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Une matrice réelle est un tableau de nombres réels comme

(
1 2 3
4 5 6

)
.

Dans ce chapitre, on dé�nit des opérations portant sur les matrices (addition, produit par un réel, produit
matriciel, transposition) et on s'intéresse aux premières propriétés liées à ces opérations. Les matrices sont
directement liées aux systèmes linéaires, et s'avéreront jouer un rôle central dans l'étude de phénomènes
liés à la notion de linéarité (chapitres espaces vectoriels et applications linéaires).

I. Matrices et opérations

1. Notion de matrice

a) Matrice

Dé�nition 1. Soient n et p deux entiers supérieurs ou égaux à 1.

(i) On appelle matrice (réelle) à n lignes et p colonnes la donnée d'une famille
A = (ai,j)(i,j)∈J1,nK×J1,pK de réels. Une telle matrice est représentée sous la forme d'un
tableau :

A =


a1,1 a1,2 a1,3 . . . a1,p
a2,1 a2,2 a2,3 . . . a2,p
...

...
...

...
...

an,1 an,2 an,3 . . . an,p

 .

(ii) On note Mn,p(R) l'ensemble des matrices réelles à n lignes et p colonnes.

(iii) Soit A = (ai,j)(i,j)∈J1,nK×J1,pK ∈ Mn,p(R). Pour tout i ∈ J1, nK et j ∈ J1, pK, on dit que le
réel ai,j est le coe�cient de A en i-ième ligne et j-ième colonne. On dit aussi que ai,j est le
coe�cient d'indice (i, j) de A.

Remarque. (i) On trouve la variation de notation suivante :

A = (ai,j)(i,j)∈J1,nK×J1,pK = (ai,j)1≤i≤n
1≤j≤p

.

(ii) Si A est une matrice à n lignes et p colonnes, on dit aussi que A est une matrice de taille (n, p).

(iii) On retiendra, pour l'ordre des indices, la taille... Dès que la question se pose : ligne puis
colonne.

Exemple 2. (i) A =

(
2 3 4
4 −1 10

)
est une matrice à 2 lignes et 3 colonnes.

Notant A = (ai,j)(i,j)∈J1,2K×J1,3K, on a par exemple :

a1,2 = 3 et a2,2 = −1.

(ii) La matrice A = ((−1)i2j)1≤i≤3
1≤j≤2

est la matrice :

A =

(−1)121 (−1)122

(−1)221 (−1)222

(−1)321 (−1)322

 =

−2 −4
2 4
−2 −4

 .

Page 2



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

Dé�nition 3. Soit (n, p) ∈ (N∗)2. On appelle matrice nulle de taille (n, p) la matrice de taille
(n, p), notée 0n,p, dont tous les coe�cients sont nuls. Autrement dit, 0n,p est donnée par

0n,p = (0)(i,j)∈J1,nK×J1,pK =

0 0 . . . 0
...

... . . .
...

0 0 . . . 0


︸ ︷︷ ︸

p colonnes

n lignes.

Remarque. Soit n ≥ 1. La matrice nulle de taille (n, n), 0n,n, est notée plus simplement 0n.

Exemple 4. (i) 03,1 =

0
0
0

.

(ii) 02 =

(
0 0
0 0

)
.

Remarque. Vue la dé�nition, deux matrices données sont égales si et seulement si elles
ont la même taille et les mêmes coe�cients. Autrement dit, si A = (ai,j)(i,j)∈J1,nK×J1,pK et
B = (bi,j)(i,j)∈J1,mK×J1,qK sont deux matrices réelles :

A = B ⇐⇒

{
n = m et p = q

∀(i, j) ∈ J1, nK × J1, pK, ai,j = bi,j
.

b) Matrice carrée

Dé�nition 5. Soit n ∈ N∗.
On appelle matrice carrée de taille n toute matrice de taille (n, n). On note plus simplement
Mn(R) l'ensemble Mn,n(R) des matrices carrées de taille n.

Remarque. Une matrice carrée A = (ai,j)(i,j)∈J1,nK×J1,nK est parfois notée plus simplement :

A = (ai,j)1≤i,j≤n.

L'indice i des lignes apparait alors avant l'indice j des colonnes( "1 ≤ i, j ≤ n" ).

Dé�nition 6. Soit n ∈ N∗. On appelle matrice identité de taille n la matrice carrée de taille
n, notée In, donnée par :

In =



1 0 0 . . . 0
0 1 0 . . . 0

0 0
. . . . . .

...
...

...
...

. . .
...

0 0 0 · · · 1

 .
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Exemple 7. La matrice identité de taille 3 est :

I3 =

1 0 0
0 1 0
0 0 1

 .

De même, I2 =

(
1 0
0 1

)
et I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Remarque. On pose, pour tous entiers i et j :

δi,j =

{
1 si i = j

0 sinon

(δi,j est appelé le symbole de Kronecker d'indice i, j). Alors, In = (δi,j)1≤i,j≤n.

Dé�nition 8. Soit A = (ai,j)1≤i,j≤n une matrice carrée de taille n ∈ N∗.
Les réels a1,1, a2,2, . . . , an,n sont appelés les coe�cients diagonaux de A.

Exemple 9. Les coe�cients diagonaux de

1 2 3
4 5 6
7 8 9

 sont 1, 5 et 9.

c) Matrice ligne, matrice colonne

Dé�nition 10. Soit n ∈ N∗.

(i) On appelle matrice ligne de taille n toute matrice de taille (1, n).

(ii) On appelle matrice colonne de taille n toute matrice de taille (n, 1). Une matrice colonne est
aussi appelée un vecteur colonne.

(iii) Soit p ∈ N∗ et A = (ai,j)1≤i≤n
1≤j≤p

∈ Mn,p(R).

� Soit k ∈ J1, nK. On appelle k-ième ligne de A la matrice ligne :(
ak,1 ak,2 . . . ak,p

)
.

� Soit k ∈ J1, pK. On appelle k-ième colonne de A la matrice colonne :
a1,k
a2,k
. . .
an,k

 .

Exemple 11.
(
0 2 −1

)
est une matrice ligne de taille 3.

La 3-ième ligne de

1 2
2 3
5 6

 est
(
5 6

)
. Sa 2-ième colonne est

2
3
6

.

2. Somme de matrices

La somme de deux matrices est très simple.
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Dé�nition 12. Soient n et p deux éléments de N∗.
Soient A et B deux matrices de même taille (n, p). Notons A = (ai,j)(i,j)∈J1,nK×J1,pK et B =
(bi,j)(i,j)∈J1,nK×J1,pK.
On appelle somme des matrices A et B la matrice notée A+B donnée par :

A+B = (ai,j + bi,j)(i,j)∈J1,nK×J1,pK.

Exemple 13.

(
1 2
3 4

)
+

(
1 0
1 4

)
=

(
1 + 1 2 + 0
3 + 1 4 + 4

)
=

(
2 2
4 8

)
.

La formule signi�e par exemple :(
a b c
d e f

)
+

(
a′ b′ c′

d′ e′ f ′

)
=

(
a+ a′ b+ b′ c+ c′

d+ d′ e+ e′ f + f ′

)
.

Remarque. Attention, la somme de deux matrices A et B n'est dé�nie que si A et B ont même
taille.

Par exemple,
(
1 2 3

)
+

(
1 2
2 3

)
n'a aucun sens, tout comme

(
2 3

)
+

(
1 2
2 3

)

Proposition 14. Soit (n, p) ∈ (N∗)2. Alors, pour tout (A,B,C) ∈ Mn,p(R)3 :

(i) A+ (B + C) = (A+B) + C (La somme de matrices est dite associative.)

(ii) A+B = B +A (La somme de matrices est dite commutative.)

(iii) A+ 0n,p = 0n,p +A = A. (On dit que 0n,p et neutre pour la somme.)

Démonstration. À noter.

Remarque. La somme de matrices est associative et commutative. Par conséquent, dans une somme
de matrices, on peut enlever les parenthèses sans ambiguïté et réarranger les termes. Par exemple, si
A,B,C sont des matrices de même taille :

A+ (B + C) = A+B + C = B +A+ C.

Dé�nition 15. Soient n ≥ 1 et p ≥ 1 deux entiers.

(i) Soit A = (ai,j)(i,j)∈J1,nK×J1,pK ∈ Mn,p(R). On appelle opposée de A, et on note −A, la
matrice

−A = (−ai,j)(i,j)∈J1,nK×J1,pK ∈ Mn,p(R).

(ii) Soient A et B deux matrices de taille (n, p). On note alors:

A−B = A+ (−B).

Exemple 16. −
(
1 2
2 3

)
=

(
−1 −2
−2 −3

)
, et

(
2 3 4
0 0 1

)
−
(
0 0 1
1 1 1

)
=

(
2 3 3
−1 −1 0

)
.

Proposition 17. ∀A ∈ Mn,p(R), A−A = 0n,p.

Démonstration. À noter.
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3. Multiplication par un réel

Dé�nition 18. Soit (n, p) ∈ (N∗)2. Soit A = (ai,j)(i,j)∈J1,nK×J1,pK ∈ Mn,p(R) et soit λ ∈ R.
On appelle produit de A par λ la matrice notée λ ·A donnée par :

λ ·A = (λ× ai,j)(i,j)∈J1,nK×J1,pK ∈ Mn,p(R).

Remarque. Le produit d'une matrice A par un réel λ est donc la matrice de même taille que A
obtenue en multipliant chacun de ses coe�cients par λ.

Exemple 19. Par exemple, 2 ·
(
1 10 20
6 2 3

)
=

(
2 20 40
12 4 6

)
, et pour tous réels λ, a, b, . . . , f :

λ ·

a b
c d
e f

 =

λa λb
λc λd
λe λf

 .

Remarque. On se permet de noter λ ·A = λA, omettant ainsi le point médian. Par contre :
� On n'utilisera pas le symbole de multiplication × entre un réel et une matrice.
� On respectera l'ordre de la dé�nition : le réel est à gauche, et la matrice à droite (ne pas
écrire, avec ces notations, Aλ mais λA).

Proposition 20. Soit (n, p) ∈ (N∗)2.

(i) ∀(λ, µ) ∈ R2,∀A ∈ Mn,p(R), λ · (µ ·A) = (λ× µ) ·A.
(ii) ∀A ∈ Mn,p(R), 1 ·A = A et (−1) ·A = −A.

(iii) ∀λ ∈ R,∀(A,B) ∈ Mn,p(R)2, λ · (A+B) = λ ·A+ λ ·B (Distributivité de · sur +.).

(iv) ∀(λ, µ) ∈ R2,∀A ∈ Mn,p(R), (λ+ µ) ·A = λ ·A+ µ ·A.

Démonstration. À noter.

4. Produit matriciel

Il faut être bien plus attentif pour le produit matriciel.

Dé�nition 21. Soit n, p, q des entiers naturels supérieurs ou égaux à 1.
Soient A = (ai,j)(i,j)∈J1,nK×J1,pK ∈ Mn,p(R) et B = (bi,j)(i,j)∈J1,pK×J1,qK ∈ Mp,q(R).
On appelle produit de A et B la matrice notée A×B = (ci,j)(i,j)∈J1,nK×J1,qK ∈ Mn,q(R) donnée par :

∀(i, j) ∈ J1, nK × J1, qK, ci,j =
p∑

k=1

ai,kbk,j .

Remarque. Beaucoup de choses à remarquer sur cette dé�nition.
� Pour que le produit A×B de deux matrices A et B soit dé�ni, il faut que le nombre de colonnes
de A soit égal au nombre de lignes de B.

� Dans ce cas, A×B a le même nombre de lignes que A, et le même nombre de colonnes que B.
Tout cela sera plus simple en comprenant comment "poser" le produit matriciel.

� Vous pouvez retenir : "le produit d'une matrice (n, p) par une matrice (p, q) donne une matrice
(n, q)."
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Remarque. Le produit matriciel se pose comme décrit par l'illustration suivante.

Exemple 22. Soit A =

(
1 2
3 4

)
et B =

1 1
2 2
3 3

.

Alors, A est de taille (2, 2) et B est de taille (3, 2). Par conséquent,
� Le produit A×B n'est pas dé�ni.
� Le produit B ×A est bien dé�ni.

Appliquons la dé�nition pour calculer B ×A (À noter.)

Remarque. Attention, comme on l'a vu dans l'exemple précédent, il se peut que A × B soit bien
dé�ni, sans que B ×A le soit.
En particulier, l'ordre compte beaucoup dans un produit matriciel : on dit que le produit matriciel
n'est pas commutatif.

Remarque. Même si A×B et B ×A sont tous deux dé�nis, ils ne sont pas toujours égaux.

Par exemple, posons A =

(
0 1
0 0

)
et B =

(
0 0
1 0

)
.

Alors,
A×B =

et
B ×A =

On remarque : A×B ̸= B ×A.

Remarque. Regardons ce qu'est le produit d'une matrice ligne par une matrice colonne. Soit
a1, . . . , an, b1, . . . , bn des réels. Alors le produit matriciel

(
a1 a2 . . . an

)
×


b1
b2
...
bn


est bien dé�ni, et son résultat est la matrice (1, 1) :(

a1b1 + a2b2 + . . .+ anbn
)
.
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Remarque. Soient A ∈ Mn,p(R) et B ∈ Mp,q(R) deux matrices telles que le produit A×B est bien
dé�ni. Alors A × B est une matrice de taille (n, q). Pour tout (i, j) ∈ J1, nK × J1, qK, le coe�cient d'
indice (i, j) du produit A×B est le réel formant la matrice (1, 1) obtenue par le produit

Li × Cj

de la i ième ligne Li de A par la j ième colonne Cj de B (revoir l'illustration précédente).

Remarque. On omet souvent de noter le symbole × de multiplication, notant alors plus simplement

A×B = AB.

5. Propriétés du produit matriciel

Voici les propriétés calculatoires à connaitre.

Proposition 23. Soient n, p, q et r des entiers naturels non nuls.

(i) ∀(A,B,C) ∈ Mn,p(R)×Mp,q(R)×Mq,r(R),

(AB)C = A(BC).

(ii) ∀(A,B) ∈ Mn,p(R)×Mp,q(R),∀λ ∈ R,

λ · (A×B) = (λ ·A)×B = A× (λ ·B).

(iii) ∀(A,B,C) ∈ Mn,p(R)×Mn,p(R)×Mp,q(R),

(A+B)C = AC +BC,

et
∀(A,B,C) ∈ Mn,p(R)×Mp,q(R)×Mp,q(R),

A(B + C) = AB +AC.

(iv) ∀A ∈ Mn,p(R),
InA = AIp = A.

(v) ∀A ∈ Mp,q(R),
0n,pA = 0n,q et A0q,r = 0p,r.

Démonstration. À noter.

Remarque. Attention, le produit matriciel n'étant pas commutatif (on ne peut pas a�rmer a priori
que AB = BA), beaucoup de règles de calcul classiques sont fausses sur les matrices.
Par exemple, en utilisant les règles de la proposition précédente, si toutes les opérations sont bien
dé�nies :

(A+B)2 := (A+B)(A+B)
(iii)
= (A+B)A+(A+B)B

(iii)
= A×A+BA+AB+B×B = A2+AB+BA+B2.

Mais comme AB et BA ne sont pas, à priori, égales, on ne peut pas conclure que

(A+B)2 = A2 + 2AB +B2.

Remarque. Dans la remarque précédente, on est resté vague : "si toutes les opérations sont bien
dé�nies...". Plus précisément, on peut voir que ces opérations sont bien dé�nies si et seulement si A
et B sont des matrices carrées de même taille. Cela explique pourquoi, en partie II, on s'intéresse
davantage aux matrices carrées (on peut enchainer des opérations sur ces matrices).
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La proposition suivante est importante, car sa méconnaissance mène à de nombreuses fautes de cal-
cul.

Proposition 24. La règle du produit nul est fausse pour le produit matriciel : il existe des matrices
non nulles A et B telles que

AB = 0

.

Démonstration. À noter.

Remarque. En particulier, on ne peut pas simpli�er une matrice dans une inégalité de produit : il
existe des matrices non nulles A, B et C telles que

AB = AC et B ̸= C

6. Transposée d'une matrice

Dé�nition 25. Soient n et p deux entiers naturels non nuls. Soit A = (ai,j)(i,j)∈J1,nK×J1,pK ∈
Mn,p(R).
On appelle transposée de A, et on note tA, la matrice de taille (p, n) donnée par :

tA = (aj,i)(i,j)∈J1,pK×J1,nK.

Exemple 26. La dé�nition décrit ce processus, où "le rôle des lignes et des colonnes est échangé" :

t

(
1 2 3
4 5 6

)
=

1 4
2 5
3 6

 .

t
(
1 2 3

)
=

1
2
3

 .

t

(
1 2
3 4

)
=

t

2
4
6

 =

Remarque. On trouve aussi des fois la notation : tA = AT (n'adopter cette dernière que si le sujet
utilise cette notation, car elle est trompeuse : elle pourrait désigner une puissance de matrice).

Proposition 27. Soit (n, p, q) ∈ (N∗)3.

(i) ∀A ∈ Mn,p(R),t (tA) = A.

(ii) ∀λ ∈ R,∀A ∈ Mn,p(R),t (λ ·A) = λ ·t A.
(iii) ∀(A,B) ∈ Mn,p(R), t(A+B) = tA+ tB.

(iv) ∀A ∈ Mn,p(R),∀B ∈ Mp,q(R), t(A×B) = tB × tA.

Démonstration. À noter.
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II. Matrices carrées

Remarque. Si A et B sont des matrices carrées de même taille n, alors A + B et AB sont bien
dé�nies, et sont des matrices carrées de taille n. Par conséquent, l'enchainement des opérations est
permis entre des matrices carrées de même taille, et on dispose donc de plus de notions liées au calcul
matriciel.

Proposition 28. Soit n ∈ N∗ et (A,B) ∈ Mn(R)2. Alors, AB ∈ Mn(R) et A+B ∈ Mn(R).

Démonstration. Trivial en revenant à la dé�nition.

1. Puissances d'une matrice carrée

Le calcul de puissances de matrices est très utilisé dans la résolution de nombreux problèmes (suites,
probabilités, systèmes linéaires...).

Dé�nition 29. Soit n ∈ N∗ et A ∈ Mn(R). Soit k ∈ N∗. On appelle puissance k-ième de la
matrice A la matrice notée Ak donnée par :

Ak = A×A× . . .×A

où le produit comporte k facteurs A. On pose aussi A0 = In.

Remarque. On dit que 1 est l'élément neutre pour le produit des réels car ∀x ∈ R, 1x = x× 1 = x.
On a alors :

∀x ∈ R, x0 = 1.

De même, In est l'élément neutre pour le produit matriciel entre matrices carrées de taille n :

∀A ∈ Mn(R), InA = AIn = A

et par convention, A0 = In pour tout A ∈ Mn(R).

Exemple 30. À noter : calculons

(
1 2
0 2

)3

.

Proposition 31. ∀n ∈ N∗,∀A ∈ Mn(R) :

∀(k, l) ∈ N2, AkAl = Ak+l.

Démonstration. À noter.

Remarque. Attention aux formules fausses. Par exemple, si A et B sont deux matrices carrées de
même taille,

(AB)n = (AB)(AB)(AB) . . . (AB)

(où le produit comporte n facteurs) mais on ne peut pas conclure que (AB)n = AnBn car le
produit matriciel n'est pas commutatif.

Proposition 32. ∀n ∈ N∗,∀A ∈ Mn(R),∀k ∈ N:

(tA)k = t(Ak).

Démonstration. À noter.
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2. Commutation de matrices

Le calcul avec des matrices qui commutent est enrichi de beaucoup de formules classiques pour les
réels.

Dé�nition 33. Soit n ∈ N∗. Soient A et B deux éléments de Mn(R). On dit que A et B
commutent si :

AB = BA.

Remarque. La dé�nition n'a de sens que si A et B sont carrées de même taille (pourquoi ? Que se
passe-t-il sinon ?).

Exemple 34. À noter :

(i) Soit n ∈ N∗. Alors, In et 0n commutent avec toute matrice carrée de taille n.

(ii)

(
0 1
1 0

)
et

(
0 1
0 0

)
commutent-t-elles?

(iii) Même question pour

(
1 1
0 1

)
et

(
2 3
0 2

)
.

Voici un exercice classique :

Exercice 35. Quelles sont les matrices qui commutent avec

(
0 1
0 1

)
?

Proposition 36. Soit n ∈ N∗.

(i) Pour tout λ ∈ R, λIn commute avec toute matrice carrée de taille n.

(ii) Soit (A,B) ∈ Mn(R)2. Si A et B commutent, alors Ak et Bl commutent pour tous entiers
naturels k et l.

Démonstration. À noter.

Remarque. Une matrice de la forme λIn (où λ ∈ R) est appelée une matrice d'homothétie. On
utilisera souvent que ces matrices commutent avec toute matrice carrée (de même taille).

Voici les propriétés calculatoires supplémentaires dans le cas de matrices qui commutent.

Proposition 37. Soient A,B deux matrices carrées de même taille qui commutent. Alors :

(i) ∀n ∈ N, (AB)n = AnBn.

(ii) (A+B)2 = A2 + 2AB +B2, (A−B)2 = A2 − 2AB +B2, (A+B)(A−B) = A2 −B2.

(iii) Formule du binôme de Newton : Pour tout n ∈ N :

(A+B)n =

n∑
k=0

(
n

k

)
AkBn−k.

Démonstration. À noter.

Remarque. La formule du binôme de Newton est donc vraie pour les matrices, mais uniquement
si celles-ci commutent.

Voici un exercice très classique, qui est une méthode à savoir faire en autonomie en 2e année.
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Exemple 38. On pose A =

1 1 1
0 1 1
0 0 1

 et B = A− I3.

(i) Calculer B, B2 et B3.

(ii) En déduire Bk pour tout entier naturel k.

(iii) En déduire un calcul de An en fonction de n ∈ N. On écrira An = (B + I3)
n.

Remarque. La méthode précédente marche car A est une matrice triangulaire supérieure dont tous
les coe�cients diagonaux sont égaux.

3. Matrices triangulaires et diagonales

Dé�nition 39. Soit n ∈ N∗ et A = (ai,j)1≤i,j≤n ∈ Mn(R).
(i) On dit que A est triangulaire supérieure si :

∀(i, j) ∈ J1, nK2, j < i =⇒ ai,j = 0.

(ii) On dit que A est triangulaire inférieure si :

∀(i, j) ∈ J1, nK2, i < j =⇒ ai,j = 0.

(iii) On dit que A est une matrice diagonale si :

∀(i, j) ∈ J1, nK2, i ̸= j =⇒ ai,j = 0.

Exemple 40. Ces dé�nitions signi�ent... (à noter).

Exemple 41.

1 2 3
0 2 3
0 0 0

 est une matrice triangulaire supérieure. Sa transposée

1 0 0
2 2 0
3 3 0

 est

triangulaire inférieure.

La matrice

1 0 0
0 2 0
0 0 3

 est diagonale. La matrice

1 0 2
0 1 1
1 0 0

 n'est ni triangulaire supérieure, ni

triangulaire inférieure, ni diagonale.

Remarque. On note souvent T sup
n (R) (resp. T inf

n (R)) l'ensemble des matrices triangulaires
supérieures (resp. inférieures) de taille n.

Proposition 42. Soient A et B deux matrices carrées de même taille.
Si A et B sont triangulaires supérieures (resp. triangulaires inférieures, resp. diagonales), alors
A+B et A×B sont triangulaires supérieures (resp. triangulaires inférieures, resp. diagonales).

Démonstration. À noter.

Remarque. Important : Si A et B sont triangulaires supérieures (de même taille), alors les
coe�cients diagonaux de A + B et A × B s'obtiennent directement à partir de ceux de A et B. (À
noter). La même chose est vraie pour les matrices triangulaires inférieures et diagonales.

Proposition 43. Si A est une matrice triangulaire supérieure (resp. triangulaire inférieure, resp.
diagonale), alors il en est de même de An pour tout entier naturel n.

Démonstration. À noter.
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Proposition 44. Si A est une matrice triangulaire supérieure (resp. triangulaire inférieure), alors
tA est triangulaire inférieure (resp. triangulaire supérieure).

Démonstration. À noter.

4. Matrices carrées et transposition

Juste un peu de vocabulaire ici :

Dé�nition 45. (i) Soit n ∈ N∗ et A ∈ Mn(R). On dit que A est symétrique si tA = A. On
dit que A est antisymétrique si tA = −A.

(ii) Pour tout n ∈ N∗, on note Sn(R) l'ensemble des matrices symétriques de taille n, et An(R)
l'ensemble des matrices antisymétriques de taille n.

Exemple 46. Donnons des matrice symétriques et antisymétriques.

Remarque. Toute matrice antisymétrique a ses coe�cients diagonaux nuls.

III. Matrices carrées inversibles

1. Dé�nition

Dé�nition 47. Soit ∈ N∗ et A ∈ Mn(R). On dit que A est inversible s'il existe B ∈ Mn(R) telle
que :

AB = BA = In.

On démontre immédiatement :

Proposition 48. (et dé�nition.) Soit n ∈ N∗. Si une matrice carrée A ∈ Mn(R) est inversible,
alors il existe une unique matrice B ∈ Mn(R) telle que

AB = BA = In.

Cette matrice est appelée l'inverse de A, et notée A−1.

Démonstration. À noter.

On admettra la proposition suivante, démontrée en 2e année.

Proposition 49. Soit n ∈ N∗. Soit A ∈ Mn(R). Pour tout B ∈ Mn(R), il est équivalent de dire :

(i) A est inversible, et A−1 = B,

(ii) AB = In (on dit que B est inverse à droite de A),

(iii) BA = In (on dit que B est inverse à gauche de A).

Remarque. Autrement dit, pour montrer qu'une matrice carrée A est inversible, il su�t de trouver
une matrice B de même taille n telle que AB = In, ou bien BA = In. Dans ce cas, B = A−1. Cette
proposition réduit les véri�cations à faire, par rapport à la dé�nition.

Exemple 50. Étudions l'inversibilité de

1 0 0
0 2 0
0 0 3



Exemple 51. La matrice On est elle inversible, pour n ∈ N∗?
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Exemple 52. Soient n ∈ N∗ et λ ∈ R. Que dire de l'inversibilité de λIn ?

Exemple 53. On pose A =

(
1 −3
2 −7

)
et B =

(
−7 3
−2 1

)
. Calculer AB. Qu'en déduire?

Proposition 54. Soit n ∈ N∗ et A ∈ Mn(R). Si A est inversible, alors A−1 l'est aussi, et

(A−1)−1 = A.

Démonstration. À noter.

2. Propriétés de l'inverse

Proposition 55. Soit n ∈ N∗ et A ∈ Mn(R).
(i) Soit B ∈ Mn(R). Si A et B sont inversibles, alors AB est inversible et :

(AB)−1 = B−1A−1.

(ii) A est inversible si et seulement si tA est inversible, et dans ce cas :

(tA)−1 = t(A−1).

(iii) Soit m ≥ 1. A est inversible si et seulement si Am est inversible, et dans ce cas:

(Am)−1 = (A−1)m.

Démonstration. À noter.

Exemple 56. Soient A et P deux matrices carrées de taille n inversibles. Montrer que P−1AP est
inversible, et donner une expression de son inverse.

Voici quelques règles de calcul propres à l'inversibilité.

Proposition 57. Soit A une matrice carrée de taille n.

(i) Si A est inversible, alors A est simpli�able à gauche et à droite :

∀p ≥ 1,∀(B,C) ∈ Mn,p(R)2, AB = AC =⇒ B = C.

∀p ≥ 1,∀(B,C) ∈ Mp,n(R)2, BA = CA =⇒ B = C.

(ii) Plus généralement, si A est inversible, alors pour tout p ∈ N∗ et pour tout (X,Y ) ∈ Mn,p(R)2
:

AX = Y ⇐⇒ X = A−1Y.

Démonstration. À noter.

Le résultat de cet exercice n'est pas au programme, mais il est si classique qu'il faut l'avoir bien compris.

Exercice 58. Soient A et B deux matrices carrées de taille n, non nulles, telles que AB = 0n (on dit que
A et B sont diviseurs de 0n). Montrer que A et B ne sont pas inversibles. On procédera par l'absurde.
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3. Deux cas particuliers simples

a) Cas des matrices diagonales

Proposition 59. Une matrice diagonale


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . . . . .

0 . . .
... λn

 est inversible si et seulement si tous

ses coe�cients diagonaux λ1, . . . λn sont non nuls. Dans ce cas, son inverse est la matrice diagonale:
λ−1
1 0 . . . 0
0 λ−1

2 . . . 0
...

...
. . . . . .

0 . . .
... λ−1

n


Démonstration. À noter.

Exemple 60. À noter.

b) Cas des matrices de taille (2, 2)

Dé�nition 61. Soit A =

(
a b
c d

)
une matrice carrée de taille 2.

On appelle determinant de A le réel noté det(A) donné par :

det(A) = ad− bc.

Proposition 62. Soit A ∈ M2(R). Alors, A est inversible si et seulement si det(A) ̸= 0.

Démonstration. À noter.

Remarque. La démonstration donne, dans ce cas, l'inverse de A :

A−1 =
1

det(A)

(
d −b
−c a

)
.

mais (programme o�ciel...) la formule obtenue pour A−1 n'est pas au programme. La proposition,
par contre, est bien au programme (vous pouvez utiliser le déterminant pour caractériser l'inversibilité
d'une matrice (2, 2)). Sur une copie, pour utiliser cette formule, vous devez donc à chaque fois la
redémontrer en montrant

A× (
1

det(A)

(
d −b
−c a

)
) = I2.

Exemple 63. A quelle condition sur le réel a la matrice

(
a 2
a2 1

)
est-elle inversible?

4. Utilisation d'un polynôme

Remarque. Attention, pour ne pas entrer dans des considérations trop théoriques, la dé�nition ci-
dessous est une NOTATION.
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Dé�nition 64. Soit P =

n∑
k=0

akX
k un polynôme réel, et A une matrice carrée. On note alors :

P (A) =

n∑
k=0

akA
k.

Exemple 65. Si P (X) = X2 + 1 et A =

(
0 1
−1 0

)
, alors P (A) = . . . (À noter.)

Remarque. Méthode : Soit A une matrice carrée de taille n et P un polynôme réel. On suppose
le coe�cient constant de P non nul. Alors, si P (A) = 0n, on peut montrer que A est inversible et
utiliser cette relation pour exprimer A−1 en fonction de A.

Exemple 66. À noter.

IV. Systèmes linéaires, matrices et inversibilité

1. Une correspondance entre systèmes linéaires et matrices

Remarque. La produit d'une matrice par une matrice colonne est une matrice colonne :
a1,1 a1,2 a1,3 . . . a1,p
a2,1 a2,2 a2,3 . . . a2,p
...

...
...

...
...

an,1 an,2 an,3 . . . an,p



x1

x2

...
xp

 =


a1,1x1 + a1,2x2 + . . .+ a1,pxp

a2,1x1 + a2,2x2 + . . .+ a2,pxp

...
an,1x1 + an,2x2 + . . .+ an,pxp



Remarque. Dans l'égalité ci-dessus, dans le membre de droite, on retrouve des expressions de la forme
des lignes d'un système linéaire. C'est une des manières d'expliquer pourquoi le produit matriciel a
été dé�ni de la sorte !

Dé�nition 67. Soit

(S) :


a1,1x1 + a1,2x2 + . . .+ a1,pxp = y1

a2,1x1 + a2,2x2 + . . .+ a2,pxp = y2
...

an,1x1 + an,2x2 + . . .+ an,pxp = yn

un système linéaire à n équations et p inconnues. On appelle matrice associée au système linéaire
(S) la matrice :

A =


a1,1 a1,2 a1,3 . . . a1,p
a2,1 a2,2 a2,3 . . . a2,p
...

...
...

...
...

an,1 an,2 an,3 . . . an,p

 .
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Dé�nition 68. Soit A = (ai,j)(i,j)∈J1,nK×J1,pK une matrice réelle. Soit Y =


y1
y2
...
yn

 ∈ Mn,1(R).

Notons (E) l'équation matricielle :
AX = Y

d'inconnue X ∈ Mp,1(R).
On appelle système linéaire associé à (E) le système linéaire :

(S) :


a1,1x1 + a1,2x2 + . . .+ a1,pxp = y1

a2,1x1 + a2,2x2 + . . .+ a2,pxp = y2
...

an,1x1 + an,2x2 + . . .+ an,pxp = yn

On dit aussi que l'équation AX = B est la forme matricielle du système linéaire (S).

Remarque. Dans l'énoncé ci-dessus, résoudre l'équation matricielle (E) c'est déterminer l'ensemble
des X ∈ Mp,1(R) tels que AX = Y .

Proposition 69. Soit (S) un système linéaire à n équations et p inconnues, et A ∈ Mn,p(R) la
matrice associée à (S). Soit (y1, . . . yn) le second membre de (S).
Alors, pour tous réels x1, . . . , xp, il est équivalent de dire :

(i) (x1, . . . , xp) est solution de (S), et

(ii) A


x1

x2

...
xp

 =


y1
y2
...
yn

 .

Démonstration. À noter.

Exemple 70. À noter.

2. Systèmes de Cramer et inversibilité

a) Rappels sur les systèmes de Cramer

Soit (S) un système linéaire carré. On dit que (S) est de Cramer s'il admet une unique solution. Pour
savoir si (S) est de Cramer :

� On applique l'algorithme du pivot de Gauss pour obtenir un système échelonné équivalent,

� (S) est alors de Cramer si et seulement si les coe�cients diagonaux du système obtenu sont tous
non nuls.

� On remarque que la mise en ÷uvre de l'algorithme du pivot de Gauss (les opérations e�ectuées et
la forme échelonnée obtenue à gauche des égalités) ne dépend pas du second membre du système
considéré.

Ces idées démontrent la proposition suivante :

Proposition 71. Soit (S) un système linéaire carré. Alors, le caractère "de Cramer" de (S) est
indépendant de son second membre. En particulier, (S) est de Cramer si et seulement si son système
homogène associé est de Cramer.

On reformule cette proposition avec une écriture matricielle.
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Proposition 72. Soit A une matrice carrée de taille n ∈ N∗. Soit B =


b1
b2
. . .
bn

 ∈ Mn,1(R). Alors,

il est équivalent de dire :

(i) Le système linéaire associé à l'équation matricielle AX = B est de Cramer, et

(ii) Pour tout Y ∈ Mn,1(R), le système linéaire associé à l'équation matricielle AX = Y est de
Cramer.

b) Systèmes de Cramer et inversibilité

Théorème 73. Soit (S) un système linéaire carré de matrice associée A. Alors, (S) est de Cramer
si et seulement si A est inversible.

Démonstration. À noter.

Corollaire :

Proposition 74. Soit (S) un système linéaire carré de taille n, de matrice associée A, de forme
matricielle

AX = B.

Si (S) est de Cramer, alors A est inversible et l'unique solution (x1, . . . , xn) de (S) est donnée par :
x1

x2

...
xn

 = A−1B.

Autrement dit, la résolution de (S) est liée au calcul de l'inverse de A.

c) Méthode de calcul d'un éventuel inverse

Méthode : Pour déterminer si une matrice carré A ∈ Mn(R) est inversible et, le cas échéant, calculer
A−1 :

� On considère un vecteur colonne indéterminé Y =


y1
y2
...
yn

.

� On pose le système linéaire carré (S) associé à l'équation matricielle AX = Y , d'inconnue X ∈
Mn,1(R).

� On applique l'algorithme du pivot de Gauss. Première déduction : A est inversible si et seulement
si (S) est de Cramer.

� Si A est inversible, on termine la résolution de (S). L'unique solution de (S) est obtenue en fonction
de y1, . . . , yn.

� La matrice A−1 est alors l'unique matrice B ∈ Mn(R) telle que la solution trouvée soit :

B


y1
y2
...
yn

 .
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Exemple 75. Montrons que A =

1 0 1
1 1 0
1 1 1

 est inversible, et calculons A−1.

Remarque. Si la forme échelonnée ne donne pas un système de Cramer, on peut immédiatement
conclure que A n'est pas inversible, d'où l'intérêt de marquer l'étape.

Remarque. Si (S) est de Cramer, on lit directement l'inverse de A sur les coe�cients de yi donnant
la solution de (S) à condition d'avoir bien écrit les yi en colonne et dans l'ordre.

d) Le cas particulier des matrices triangulaires

Soit A ∈ Mn(R) une matrice triangulaire supérieure. Pour tous réels y1, . . . , yn, le système linéaire
associé à l'équation matricielle

AX = Y

est déjà échelonné, ses coe�cients diagonaux sont ceux de A.

Ainsi :

Proposition 76. Une matrice triangulaire A de la forme


λ1

λ2 ⋆

0
. . .

λn

 est inversible si et

seulement si ses coe�cients diagonaux sont non nuls. Dans ce cas, A−1 est triangulaire supérieure
et de la forme : 

λ−1
1

λ−1
2 ⋆

0
. . .

λ−1
n


Démonstration. Esquisse à noter.

Proposition 77. La même proposition est vraie avec les matrices triangulaires inférieures : une
matrice carré de la forme 

λ1

λ2 0

⋆
. . .

λn


est inversible si et seulement si λ1, . . . , λn sont tous non nuls, et son inverse est alors de la forme :

λ−1
1

λ−1
2 0

⋆
. . .

λ−1
n

 .

Démonstration. SiA est triangulaire inférieur, alors tA est triangulaire supérieur et de même coe�cients
diagonaux, notés λ1, . . . , λn.

Par théorème, A est inversible ssi tA est inversible, et dans ce cas :

(tA)−1 = t(A−1).

En appliquant la transposition à cette égalité, il vient dans ce cas :

A−1 = t((tA)−1).
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Par la proposition précédente, tA est inversible ssi les réels λ1, . . . , λn sont tous non nuls, et dans ce ce
cas les coe�cients diagonaux de (tA)−1 sont λ−1

1 , . . . , λ−1
n , et (tA)−1 est triangulaire supérieure.

On a donc l'équivalence :

A est inversible
si et seulement si tA est inversible,
si et seulement λ1, . . . , λn sont tous non nuls.

Dans ce cas, son inverse étant la transposée de (tA)−1, A−1 est triangulaire inférieure (comme transposée
d'une matrice triangulaire supérieure) et ses coe�cients diagonaux sont λ−1

1 , . . . , λ−1
n (la transposition en

change pas les coe�cients diagonaux).
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