
anbn pourn ∈ N

et


u0 = kx, v0 = ky

un+1 =
un + vn

2
pourn ∈ N

vn+1 =
√
unvn pourn ∈ N

Remarquons que,

u1 =
kx+ ky

2
= k

x+ y

2
= ka1 et v1 =

√
kx× ky = k

√
xy = kb1

Par une récurrence immédiate, les suites (un)n et (vn)n sont respectivement égales aux suites (kan)n
et (kbn)n. Or, d'après la question 1.c), (an)n converge versM(x, y) donc par produit, (kan)n converge
vers kM(x, y), et (un)n converge vers M(kx, ky). Comme ces deux suites sont égales, elles ont même

limite. D'où M(kx, ky) = kM(x, y)

6. Considérons les suites :
a0 = x, b0 = y

an+1 =
an + bn

2
pourn ∈ N

bn+1 =
√
anbn pourn ∈ N

et


u0 =

x+ y

2
, v0 =

√
xy

un+1 =
un + vn

2
pourn ∈ N

vn+1 =
√
unvn pourn ∈ N

Remarquons que a1 = u0 et b1 = v0. Par une récurrence immédiate, les suites (un−1)n≥1 et (vn−1)n≥1

sont respectivement égales aux suites (an)n≥1 et (bn)n≥1. Or, d'après la question 1.c), (an)n converge vers
M(x, y) et (un)n converge vers M(x+y

2 ,
√
xy) donc (un−1)n≥1 aussi. Comme ces deux suites sont égales,

elles ont même limite. D'où M(x, y) = M(x+y
2 ,

√
xy)
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Exercice 5

1. Si P est un polynôme de degré n ∈ N∗, on peut montrer que P (X +1)−P (X) est un polynôme de degré
n−1 (en exercice). Ainsi, considérons un polynôme de degré 4 de la forme P (x) = aX4+bX3+cX2+dX
avec a, b, c et d des réels, a étant non nul. Alors, en utilisant le binôme de Newton,

P (X + 1)− P (X) = a(X + 1)4 + b(X + 1)3 + c(X + 1)2 + d(X + 1)− aX4 − bX3 − cX2 − dX

= a(X4 + 4X3 + 6X2 + 4X + 1) + b(X3 + 3X2 + 3X + 1) + c(X2 + 2X + 1)

+ d(X + 1)− aX4 − bX3 − cX2 − dX

= 4aX3 + (6a+ 3b)X2 + (4a+ 3b+ 2c)X + (a+ b+ c+ d)

Ainsi,

P (X + 1)− P (X) = X3 ⇐⇒


4a = 1

6a+ 3b = 0
4a+ 3b+ 2c = 0
a+ b+ c+ d = 0

⇐⇒


a = 1/4
b = −2a
c = −2a− 3b/2
d = −a− b− c

⇐⇒


a = 1/4
b = −1/2
c = −2a− 3b/2
d = −a− b− c

⇐⇒


a = 1/4
b = −1/2
c = 1/4
d = −a− b− c

⇐⇒


a = 1/4
b = −1/2
c = 1/4
d = 0

Par conséquent, grâce à ces équivalences, le polynôme

P =
1

4
(X4 − 2X3 +X2) =

1

4
X2(X2 − 2X + 1) =

X2(X − 1)2

4

véri�e P (X + 1)− P (X) = X3.
Soit n ∈ N. On a

n∑
k=0

k3 =

n∑
k=0

(P (k + 1)− P (k)) = P (n+ 1)− P (0) =
n2(n+ 1)2

4

car on reconnaît une somme télescopique. Il vient : ∀n ∈ N,
n∑

k=0

k3 =
n2(n+ 1)2

4

2. Raisonnons par analyse-synthèse. Soit Pn un polynôme de R[X].
• Analyse : Supposons que Pn(X +1)−Pn(X) = Xn et que Pn(0) = 0. Alors, d'après le raisonnement de

la question 1, Pn est un polynôme de degré n + 1. Écrivons Pn(X) =
n+1∑
k=0

akX
k avec a0, a1, . . . an+1 des

réels et an+1 ̸= 0. Or, 0 = Pn(0) =
n+1∑
k=0

ak0
k = a0. Donc Pn(X) =

n+1∑
k=1

akX
k. On a alors, en utilisant le
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binôme de Newton,

P (X + 1)− P (X) =

n+1∑
k=1

ak[(X + 1)k −Xk]

=

n+1∑
k=1

ak

 k∑
j=0

(
k

j

)
Xj −Xk


=

n+1∑
k=1

ak

k−1∑
j=0

(
k

j

)
Xj

=

n+1∑
k=1

k−1∑
j=0

ak

(
k

j

)
Xj

=
∑

0≤j<k≤n+1

ak

(
k

j

)
Xj

=

n∑
j=0

n+1∑
k=j+1

ak

(
k

j

)
Xj

=

n∑
j=0

 n+1∑
k=j+1

ak

(
k

j

)Xj

=

n∑
j=0

AjX
j

où Aj =
n+1∑

k=j+1

ak
(
k
j

)
pour tout j ∈ J0, nK. Donc,

P (X + 1)− P (X) = Xn ⇐⇒



An = 1
An−1 = 0
An−2 = 0
...

...
...

A0 = 0

⇐⇒



(
n+1
n

)
an+1 = 1(

n+1
n−1

)
an+1 +

(
n

n−1

)
an = 0(

n+1
n−2

)
an+1 +

(
n

n−2

)
an +

(
n−1
n−2

)
an−1 = 0

...
...
...

an+1 + an + an−1 + · · ·+ a1 = 0

On obtient ainsi un système triangulaire avec des coe�cients diagonaux non tous nuls, il est donc de
Cramer. Par conséquent, ce système admet une unique solution que l'on pourrait déterminer en résolvant
les équations une à une. On trouve alors une unique valeur pour an+1, an, . . . , a1. Ce qui montre que,
sous réserve d'existence, ce polynôme est unique.

• Synthèse : Reprenons les coe�cients a1, . . . an+1 déterminés précédemment et posons Pn(X) =
n+1∑
k=1

akX
k.

Donc, Pn(X + 1)− Pn(X) = Xn et Pn(0) = 0 (grâce aux équivalences de la partie analyse).
Ainsi, par analyse-synthèse,

il existe un unique polynôme Pn tel que Pn(X + 1)− Pn(X) = Xn et Pn(0) = 0
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