
Lycée Hoche 2025-2026
ECG1 A Mathématiques

TP de Python numéro 7 : Algorithmes gloutons

Semaine du jeudi 8 décembre.

Le but de ce TP est de découvrir la notion d'algorithme glouton, permettant de proposer des solutions

à des problèmes de décisions, et d'appliquer ces algorithmes dans certaines situations classiques.

I. Algorithmes gloutons : principe général et premier exemple

1. Des problèmes de choix

Dans ce TP, nous allons nous intéresser à des problèmes que nous pouvons décrire comme étant des problèmes

de choix. D'une manière générale, ce sont des situations qui nous confrontent, pour être résolues :

� à des choix successifs,

� avec la nécessité qu'une fois cette succession de choix e�ectués, nos choix soient les meilleurs possibles
(optimalité des choix).

Exemple 1. Un rat mathématicien se trouve au début d'un parcours constitué d'une série de portes. Derrière
chaque porte se trouve un tas de riz, et éventuellement d'autres portes. Lorsque notre rat choisit une porte,
celle-ci se referme derrière lui. Il doit choisir, une à une, les portes à emprunter et veut naturellement avoir
récolté le plus de riz possible lors de son parcours.
Les disposition des portes et les quantités de riz (en nombre de grains) sont représentées par le graphe
suivant.

17 27

120 147 58 155

50 98 100

Porte 1 Porte 2

Porte 3 Porte 4 Porte 5 Porte 6

Porte 7 Porte 8 Porte 9

Ce plan est dans la première salle où est le rat, et
celui-ci étant mathématicien, il est ici capable de con-
sidérer toutes les possibilités pour choisir la meilleure.
Quelle suite de portes le rat emprunte-t-il pour max-
imiser son nombre de grains de riz ?

Dans ce cas simple, on est capable de considérer toutes les possibilités pour choisir la meilleure.

Le problème est que, si le nombre de possibilités est beaucoup plus grand (imaginez la situation précédente
avec 1001 portes) ou si les nombres en jeux sont plus pénibles à calculer (imaginez une situation avec des
nombres de grains de riz à 14 chi�res...), ce temps de calcul (et la mémoire nécessaire pour retenir tous les
résultats) peut devenir beaucoup trop important : on construit facilement des problèmes où les ordinateurs
actuels prendraient des milliards d'années pour considérer toutes les possibilités. Par exemple, il n'est pas, à ce
jour, envisageable de faire calculer toutes les parties d'échecs possibles à un ordinateur.

1

2. Algorithmes gloutons

On appelle stratégie gloutonne une stratégie permettant de proposer une solution à un problème de choix,
construite sur le principe suivant : à chaque fois qu'un choix est à faire, on fait le choix qui nous semble
immédiatement le plus pro�table.

Exemple 2.

17 27

120 147 58 155

50 98 100

Porte 1 Porte 2

Porte 3 Porte 4 Porte 5 Porte 6

Porte 7 Porte 8 Porte 9

Cette fois-ci, c'est Obélix qui est confronté à ce prob-
lème (avec des sangliers). Il ne sait pas très bien
compter, et il a très faim, ce glouton. Alors, il adopte
la stratégie suivante : à chaque choix qu'il a à faire,
il ouvre la porte derrière laquelle il trouvera le plus
de sangliers.
Quelle suite de portes va-t-il ouvrir, et combien de
sangliers pourra-t-il ainsi ingurgiter ? Cette stratégie
est-elle optimale ?

Un algorithme glouton est tout simplement un algorithme (qu'on implémentera en Python) proposant une
solution à un problème de choix, en suivant une stratégie gloutonne.

3. Optimalité

Comme on l'a vu, une stratégie gloutonne permet de proposer une solution à un problème de choix, mais cette
solution n'est pas forcément optimale : il peut exister de meilleures stratégies, et c'est souvent le cas.

Dans le cadre du programme :

� vous devez être conscient de cette problématique,

� vous devez pouvoir éventuellement constater qu'une stratégie gloutonne n'est pas optimale,

� et vous devez connaitre quelques situations simples pour lesquelles une stratégie gloutonne bien choisie
est optimale.

Il existe bien d'autres stratégies de résolution existantes pour les problèmes de choix, qui sont souvent plus
couteuses en calcul mais qui mènent aussi plus souvent à un résultat optimal.

4. Un premier exemple : le problème du rendu de monnaie

Un premier exemple

On va s'intéresser au problème suivant : comment rendre la monnaie à un client en donnant le moins de pièces
ou billets possibles ?

Pour simpli�er, dans la suite :

� le mot "pièce" désignera aussi bien des billets que des pièces.

� On considérera que les magasins ont un stock in�ni de pièces de chaque valeur.

� On considérera que, dans la zone euro, les échanges se font avec des pièces de valeurs 1e, 2e, 5e, 10e,
20e, 50e, 100e, et 200e (pas de centime dans les pièces ou dans les prix, ni de billet de 500 e).

Exercice 3. Dans un magasin, un client règle un achat de 41e avec une pièce de 50e.

1. Dresser la liste complète des manières dont le vendeur dispose pour lui rendre la monnaie.

2. Parmi celles-ci, laquelle utilise le moins de pièces possibles?

2

On remarque alors que la stratégie suivante permet, au moins dans ce cas, de rendre le moins de pièces possibles:

� Déterminer la valeur de la plus grande pièce qu'on peut rendre - c'est-à-dire inférieure à la somme à rendre,

� Rendre cette pièce tant que la somme à rendre lui est supérieure,

� Recommencer de la sorte jusqu'à avoir rendu toute la monnaie.

Exercice 4. 1. En quoi cette stratégie est-elle une stratégie gloutonne ?

2. Pour quelle raison simple cette stratégie permet-elle de toujours proposer un rendu de monnaie dans la
zone euro ?

Exercice 5. Une autre zone monétaire utilise les mêmes pièces que la zone euro, à l'exception des pièces de 2e
et 5e remplacées par des pièces de 3e et 4e.

Un client règle un achat de 14e avec un billet de 20e.

1. Dresser la liste complète des manières dont le vendeur dispose pour lui rendre la monnaie.

2. Parmi celles-ci, laquelle utilise le moins de pièces possibles?

3. Parmi celles-ci, laquelle utilise la stratégie gloutonne ci-dessus ? Que remarquez vous ?

On dit qu'un système monétaire (c'est-à-dire, en ensemble de pièces et de billets choisi pour faire des échanges
au sein d'une population) est canonique si la stratégie gloutonne décrite ci-dessus fournit toujours la solution
optimale au problème de rendu de monnaie, c'est-à-dire le rendu de monnaie utilisant le moins de pièces ou
billets possibles.

On peut démontrer que le système monétaire utilisé dans la zone euro est canonique, et l'exercice 3 fournit un
exemple de système monétaire non canonique. La valeur des pièces et des billets utilisés dans la zone euro n'est
pas due au hasard...

Généralisation et implémentation

Pour modéliser le problème de rendu de monnaie en général, on considère que :

� Un système monétaire V est donné par les valeurs v1, ..., vn des pièces et billets qui le constituent. Pour
l'implémentation en Python, un tel système monétaire sera donné par la liste

V = [v1, ..., vn]

où les valeurs sont rangées par ordre décroissant (v1 > v2 > ... > vn). On considérera pour simpli�er que
ces valeurs sont entières. L'entier n est le nombre de pièces ou billets.

� Une somme à rendre est simplement un entier S, donc une variable de type int en Python.

� Un rendu de monnaie X est la donnée, pour tout i ∈ J1, nK, d'un entier naturel xi donnant le nombre de
fois que la pièce de valeur vi a été rendue. En Python, un tel rendu de monnaie sera donné par la liste

X = [x1, ..., xn].

� On dit, avec ces notations, donc que le rendu de monnaie X rend la somme S (dans le système monétaire

V) si S =

n∑
i=1

xivi.

En�n, on considérera que tous nos systèmes monétaires contiennent une pièce de valeur 1 (sans quoi, beaucoup
de problèmes se posent).

On rappelle que le système monétaire utilisé dans la zone euro est canonique.

Exercice 6. Écrire un code Python permettant de construire le rendu de monnaie [x1,...,x8] optimal rendant
la somme S = 98e dans la zone euro, à l'aide d'un algorithme glouton.

Exercice 7. 1. Écrire le code d'une fonction Python d'entête def Rendu_Glouton(V,S): prenant en entrée
un système monétaire V et une somme à rendre S, et renvoyant en sortie le rendu de monnaie X rendant
la somme S (dans le système monétaire V) obtenu en appliquant la stratégie gloutonne.

2. Tester cette fonction pour le système monétaire de la zone euro pour rendre 49e.

3. Tester cette fonction pour le système monétaire V=[30,24,12,6,3,1], en vigueur au Royaume-Uni
jusqu'en 1971, pour rendre la somme S = 49. Ce rendu de monnaie est-il optimal? Que dire de ce
système monétaire ?

3

II. Problème de réservation d'une salle

Le contexte est le suivant : vous êtes gestionnaire d'un centre de conférences. Vous recevez des demandes de
réservation pour votre salle principale, de la part de conférenciers. Chaque conférencier vous fait une demande
pour un créneau horaire, et votre but est de maximiser le nombre de conférenciers qui interviendront dans
votre salle principale.

Commençons par un premier exemple. Vous traitez les demandes pour une matinée de quatre heures, de l'heure
notée 0 (pour 8h) à l'heure notée 4 (pour 12h).

Vous recevez les demandes de 4 conférenciers C1, C2, C3 et C4. Les créneaux horaires demandés par ces con-
férenciers sont représentés ci-dessous.

Heures

C1

C2

C3

C4

0 1 2 3 4

Tenant compte des incompatibilités entre ces deman-
des, vous dressez la liste des conférenciers que vous
pourriez retenir. Vous observez que vos possibilités
sont les suivantes :

� Retenir C2 et C1,

� Retenir C2 et C3,

� Retenir C4

(les autres possibilités étant immédiatement exclues).

Dans le but de maximiser le nombre de conférenciers, les deux premières options sont bonnes mais la troisième
est à exclure.

1. Quelques stratégies gloutonnes

On va voir quelques stratégies gloutonnes permettant de proposer une solution à ce problème.

Le principe commun à ces stratégies est le suivant :

� On classe les conférenciers selon un ordre de préférence,

� puis on remplit notre planning en prenant un à un le conférencier préféré parmi les conférenciers dont le
créneau n'entre pas en con�it avec ceux déjà choisi.

Les stratégies di�érent uniquement selon la manière de classer les conférenciers. Voici les classements auxquels
on pense.

� Stratégie (S1) : On classe les conférenciers par ordre croissant d'heure de début de conférence (plus un
conférencier commence tôt, plus on veut le choisir).

� Stratégie (S2) : On classe les conférenciers par durée croissante de conférence.

� Stratégie (S3) : On classe les conférenciers par ordre croissante d'incompatibilité avec les autres con-
férenciers.

� Stratégie (S4) : On classe les conférenciers par ordre croissant d'heure de �n de conférence.

En cas d'égalité entre des conférenciers, ces stratégies ne décrivent pas l'ordre dans lequel les placer. On décrira
un planning par une liste donnant les conférenciers gardés.

Exemple 8. Reprenons l'exemple précédent et appliquons la stratégie (S1).
� Le classement des conférenciers donne C2 = C4 < C3 < C1. L'ordre entre C2 et C4 n'est pas précisé
par la stratégie (S1), admettons que notre algorithme place C2 en premier.

� On remplit notre planning avec C2, notre conférencier préféré.
� Les conférenciers restants sont dans l'ordre C4 < C3 < C1. C4 étant incompatible avec C2, on regarde
C3. Celui-ci étant compatible avec C2, on ajoute C3 à notre planning. Le planning devient [C2, C3].

� On regarde les conférenciers restants : il ne reste que C1, qui est incompatible avec C3. L'algorithme
s'arrête et propose le planning [C2, C3].

Exercice 9. Appliquer de même (à la main) les stratégies (S2), (S3) et (S4) aux demandes de l'exemple
précédent.

4

On souhaite maintenant départager ces stratégies : l'une est-elle meilleure que les autres ? On va pour cela
appliquer ces stratégies sur un autre exemple.

Exercice 10. Avec le tableau des demandes ci-dessous,

� Classer les conférenciers par ordre (décroissant) de préférence,

� en déduire un planning obtenu par une stratégie gloutonne,

et ce pour chacune des stratégies proposées (S1), (S2), (S3) et (S4).

Temps

C1

C2

C3

C4

C5

0 1 2 3 4 5 6 7 8 9 10 11 12

Quelle stratégie gloutonne semble la meilleure ?

2. Une stratégie gloutonne optimale

On peut démontrer que la stratégie gloutonne (S4), consistant à classer les conférenciers par heure de �n de

conférence (dans l'ordre croissant) puis à appliquer la méthode gloutonne, fournit toujours un planning

optimal.

Dans la suite, on ne s'intéresse donc plus qu'à cette stratégie.

Exercice 11. Déterminer à la main un planning optimal pour les demandes suivantes.

Programmation en Python

On représentera les données ainsi en Python :

� Une demande de conférencier est donnée par une liste de longueur 3 de la forme [”C”, d, f] où ”C” (type
�oat) est le nom du conférencier, d (type int) l'heure de début du créneau demandé, et f (type int) son
heure de �n. Par exemple, dans l'exercice 11, la demande du conférencier C1 sera représentée par la liste
["C1", 0, 7].

� La liste des demandes à traiter est donnée par une liste de ces demandes, elles-mêmes sous forme de liste
(c'est une liste de listes). Les listes des demandes des exercices 10 et 11 sont données en annexe, en guise
d'exemple.

� Un planning sera donné par la liste des noms des conférenciers retenus. Par exemple, un planning formé
par les conférenciers C1 et C2 sera représenté par la liste ["C1","C2"].

5

Exercice 12. Écrire une fonction TriDemandes prenant en entrée une liste de demandes, et triant cette liste
par ordre décroissant de préférence selon la stratégie (S4). On adaptera pour cela le tri à bulles (voir exercice
4 du TP 6 si vous ne vous en souvenez pas !).

Tester cette fonction pour les demandes P = [["C1",2,4],["C2",0,1],["C3",1,3],["C4",0,2]].

Exercice 13. Écrire une fonction MaximiseConference prenant en entrée une liste de demandes, et renvoyant
en sortie le planning obtenu en appliquant la stratégie gloutonne (S4) à ces demandes.

Tester cette fonction pour les demandes P = [["C1",2,4],["C2",0,1],["C3",1,3],["C4",0,2]].

Le planning renvoyé devra être ["C2","C3"].

Tester cette fonction sur les exemples des exercices 10 et 11 (vous pouvez copier-coller les listes de demandes
données en annexe).

III. Allocation de salles de cours

Maintenant, vous êtes à la direction d'un établissement scolaire et il est l'heure d'attribuer des salles de cours
aux di�érents cours prévus.

Vous recevez toujours un planning de demandes de créneaux (les heures de cours d'une journée) mais ici, vous
devez installer tous ces cours dans des salles de classe. Ce que vous souhaitez optimiser, c'est le nombre de
salles nécessaires. Vous voulez utiliser le moins de salles possibles pour que les cours aient lieu.

Exemple 14. Reprenons les demandes de l'exercice 10.

Temps

C1

C2

C3

C4

C5

0 1 2 3 4 5 6 7 8 9 10 11 12

Déterminer une répartition des cours sur un nombre minimal de salles. Justi�er que ce nombre est minimal.

La stratégie gloutonne optimale (S4) de la partie précédente peut être enrichie pour fournir une stratégie
gloutonne optimale à ce problème. Voici l'algorithme que cela donne :

� On ordonne les cours par heure croissante de �n de cours.

� On place le premier cours (pour cet ordre établi) dans la première salle.

� On traite les cours suivants dans cet ordre établi en première étape. Pour chaque cours :

� Si ce cours peut être placé dans une salle déjà utilisée, on le place dans la première salle possible
(dans l'ordre d'ouverture de celle-ci).

� Sinon, on ouvre une salle et on y place ce cours.

On admet que cette méthode fournit une répartition des cours dans des salles de manière à utiliser un nombre
minimal de salles.

6

Exercice 15. Déterminer à la main une répartition optimale pour les cours suivants (mêmes demandes que
pour l'exercice 10).

Programmation en Python

En Python, la liste des cours est représentée de la même manière que dans la partie précédente : un cours
nommé C1 commençant à l'heure d et terminant à l'heure f sera représenté par la liste Python [”C1”, d, f].

Les salles à ouvrir seront numérotées à partir de 1. Une attribution de cours à une salle sera donnée par une
liste selon l'exemple suivant : la liste ["S1","C1","C3"] représentera le fait de placer les cours C1 et C3 dans
la salle S1.

Un planning est donné par une liste de salles attribuées. Par exemple, dans le cas de l'exemple 14, le planning
suivant :

� Salle 1 : C3, C5, C1

� Salle 2 : C2, C4

sera représenté par la liste [["S1", "C3", "C5", "C1"], ["S2", "C2", "C4"]].

Exercice 16. Écrire le code d'une fonction AffecteSalles prenant en entrée une liste de cours, et renvoyant
en sortie le planning obtenu en appliquant la stratégie ci-dessus.

On pourra utiliser la fonction TriDemandes de la partie précédente.

On rappelle que si une variable i vaut, par exemple, 3, alors la commande "S"+str(i) renvoie "S3" (concaté-
nation du texte "S" et du texte associé à l'entier 3).

Tester cette fonction sur l'exemple de l'exercice 15 (liste des demandes en annexe).

IV. Quelques exercices

Exercice 17. Un automobiliste veut e�ectuer un long trajet en minimisant le nombre d'arrêts à des stations
services pour faire le plein d'essence. Son véhicule a un (petit) réservoir d'une capacité de 250 km. Par
ailleurs, l'automobiliste dispose de la liste L = [120,142,90,70,130,150,84,25,110,50] formée des distances
consécutives entre deux stations-service situées le long de son trajet (et les distances au départ et à l'arrivée),
stations que l'on suppose dans cet exemple numérotées de 1 à 9. Ici, la station 1 est à 120 kilomètres de son
point de départ, puis 142 kilomètres séparent la station 1 de la station 2, etc. La dernière entrée (50) indique
la distance de la station 9 à son point d'arrivée.

À l'aide d'une stratégie gloutonne, déterminer à la main le nombre minimal d'arrêts possibles ainsi que la liste
des numéros des stations-service auxquelles s'arrêter.

Écrire le code d'une fonction Python, nommée planifie_trajet, prenant en entrée une liste L donnant ces
distances consécutives entre deux stations-service le long d'un trajet (selon le format précédent) ainsi qu'une
capacité de réservoir c strictement supérieure au minimum des valeurs contenues dans L et renvoyant en sortie
la liste formée des numéros des stations-service auxquelles il faut s'arrêter, de sorte à minimiser le nombre
d'arrêts.

7

Exercice 18. Le théorème de Zeckendorf a�rme que tout entier naturel non nul peut s'écrire de manière
unique comme la somme de termes distincts et non consécutifs de la suite de Fibonacci.

Cette écriture d'un entier n ∈ N∗ comme une telle somme est appelée la décomposition de Zeckendorf de n.

On rappelle que la suite de Fibonacci est la suite (Fn)n∈N dé�nie par :{
F0 = F1 = 1

∀n ∈ N, Fn+2 = Fn+1 + Fn

.

1. Écrire le code d'une fonction Python Fibonacci prenant en entrée un entier naturel n et renvoyant en
sortie le n-ième terme Fn de la suite de Fibonacci.

2. Utiliser cette fonction pour a�cher à l'écran les 12 premiers termes de la suite de Fibonacci.

3. Véri�er que 17 = F0 + F1 + F2 + F4 + F5. Est-ce la décomposition de Zeckendorf de 17 ?

4. Déterminer la décomposition de Zeckendorf de 17, puis de 130.

5. Soit n ∈ N∗. Soit k le plus grand entier tel que Fk ≤ n.

(a) Justi�er que k est correctement dé�ni.

(b) Montrer que si la décomposition de Zeckendorf de n − Fk s'écrit n − Fk =

N∑
j=1

Fxj , pour un certain

entier naturel N ≥ 1 et des entiers x1, ..., xn deux à deux distincts et non consécutifs, alors la

décomposition de Zeckendorf de n est donnée par l'égalité : n = Fk +

N∑
j=1

Fxj
.

6. En déduire le code d'une fonction Zeckendorf prenant en entrée un entier n ≥ 1 et renvoyant en sortie la
liste des termes de la suite de Fibonacci apparaissant dans la décomposition de Zeckendorf de n.

7. En quoi votre fonction utilise-t-elle un algorithme glouton ?

V. Annexe

Liste des demandes de l'exercice 10 :

P=[["C1",8,12],["C2",3,5],["C3",0,4],["C4",7,10],["C5",4,8]]

Liste des demandes de l'exercice 11 :

P=[["C1",0,7],["C2",6,10],["C3",6,8],["C4",1,5],["C5",5,7],["C6",0,2],["C7",4,10],["C8",0,1],

["C9",3,8],["C10",1,3],["C11",4,6],["C12",8,10],["C13",3,7],["C14",5,9],["C15",1,4]]

8

	Algorithmes gloutons : principe général et premier exemple
	Des problèmes de choix
	Algorithmes gloutons
	Optimalité
	Un premier exemple : le problème du rendu de monnaie

	Problème de réservation d'une salle
	Quelques stratégies gloutonnes
	Une stratégie gloutonne optimale

	Allocation de salles de cours
	Quelques exercices
	Annexe

