Lycée Hoche, ECG1A 2025-2026

| Correction du DS n°3|

Exercice 1

1. — Montrons Iinjectivité de f. Soit (z,2') € E%. Supposons que f(x) = f(z'). Alors, en composant &

gauche par g, on obtient g(f(x)) = g(f(z')). Comme gof = idg, on obtient © = z’. Ainsi, | f est injective.

— Ensuite, montrons que g est surjective. Soit y € E. Comme go f =idg, on ay = g(f(y)).

En posant, z = f(y) € F, on obtient y = g(x). Ainsi,

g est surjective. ‘

2. Soit (a,b) € R2. Montrons que I’équation h(x,y) = (a,b) a une et une seule solution (x,y) € R2.
Pour tout (z,y) € R?, on a les équivalences suivantes :

_ 4r+3y =a dxr+3y =a
h(z,y) = (a,b) {6:5—23/ =b = { —13y =2b—3a
b —a—3y :2a2—|—3b
= 3a —2b — 3a,62b
Yy = =
13 4 13

2 3b 3a—2b
Donc | h est bijective et h~! est application (a,b) € R? ( ot a ) € R2.

26 7 13

3. Procédons par double inclusion.
e Soit a € A. On dispose alors d'un couple (z,y) € R? tel que a = (z,y) et 1+ 2z + 3y = 0.
Posons t =z — 1 € R de telle sorte que x =t + 1. Ainsi,

1+2(t+1)+3y =0

puis Jy =-3-2¢t
2

d’ot =—-1—-=t
ol Y 3

2
On a donc a = <t +1,—-1— 3t>. Ce qui montre que a € B.

2
e Réciproquement, soit b € B. On dispose alors d’un réel ¢ tel que a = (t +1,-1— 315). De plus,

2
1+2(t+1)+3<13t> =1+424+2-3-2t=0

Il vient : b € A.

On a montré par double inclusion que

n
4. Pour n € N, on note S,, = Y k(})2*™. Fixons désormais n € N.
k=0

-Sin=0:0naS=0x(J) x2'=0.
-Sin >1: Comme le premier terme de cette somme est nul,

n n n n—1
_ NN ok+1 _ Y\ ok+1 _ n—1\ k1 _ n—1 G+2
= E 2 = E 2 = E 2 = E 2

en effectuant le changement d’indice j = k — 1. Ainsi, par linéarité et en utilisant la formule du binéme
de Newton,

n—1
—1\ .
;S,,.L:’I’LXZ2 E (n >2324n><(1+2)”_1:4n><3”_1
; J
7=0

0 sin=0

On obtient : |[Vn € N, S, = { Anx 31 sin>1
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5. Commencons par déterminer ’ensemble de définition de h.
La fonction racine carrée est définie sur Ry donc pour tout z € R,

h(z) est bien définie ssi 22 + 2 > 0 ssi x(x +1) >0

On a le tableau de signes suivant :

z —00 -1 0 400
x - 0+
z+1 - 0 +
z(x+1) + 0 — 0 +
Ainsi, D, =] — 00, —1] U [0, +-00[. Désormais, étudions les limites i au bord de son domaine de définition.

- En +00 : pour tout x € RY,

(Va2 +z —2)(Val+x + x) _

/22 Vit +z
et Vit |m|\/1—|— +z xwl—i— +x 1/1—1— +1

1 / 1
Or, 1+ — —> 1 donc par continuité de la racine carrée en 1, 4/1 4+ — —— 1.
x

€r x—+oo Tr—r+00
1

Puis, par somme et inverse, on obtient h(z) — —.
Tr—r+0o0 2

h(z) =

1
La courbe de h admet une asymptote horizontale en +o0o d’équation y = 5

-En —1~ et en 0% : la fonction est continue en —1 et en 0 par composition de fonctions continues sur leur
domaine de définition. Il n’y a donc pas d’asymptote & la courbe en ces points.

- En —oc0 : pour tout réel x < —1,

1 1 1
:|33|\/1+—$:—$\/1+—x=—x<1/1++1>
X X X

1 1
Or, 1+ — ——— 1 donc par continuité de la racine carrée en 1, 4/1 + — —— 1.
r T——00 Tr T——00
Puis, par somme et produit on obtient h(z) ——— +oo0.
Tr—r— 00

Montrons alors que la courbe de h admet une asymptote oblique en —oo. Pour tout réel x < —1,

M~—»—2

r—r—00

En utilisant les limites précédentes, on a

De plus, pour tout réel z < —1,

h(z) 4+ 2z = J;2+x+w—x +z o =

1
N E— B 1
|| 1+*—x - 1+*—x 1—&-;—1—1

En utilisant les limites précédentes, on a h(z) + 22 ——— —5
Tr—r—00

La courbe de h admet une asymptote oblique en —oco d’équation y = —2x — 5

6. On note E ’ensemble des éléves de la classe, A 'ensemble des éléves étudiant ’anglais, B I’ensemble des
éléves étudiant ’allemand et C' 'ensemble des éléves étudiant ’espagnol. Comme tous les éléves étudient

au moins une langue vivante, on a
E=AUBUC
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7.

8.

De plus, I’énoncé donne les cardinaux suivants :
Card(E) =45, Card(4) =32, Card(B)=20, Card(C)=28
Card(ANB) =15, Card(ANnC)=19, Card(BNC)=11
On veut déterminer Card(AN BN C). D’aprés la formule du crible de Poincaré,
Card(AUBUC) = Card(A)+Card(B)+Card(C)—Card(ANB)—Card(ANC)—Card(BNC)+Card(ANBNC)
D’or,
Card(AN BN () = Card(F) — Card(A) — Card(B) — Card(C) + Card(AN B) + Card(ANC) + Card(B N C)

=45-32-20—-28+154+19+11
=10

‘Il y a 10 éléves qui étudient les trois langues. ‘

(a) On note E l'ensemble des résultats. Alors

E ={RRR,RRB,RBR,RBB, BRR, BRB, BBR, BBB}

‘Il y a donc 8 résultats possibles. ‘

(b) L’ensemble des résultats commencant pat la couleur blanche est {BRR, BRB, BBR, BBB}.
‘Il y a 4 résultats commencant par la couleur blanche. ‘

(¢) L’ensemble des résultats comportant exactement 2 boules rouges est {RRB, RBR, BRR}.
‘Il y a 3 résultats comportant exactement 2 boules rouges ‘

(a) Comme on tire n boules et qu’il y a n boules rouges et n boules blanches, on dispose d’une bijection
entre ’ensemble des résultats et {0,1}™ en associant le nombre 0 au tirage d’une boule rouge et le

nombre 1 au tirage d’une boule blanche. Or, Card({0,1}") = 2". ‘Il y a donc 2" résultats possibles

(b) Un résultat comportant exactement k boules rouges est entiérement déterminé par la position de ces
k boules rouges dans la liste de longueur n. Il y en a donc autant que de parties & k éléments d’un en-

semble de cardinal n, c’est-a-dire (:) Ilya (Z) résultats comportant exactement k boules rouges.

(¢) Désormais, on décide que les boules sont discernables (par exemple, numérotées de 1 & 2n) et que
I’'on note le numéro des boules obtenues sans tenir compte de ’ordre.
D’une part, il y a autant de configurations que de parties & n éléments d’un ensemble de cardinal 2n,
c’est-a-dire (2:)
D’autre part, on peut distinguer des configurations en fonction du nombre de boules rouges qu’elles
contiennent. Soit k € [0,n]. Si une configuration est composée de k boules rouges, alors elle est
déterminée par les choix successifs :

e des k boules rouges : il y a autant de possibilités que de parties & k£ éléments d’un ensemble de
cardinal n donc (2)

e des n — k boules blanches : il y a autant de possibilités que de parties & n — k éléments d’un
ensemble de cardinal n donc (,",)

Par principe multiplicatif, le nombre de configurations a k boules rouges est (Z) X (nﬁ k)
Ces cas étant disjoints, le nombre total de configurations est

2
n
par symétrie des coefficients binomiaux
k

C-x()

RIS

Il vient
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Comme ce résultat est trivial pour n = 0, on obtient

2n "0\ 2
Vn € N, =
n — \k

]

Exercice 2

1. Soit £ € N*. D’aprés I'inégalité de concavité du logarithme,

Ik + 1) — In(k) = In <k;‘1> —n (1+ ;) < %

On a montré :

Vk € N*, — > In(k + 1) — In(k)

w\H

2. Soit n € N*. Sommons les inégalités obtenues a la question précédente pour k € [1,n]. Il vient :

=In(n+1) —In(1) =In(n + 1) car la somme est téléscopique

Ainsi; pour tout n € N*, H, > In(n+1). Or, lirf In(n+1) = +00. D’apreés le théoréme de comparaison,
n—-+oo

lim H, = +oo

n—-+o0o
3.
1 def Harm(mn):
2 L=[1]
3 for i in range(2,n+1)
4 L.append(L[-11+1/1)
return L
4. Soit k € N*. Alors :
1) —m(k) = —— > —(In(k + 1) — In(k))
kE+1 k+1—
1
——>1 1 1
= n(k) —In(k +1)
= - ! >1 i
k+1= \k+1
1 k+1-1
— >1
A k+1_n< k1 )
e - smf14 =L
K+l k+ 1

—1 donc la derniére inégalité est vraie d’aprés I'inégalité de concavité du logarithme. Ainsi,

1
Or, _m >

1
Y T <L —
keN " E 1 ln(k+1) ln(k)

5. Soit n € N*. En effectuant le changement d’indice affine j = k + 1,
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10.

11.

. Soit n € N*. Notons S, = >

n—1 1
e H,, —1 (question précédente). En sommant les inégalités obtenues
k=1

a la question 4) pour k € [1,n — 1], on obtient

‘ol

car la somme est télescopique. On a donc H, — 1 = 5,, <lIn(n), d
H, <In(n)+1.

De plus, dans la question 2) nous avons obtenu In(n + 1) < H,.
Par croissance du logarithme, In(n) < In(n + 1) d’ou :

‘Vn € N*, In(n) < H, <In(n)+1 ‘

. Pour tout n € N tel que n > 2, on a In(n) > In(1) = 0 donc grace a la question précédente,

H, 1
~ In(n) In(n)’

De plus,

1
lim 1=1 et lim (14 =1
n—-+oo n—-+oo hl(n)

D’aprés le théoréme des gendarmes, | lim =1

n—-+400 ln(n)

. Soit n € N*,

apt1 — anp = Hpp1 —In(n+ 1) — H, + In(n)

n+1 1 n 1
=> - > = (n(n+1) —In(n))
k=1 k=1
1
=1 (In(n+ 1) —In(n)) < 0 d’aprés la question 4.

Alinsi, ‘la suite a est décroissante. ‘

. Soit n € N*,
bn+1—bn:an+1—%ﬂ—an+%
1 1
:an—&-l*an*m*kﬁ
= — (In(n+1) —In(n)) — ! —|—l
n+1 n+1 n

1
— — (In(n + 1) —In(n)) > 0 d’apreés la question 1.
n

Ainsi, | la suite b est croissante. ‘

1
On a, pour tout n € N*, b, —a,, = —— donc b,, —a,, —+> 0. De plus la suite a est croissante et la suite
n n—-+oo

b est décroissante. Les suites (an)nen €t (bn)nen sont donc adjacentes. D’aprés le théoréme des suites

adjacentes,‘ les suites a et b convergent vers une limite commune.

Gréce au théoréme des suites adjacentes, on sait aussi que pour tout n € N*, b, <y < a,.
En particulier, by <y < as. Or,
1 1
ag:Hg—ln(2):1+§—ln(2):(1—ln(2))+ >0 et bzzag—izl—ln(2)<1

Par transitivite,
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12. Soient n € N* et k € [1,n]. D’aprés la formule du triangle de Pascal,
n+1\ (n N n donc 1 n+1 71 n +1 n
k - \k k—1 E\ k - k\k k\k—-1
n+1 n 1 n 1 n+1
e 1 o1 — = —
k( k ) (”+)<k—1) don k(k—l) n+1< k >
n 1 n+1
() ()

Vn € N*, P(n):” 53(_ﬁr%1(n>::ﬁhf

k=1

1 1
Iwmmm@wwEM@kc+):

13. Montrons par récurrence,

Initialisation : P(1) est vraie car

£ (1)« () 1o

k=1

Hérédité : Soit n € N*. Supposons que P(n) est vraie et montrons P(n+1). Grace a la question précédente,
S%Cﬂﬁ”'n+1 75304V”'n+1 L (D" (nt
Pt k k N — k k n+1\n+1
n
1 1 1 -1)" 1
-2 e G ()] G)
Pt k\k n+1 k n+1\n+1
" (=1)F 1t n (DRt m+ 1\ (D) n+1 L
= = =) line
A I +Z o i +n+1 nt1 par linéarité

o (—1)’“1<n+1>

D’une part, d’aprés P(n),

D’autre part,

n+l k—1 n+1
(_1) n+1 - 1 k—1 n+1 U TA
Z n+1 k) n+l Z( 1) i par linéarité

k=1 k=1
n+1
1 n+1 n+1
— 1 k-1 — (=1 0—1
e () e (7
k=0
1 1
e (14 (=1)" ! 4 T d’aprés le binéme de Newton
ontt 1
R R
1
= ? carn+1>1
n
On obtient alors,
ntl k-1
(—D)F ' (1) 1
Z g )=t i Hyiq

k=1

Ce qui montre P(n + 1) et achéve I'hérédité.
Conclusion : On a montré par récurrence

no k-1
e, S ()

k=1
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Exercice 3

. . 1 . e . 1 1+
1. Soit € R. L’expression f(z) = exp (w In (1 + — est bien définie si, et seulement si, 1 + — = v
x x

x
est défini et strictement positif. Or, on a le tableau de signes suivant :

x —00 —1 0 +o0
T+ 1 - 0 +

x - 0 +
z+1 i 0 _ n

z

Ainsi, ‘Df =| — oo, —l[U]O,—l-oo[‘

2. La fonction f est dérivable sur son domaine en tant que composée de fonctions qui le sont.
De plus, pour tout € Dy :

= o1+ 2) 75 om0+ ) o 2) -]

3. La fonction exponentielle est strictement positive sur R, donc f est aussi strictement positive sur son
domaine de définition. Ainsi, ‘u est bien définie ‘ Avec la question précédente, on a

1
z+1

1
Vz € Dy, u(zr) =1n <1—|—$> -

4. La fonction u est dérivable sur son domaine de définition en tant que somme de fonctions qui le sont. De
plus, pour tout = € Dy,

1 1 1 -1 1 —1—x+=x -1
POR
T
14—
T

u'(r) = —

Cr1? 2@t @r1)E a@rl? @ty

donc u'(x) est du signe de —=x.
Afin de dresser un tableau de variations partiel de u, étudions les limites en oo de u.
1 1
On a 14+ — —— 1 donc par continuité du logarithme en 1, In <1 + ) — 0.
T x—Foo T r—Eo0
Par somme, on obtient : u(z) —— 0. Ainsi,
r—+oo

x —00 —1 0 400
u' ()
Y 0 0

Par conséquent, | la fonction u est positive sur Dy. ‘
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5. En 400 : On pose

]—1,400] — R
In(1+ z)
x

Df — ]—1,—|—OO[
g: 1 et h:

x — xT

x
1

de telle sorte que pour tout € Dy, xln (1 + ) = h(g(x)). D’une part, g(a) — 0.
x

z—+oo

D’autre part, par dérivabilité de la fonction logarithme en 1, h(x) — In’(1) = 1.
z—

1
Par composition, xIn <1 + > —— 1. Par continuité de la fonction exponentielle en 1, | f(z) —— ¢
€T z—0 r—+oo

1 1
En -1~ : 14+ = ——— 07 car la fonction z — 1 + — est positive sur | — oo, —1].
r z——1— x

1
Par composition, In (1 + ) —— —oo. Par produit puis par composition, | f(z) ——— +oo.
T r——1— r——1—

En 0" : Pour z € R%,

o In(1+ z)

|
= + zln(x)

1 1
x1n <1+x> =zln <x+ ) =zln(z+1) —zln(z) ==

In(1 1
M —— In’(1) = 1 puis par produit, 2> -
x—0 xT z—0

D’autre part, d’apres le théoréme des croissances comparées, x In(x) —O> 0.
xrT—

D’une part, par dérivabilité de In en 1,

x z—0 rz—0+
Avec ces limites, on en déduit que :
‘ La courbe de f admet une asymptote horizontale en +o0o et en —oo d’équation y = e. ‘

1
Par somme, x1In <1 + ) —— 0. Puis, par continuité de la fonction exponentielle, | f(z) —— 1.

‘ La courbe de f admet une asymptote verticale d’équation x = —1. ‘

6. La fonction f est strictement positive sur Dy donc pour tout = € Dy, f'(z) est du méme signe que u(x).
On obtient, en utilisant les questions 4 et 5 :

x —00 -1 0 “+00
f(z) +
e
f e 1 —

7. Comme lir% flz)=1, ‘ f est prolongeable par continuité en 0.
T—

Comme lim1 f(z) = 400, ‘ f n’est pas prolongeable par continuité en —1.
T——
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import numpy as np
import matplotlib.pyplot as plt
def f(x):

return np.exp(x*np.log(1+1/x))
listeX=np.linspace(2,50,1000)
listeY=[f(x) for x in listeX]
plt.plot (listeX,listeY,label="f")
plt.legend ()
plt.show ()

Exercice 4

1.

(@)

Le premier point & justifier est ’existence des suites. Notons
Ry xRT  — R} xRY

F: zT+y

((E7y) — (Qa\/xy)

Par le théoréme d’existence des suites récurrentes, il existe une unique suite (Uy,)nen = ((an, bn))nen
telle que Uy = (a,b) et pour tout n € N, U,,41 = F(U,,), c’est-a-dire telle que ag = a, by = b et pour

a, +b .
tout n € N, ap11 = % et bpt1 = Vayb,. Comme F est & valeurs dans R x R, ces suites

sont strictement positives.
Notons ensuite que, pour tout n € N,

2
an—i—bn \/m: an—Q\/;nbn+bn (\/@f\/ﬂ)

n _bn = -
n+1 +1 5 5

Il en résulte que pour tout n € N, a,41 > b1, c’est-a-dire ‘Vn eN* b, <a, ‘

Pour tout n € N*,

an +0b b, —a .
Apy1 — Qp = % —ay = ——2<0 d’aprés la question précédente

Alors, ‘ (an)nen+ est décroissante.
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Pour tout n € N*,
b1 —bn = V/anbn — by = V/bu(\/an — V/bn) > 0

d’aprés la question précédente et par croissance de x — /z. Alors,

(bn)nen+ est croissante.

En utilisant la monotonie de ces deux suites et la question précédente, on a
Vn e N*, by <b, <ap, <ay

Par conséquent, (b,)nen+ est croissante et majorée par aj, donc d’aprés le théoréme de la limite

monotone, | (b, ), converge. | De méme, (a,)nen+ €st décroissante et minorée par b; donc d’aprés le
) ) S

théoréme de la limite monotone, ‘ (an)n converge. ‘

a, + b,
5
e . I+m ., . " .
Par passage a la limite, on obtient [ = — d’ott | = m. Donc ’ (an)n €t (by)n, ont méme limite. ‘

Notons [ et m les limites respectives de (ay, ), et (by,),. On sait que pour tout n € N, a,,41 =

Soit (z,y) € (R%)?. Raisonnons par disjonction de cas.
- Cas 1 : Supposons que = > y. Alors, par croissance de la racine carrée,

Ve -y’ =z—2Vay+y<z -2y /y+y=s—-2y+y=x—y=|z—y

- Cas 2 : Supposons que x < y. Alors, par croissance de la racine carrée,
Ve =yl =z—-2Va/y+y<z-2/y/y+y=c-2z0+y=y—x=|r—y
Dans tous les cas, on a (v/z — /y)? < |z — y| donc | V(z,y) € (R1)?, (Vo — /y)? < |z —y]

Montrons par récurrence,
a — b,

Vn e N*, H(n): " ap — by, < ST

a; —b
21-1
Hérédité : Soit n € N*. Supposons que H(n) est vraie et montrons H(n + 1).

Alors, par croissance de (bg)ren+,

Initialisation : H (1) est vraie car =a; — by.

ap +b ap —b
an+1_bn+1 Sanﬁ-l_bn:%_bn:%

D’aprés H(n), on a
1 a; — b1 . a; — b1

(p41 — bn+1 < 5 on—1 - on

Ce qui montre H(n + 1) et achéve ’hérédité.

Conclusion : On a montré par récurrence

al 71)1
Vn € N*, a, — b, < T

De plus, en reprenant la question 1.a) et utilisant la question précédente,

(Va-v5)" _ja-s

b =
a; — by 5 <5
1 la—b —b
Ainsi, pour tout n € N*, a,, — b, < 5 |;n71| _ |a2n |
—-b
Ce résultat est aussi vrai pour n =0 car a — b < |a — b| donc |Vn € N, a,, — b, < |a2n |

import numpy as np
def approx_M(a,b):

u = a
v = b
while abs(u-v) > 10x*(-3)

u,v = (u+v)/2,np.sqrt (u*xv)

return (u+v)/2

10
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4.

(a)

Soit n € N. En reprenant la question 1.a),

= _ )2 2
( Gn — bn) Gn41 + bn+1 an + bn + 2\/ anbn (w/an + \/E)
An+41 — bn+1 - f et Apto = 5 = n — 1

D’o,
(v = vbu)* (Van +V52)" _ (an = bo)
8 8

(anJrl - bn+1)an+2 -

(an — bn)Q
8an+2

Il vient : |Vn € N, apy1 — bpy1 =

Fixons n € N. Montrons par récurrence,

k
Qp — bn 2
- _ < )

Initialisation : H(0) est vraie car
2° 1
an — by, B a, — by, B anp — by
8M< S > —8M< i ) =8M S 0n by,
Hérédité : Soit k € N. Supposons que H (k) est vraie et montrons H(k + 1).

(an+k = bnyr)®

8p+r+2
Or, M < a,yp+2 car la suite (ap)pen- tend en décroissant vers sa limite M. II vient

D’aprés la question précédente, anyxr1 — bptrrr1 =

2
(an+k — bnyk)
Ongktl = bpypp1 < ——r

8M
D’apres H (k),
ok 2 k41
anp —b 2
8M [~ n an — by .
(o)) s ()
Gntkt+1 — bngry1 < i = i =8M i

Ce qui montre H(k + 1) et achéve I'hérédité.
Conclusion : On a montré par récurrence

k
ay — by \ 2
* B < n n
Vk € N apak — bpik _8M< S >

k
n - bn ?
Ceci étant vrai pour tout n € N, on a |Vn € N)Vk € N* a,qp — by < 8M (a Y >

— b, 1
Puisque nli}rfoo(an —b,) =0, on dispose d’un n € N tel que an8M m< 3

2k
1
D’aprés la question précédente, on a pour tout k € N*, ap4p — by < 8M (2> , ce qui équivaut a

op—mn

1
Vp>n,ap—bp§8M<2>

Remarquons que pour p > n,
1
8M | =

o-n
1
Posons alors a =8M > 0, v = (2) €]0,1] et ng =n + 1 € N, de telle sorte que

op—n

VPZTL(),Gp—bpSOl"Y2P

On amontré qu’| il existe v €]0,1[, &« > 0 et ng € N tels que : Yp e N*, p > ng = a, — b, < a-~v2".

11



Lycée Hoche, ECG1A 2025-2026

5. Fixons deux réels strictement positifs x et y.

(a) Prenons a = x et b = x dans la définition des suites (ay,)n et (by,),. Alors, on observe que

T+
a; = ;r =z et b=VrXxxz=ux

Par une récurrence immédiate, les suites (a,)n et (b, ), sont constantes égales & x. Elles convergent

donc vers z. Par unicité de la limite, il vient m

(b) Considérons les suites :

ap =, bOZy Up =, Vo =Y

an +0b Up + v
i1 = % pourn € N et Upt1 = % pourn € N
bn+1 = Vanb, pourn €N Upt1 = /UnV,  pourn € N

a; = 5 = 5 =u et b =.ry=.yr=mun

Par une récurrence immédiate, les suites (a,)n>1 €t (by)n>1 sont respectivement égales aux suites
(Un)n>1 €t (vp)n>1. Or, d’aprés la question 1.c), (ay), converge vers M(z,y) et (uy), converge
vers M(y,z). Comme ces deux suites sont égales a partir du rang 1, elles ont méme limite. D’ou

| M(z,y) = M(y,z) |

(¢) Soit k un réel strictement positif. Considérons les suites :

ap =, bp =y up = kx, vy = ky

an +b Up + v
i1 = % pourn € N et Upt1 = % pourn € N
bpt1 = Varb, pourn € N Upt1 = /UnUp pourn € N

Remarquons que,

k
_ :E—i—ky:k
2 2

=ka; et v =+kxxky=kyry=kb

Uy

Par une récurrence immeédiate, les suites (uy ), et (vy,), sont respectivement égales aux suites (kay, ),
et (kby)n. Or, d’aprés la question 1.¢), (ay)n converge vers M (x,y) donc par produit, (ka, ), converge
vers kM (z,y), et (un), converge vers M (kz, ky). Comme ces deux suites sont égales, elles ont méme

limite. Dot | M (ka, ky) = kM (z,y) |

6. Considérons les suites :

Tr+vy
ap =, bo =y Uo = —5— Vo = VTY
a, + by,
=" Up + U
Gnt1 5 pourn € N et Up41 = % pourn € N
bnt1 = Vanby, pourn € N Unt1 = /UnUn pourn € N

Remarquons que a; = ug et by = vy. Par une récurrence immédiate, les suites (un—1)n>1 €t (Vn—1)n>1
sont respectivement égales aux suites (an)n>1 €t (by)n>1. Or, d’apres la question 1.c¢), (a, ), converge vers
M(z,y) et (uy), converge vers M (%t \/zy) donc (u,—1),>1 aussi. Comme ces deux suites sont égales,

elles ont méme limite. D’ott | M (z,y) = M (52, \/7y)
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Exercice 5

1. Si P est un polynome de degré n € N*, on peut montrer que P(X + 1) — P(X) est un polynome de degré
n—1 (en exercice). Ainsi, considérons un polynéme de degré 4 de la forme P(r) = aX*+bX3 +cX2+dX
avec a, b, c et d des réels, a étant non nul. Alors, en utilisant le bindme de Newton,

PX+1)-PX)=a(X+1D)*+ (X + 1P+ (X +1)* +d(X +1) —aX* - bX? - cX? —dX
=a(X* +4X3 4 6X2 +4X +1) +b(X> +3X2+3X +1) + (X2 +2X + 1)
+d(X +1)—aX* - bX? —cX? —dX
= 4aX® + (6a 4+ 3b) X% + (4a + 3b+2¢)X + (a + b+ c +d)

Alinsi,

da =1 a =1/4
6a+3b =0 b =-2a
_ — x3
PAAFN) =PX) =X = 3 yoisb42e =0 7\ ¢ ——2a—3b2
a+b+c+d =0 d =—a—-b-c
a =1/4 a =1/4
— b =-1/2 — b =-1/2
¢ =—2a—3b/2 c =1/4
d =—a—-b—c d =—a—-b—c
a =1/4
— b =-1/2
c =1/4
d =0
Par conséquent, grace & ces équivalences, le polynome
L 4 3 2 Lo v2 X*(X —1)?
P:Z(X —2X —i—X):zX (X _2X+1):f
vérifie P(X + 1) — P(X) = X3.
Soit n € N. On a
—~ 5\ n*(n +1)?
>k :Z(P(k:—i—l)—P(k;)):P(n+1)—P(O):f
k=0 k=0

: . ", nP(n+1)?
car on reconnait une somme télescopique. Il vient : |Vn € N| Z k° = — 1
k=0

2. Raisonnons par analyse-synthése. Soit P, un polynome de R[X].
e Analyse : Supposons que P, (X +1) — P,(X) = X" et que P,,(0) = 0. Alors, d’aprés le raisonnement de
n+1

la question 1, P, est un polynéme de degré n + 1. Ecrivons P,(X) = Y. ax X" avec ag, a1, ...a,41 des
k=0
n+1 n+1
réels et a,41 # 0. Or, 0 = P,(0) = . a30* = ap. Donc P,(X) = > axX*. On a alors, en utilisant le
k=0 k=1

13
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bindéme de Newton,

I
3 3
+
—
S
S
B
|
—
VRS
oo
N~
s

I
M=
M
£
<R
S~—
-
<

7=0
n+1
ot A; = > ay (’;) pour tout j € [0,n]. Donc,

k=j+1
A, =1 ("2 Dant =1
A =0 e () 0

P(X+1)— P(X) = X" 2 =0 — ) . .

D= P S (D anss + (" Jan+ (Dans =0
Ao =0 : D
ap4+1 t+ap +Ap_1+---+ a1 =0

On obtient ainsi un systéme triangulaire avec des coefficients diagonaux non tous nuls, il est donc de
Cramer. Par conséquent, ce systéme admet une unique solution que ’on pourrait déterminer en résolvant
les équations une & une. On trouve alors une unique valeur pour a,.1,ay,...,a;. Ce qui montre que,

sous réserve d’existence, ce polynéme est unique.
n+1
e Synthése : Reprenons les coefficients ay, . . . a,41 déterminés précédemment et posons P, (X) = Y ap X*.
- k=1
Donc, P, (X +1) — P,(X) = X" et P,(0) = 0 (grace aux équivalences de la partie analyse).

Ainsi, par analyse-syntheése,

‘il existe un unique polynome P, tel que P,(X +1) — P,(X) = X™ et P,(0) = O‘
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