Lycée Hoche 2025-2026
ECG1 A Mathématiques

TP de Python numéro 7 : Algorithmes gloutons

Semaine du jeudi 8 décembre.

Le but de ce TP est de découvrir la notion d’algorithme glouton, permettant de proposer des solutions
a des problémes de décisions, et d’appliquer ces algorithmes dans certaines situations classiques.

I. Algorithmes gloutons : principe général et premier exemple

1. Des problémes de choix

Dans ce TP, nous allons nous intéresser a des problémes que nous pouvons décrire comme étant des problémes
de choix. D’une maniére générale, ce sont des situations qui nous confrontent, pour étre résolues :

e A des choix successifs,

e avec la nécessité qu’une fois cette succession de choix effectués, nos choix soient les meilleurs possibles
(optimalité des choix).

Exemple 1. Un rat mathématicien se trouve au début d’un parcours constitué d’une série de portes. Derriére
chaque porte se trouve un tas de riz, et éventuellement d’autres portes. Lorsque notre rat choisit une porte,
celle-ci se referme derriére lui. Il doit choisir, une & une, les portes & emprunter et veut naturellement avoir
récolté le plus de riz possible lors de son parcours.

Les disposition des portes et les quantités de riz (en nombre de grains) sont représentées par le graphe
suivant.

Ce plan est dans la premiére salle ou est le rat, et
celui-ci étant mathématicien, il est ici capable de con-
sidérer toutes les possibilités pour choisir la meilleure.
Quelle suite de portes le rat emprunte-t-il pour max-
imiser son nombre de grains de riz ?

Porte 1 Porte 2

Porte 3 Porte 4 Porte 5 Porte 6
@ \@
Porte 7 Porte 8 Porte 9

Dans ce cas simple, on est capable de considérer toutes les possibilités pour choisir la meilleure.

Le probléme est que, si le nombre de possibilités est beaucoup plus grand (imaginez la situation précédente
avec 1001 portes) ou si les nombres en jeux sont plus pénibles & calculer (imaginez une situation avec des
nombres de grains de riz & 14 chiffres...), ce temps de calcul (et la mémoire nécessaire pour retenir tous les
résultats) peut devenir beaucoup trop important : on construit facilement des problémes ou les ordinateurs
actuels prendraient des milliards d’années pour considérer toutes les possibilités. Par exemple, il n’est pas, a ce
jour, envisageable de faire calculer toutes les parties d’échecs possibles & un ordinateur.

2. Algorithmes gloutons

On appelle stratégie gloutonne une stratégie permettant de proposer une solution & un probléme de choix,
construite sur le principe suivant : & chaque fois qu'un choix est & faire, on fait le choix qui nous semble
immeédiatement le plus profitable.

Exemple 2.

Cette fois-ci, c’est Obélix qui est confronté & ce prob-
léeme (avec des sangliers). Il ne sait pas trés bien
compter, et il a trés faim, ce glouton. Alors, il adopte
la stratégie suivante : & chaque choix qu’il a a faire,
il ouvre la porte derriére laquelle il trouvera le plus
de sangliers.

Porte 1 Porte 2 Quelle suite de portes va-t-il ouvrir, et combien de
sangliers pourra-t-il ainsi ingurgiter 7 Cette stratégie

¥ N
@ @\ est-elle optimale ?

Porte 3 Porte 4 Porte 5 Porte 6

9‘
g
6!

Porte 7 Porte 8 Porte 9

Un algorithme glouton est tout simplement un algorithme (qu’on implémentera en Python) proposant une
solution & un probléme de choix, en suivant une stratégie gloutonne.

of

3. Optimalité

Comme on I’a vu, une stratégie gloutonne permet de proposer une solution & un probléme de choix, mais cette
solution n’est pas forcément optimale : il peut exister de meilleures stratégies, et c’est souvent le cas.

Dans le cadre du programme :
e vous devez étre conscient de cette problématique,
e vous devez pouvoir éventuellement constater qu’une stratégie gloutonne n’est pas optimale,

e et vous devez connaitre quelques situations simples pour lesquelles une stratégie gloutonne bien choisie
est optimale.

Il existe bien d’autres stratégies de résolution existantes pour les problémes de choix, qui sont souvent plus
couteuses en calcul mais qui ménent aussi plus souvent & un résultat optimal.

4. Un premier exemple : le probléme du rendu de monnaie

Un premier exemple

On va s’intéresser au probléme suivant : comment rendre la monnaie & un client en donnant le moins de piéces
ou billets possibles ?

Pour simplifier, dans la suite :
e le mot "piéce" désignera aussi bien des billets que des piéces.
e On considérera que les magasins ont un stock infini de piéces de chaque valeur.

e On considérera que, dans la zone euro, les échanges se font avec des piéces de valeurs 1€, 2€, 5€, 10€,
20€, 50€, 100€, et 200€ (pas de centime dans les piéces ou dans les prix, ni de billet de 500 €).

Exercice 3. Dans un magasin, un client régle un achat de 41€ avec une piéce de 50€.
1. Dresser la liste compléte des maniéres dont le vendeur dispose pour lui rendre la monnaie.

2. Parmi celles-ci, laquelle utilise le moins de piéces possibles?

On remarque alors que la stratégie suivante permet, au moins dans ce cas, de rendre le moins de piéces possibles:
e Déterminer la valeur de la plus grande piéce qu’on peut rendre - c’est-a-dire inférieure & la somme & rendre,
e Rendre cette piéce tant que la somme & rendre lui est supérieure,
e Recommencer de la sorte jusqu’a avoir rendu toute la monnaie.

Exercice 4. 1. En quoi cette stratégie est-elle une stratégie gloutonne 7

2. Pour quelle raison simple cette stratégie permet-elle de toujours proposer un rendu de monnaie dans la
zone euro ?

Exercice 5. Une autre zone monétaire utilise les mémes piéces que la zone euro, a ’exception des piéces de 2€
et 5€ remplacées par des piéces de 3€ et 4€.

Un client régle un achat de 14€ avec un billet de 20€.
1. Dresser la liste compléte des maniéres dont le vendeur dispose pour lui rendre la monnaie.
2. Parmi celles-ci, laquelle utilise le moins de piéces possibles?
3. Parmi celles-ci, laquelle utilise la stratégie gloutonne ci-dessus ? Que remarquez vous ?

On dit qu’un systéme monétaire (c’est-a-dire, en ensemble de piéces et de billets choisi pour faire des échanges
au sein d’une population) est canonique si la stratégie gloutonne décrite ci-dessus fournit toujours la solution
optimale au probléme de rendu de monnaie, c’est-a-dire le rendu de monnaie utilisant le moins de piéces ou
billets possibles.

On peut démontrer que le systéme monétaire utilisé dans la zone euro est canonique, et ’exercice 3 fournit un
exemple de systéme monétaire non canonique. La valeur des piéces et des billets utilisés dans la zone euro n’est
pas due au hasard...

Généralisation et implémentation

Pour modéliser le probléme de rendu de monnaie en général, on considére que :

Un systéme monétaire V' est donné par les valeurs vy, ..., v, des piéces et billets qui le constituent. Pour
I'implémentation en Python, un tel systéme monétaire sera donné par la liste

V= [’Ul, ...,Un]

ou les valeurs sont rangées par ordre décroissant (vy > ve > ... > v,). On considérera pour simplifier que
ces valeurs sont entiéres. L’entier n est le nombre de piéces ou billets.

e Une somme & rendre est simplement un entier .S, donc une variable de type int en Python.

e Un rendu de monnaie X est la donnée, pour tout i € [1,n], d’un entier naturel x; donnant le nombre de
fois que la piéce de valeur v; a été rendue. En Python, un tel rendu de monnaie sera donné par la liste

X =[z1, ..,y

e On dit, avec ces notations, donc que le rendu de monnaie X rend la somme S (dans le systéme monétaire
n
V)si§= E T;0;.
i=1
Enfin, on considérera que tous nos systémes monétaires contiennent une piéce de valeur 1 (sans quoi, beaucoup
de problémes se posent).

On rappelle que le systéme monétaire utilisé dans la zone euro est canonique.

Exercice 6. Ecrire un code Python permettant de construire le rendu de monnaie [z1, ... ,xs] optimal rendant
la somme S = 98€ dans la zone euro, a I’aide d’un algorithme glouton.

Exercice 7. 1. Ecrire le code d’une fonction Python d’entéte def Rendu_Glouton(V,S): prenant en entrée
un systéme monétaire V et une somme a rendre S, et renvoyant en sortie le rendu de monnaie X rendant
la somme S (dans le systéme monétaire V) obtenu en appliquant la stratégie gloutonne.

2. Tester cette fonction pour le systéme monétaire de la zone euro pour rendre 49€.

3. Tester cette fonction pour le systéme monétaire V=[30,24,12,6,3,1], en vigueur au Royaume-Uni
jusqu’en 1971, pour rendre la somme S = 49. Ce rendu de monnaie est-il optimal? Que dire de ce
systéme monétaire 7

II. Probléme de réservation d’une salle

Le contexte est le suivant : vous étes gestionnaire d’un centre de conférences. Vous recevez des demandes de
réservation pour votre salle principale, de la part de conférenciers. Chaque conférencier vous fait une demande
pour un créneau horaire, et votre but est de maximiser le nombre de conférenciers qui interviendront dans
votre salle principale.

Commencons par un premier exemple. Vous traitez les demandes pour une matinée de quatre heures, de I’heure
notée 0 (pour 8h) & I’heure notée 4 (pour 12h).

Vous recevez les demandes de 4 conférenciers Cq,Cy, C3 et Cy. Les créneaux horaires demandés par ces con-
férenciers sont représentés ci-dessous.

Tenant compte des incompatibilités entre ces deman-
des, vous dressez la liste des conférenciers que vous
pourriez retenir. Vous observez que vos possibilités
sont les suivantes :

e Retenir Cs et Cf,

c e Retenir Cs et Cs,

e Retenir Cy

Heures
(les autres possibilités étant immeédiatement exclues).

Dans le but de maximiser le nombre de conférenciers, les deux premiéres options sont bonnes mais la troisiéme
est & exclure.

1. Quelques stratégies gloutonnes
On va voir quelques stratégies gloutonnes permettant de proposer une solution & ce probléme.
Le principe commun a ces stratégies est le suivant :

e On classe les conférenciers selon un ordre de préférence,

e puis on remplit notre planning en prenant un a un le conférencier préféré parmi les conférenciers dont le
créneau n’entre pas en conflit avec ceux déja choisi.

Les stratégies différent uniquement selon la maniére de classer les conférenciers. Voici les classements auxquels
on pense.

e Stratégie (S1) : On classe les conférenciers par ordre croissant d’heure de début de conférence (plus un
conférencier commence tot, plus on veut le choisir).

e Stratégie (S2) : On classe les conférenciers par durée croissante de conférence.

e Stratégie (S3) : On classe les conférenciers par ordre croissante d’incompatibilité avec les autres con-
férenciers.

e Stratégie (S4) : On classe les conférenciers par ordre croissant d’heure de fin de conférence.

En cas d’égalité entre des conférenciers, ces stratégies ne décrivent pas I’ordre dans lequel les placer. On décrira
un planning par une liste donnant les conférenciers gardés.

Exemple 8. Reprenons ’exemple précédent et appliquons la stratégie (S7).

e Le classement des conférenciers donne Cy = Cy < C3 < (1. L’ordre entre Cy et C4 n’est pas précisé
par la stratégie (S1), admettons que notre algorithme place Cy en premier.

e On remplit notre planning avec Cs, notre conférencier préféré.

e Les conférenciers restants sont dans 'ordre Cy < C3 < Cy. C4 étant incompatible avec Cy, on regarde
C3. Celui-ci étant compatible avec Cs, on ajoute C3 a notre planning. Le planning devient [Co, C3).

e On regarde les conférenciers restants : il ne reste que C7, qui est incompatible avec C3. L’algorithme
s’arréte et propose le planning [Cy, Cs].

Exercice 9. Appliquer de méme (& la main) les stratégies (S2), (S3) et (S4) aux demandes de ’exemple
précédent.

On souhaite maintenant départager ces stratégies : 1'une est-elle meilleure que les autres 7 On va pour cela
appliquer ces stratégies sur un autre exemple.

Exercice 10. Avec le tableau des demandes ci-dessous,
e Classer les conférenciers par ordre (décroissant) de préférence,
e en déduire un planning obtenu par une stratégie gloutonne,

et ce pour chacune des stratégies proposées (S1), (Sz2), (S3) et (S4).

&

Oy

Temps
0 1 2 3 4) 6 7 8 9 10 11 12

Quelle stratégie gloutonne semble la meilleure ?

2. Une stratégie gloutonne optimale

On peut démontrer que la stratégie gloutonne (Sy), consistant & classer les conférenciers par heure de fin de
conférence (dans l'ordre croissant) puis a appliquer la méthode gloutonne, fournit toujours un planning
optimal.

Dans la suite, on ne s’intéresse donc plus qu’a cette stratégie.

Exercice 11. Déterminer & la main un planning optimal pour les demandes suivantes.

el | |

C ‘2
Cy

Ch
Cia |

Chg
Cy |

co ||

Programmation en Python
On représentera les données ainsi en Python :

e Une demande de conférencier est donnée par une liste de longueur 3 de la forme ["C”,d, f] ou ”C” (type
float) est le nom du conférencier, d (type int) I’heure de début du créneau demandé, et f (type int) son
heure de fin. Par exemple, dans ’exercice 11, la demande du conférencier C; sera représentée par la liste
["c1i", 0, 71.

e La liste des demandes & traiter est donnée par une liste de ces demandes, elles-mémes sous forme de liste
(c’est une liste de listes). Les listes des demandes des exercices 10 et 11 sont données en annexe, en guise
d’exemple.

e Un planning sera donné par la liste des noms des conférenciers retenus. Par exemple, un planning formé
par les conférenciers C et Cy sera représenté par la liste ["C1","C2"].

Exercice 12. Ecrire une fonction TriDemandes prenant en entrée une liste de demandes, et triant cette liste
par ordre décroissant de préférence selon la stratégie (S4). On adaptera pour cela le tri & bulles (voir exercice
4 du TP 6 si vous ne vous en souvenez pas !).

Tester cette fonction pour les demandes P = [["C1",2,4],["C2",0,1],["C3",1,3],["C4",0,2]].

Exercice 13. Ecrire une fonction MaximiseConference prenant en entrée une liste de demandes, et renvoyant
en sortie le planning obtenu en appliquant la stratégie gloutonne (S;) a ces demandes.

Tester cette fonction pour les demandes P = [["C1",2,4],["C2",0,1],["C3",1,3],["C4",0,2]].
Le planning renvoyé devra étre ["C2","C3"].

Tester cette fonction sur les exemples des exercices 10 et 11 (vous pouvez copier-coller les listes de demandes
données en annexe).

III. Allocation de salles de cours
Maintenant, vous étes & la direction d’un établissement scolaire et il est I’heure d’attribuer des salles de cours
aux différents cours prévus.

Vous recevez toujours un planning de demandes de créneaux (les heures de cours d’une journée) mais ici, vous
devez installer tous ces cours dans des salles de classe. Ce que vous souhaitez optimiser, c’est le nombre de
salles nécessaires. Vous voulez utiliser le moins de salles possibles pour que les cours aient lieu.

Exemple 14. Reprenons les demandes de ’exercice 10.

Ch

Cs

Temps
0 1 2 3 4 5 6 7 8 9 10 11 12

Déterminer une répartition des cours sur un nombre minimal de salles. Justifier que ce nombre est minimal.

La stratégie gloutonne optimale (S;) de la partie précédente peut étre enrichie pour fournir une stratégie
gloutonne optimale & ce probléme. Voici ’algorithme que cela donne :

e On ordonne les cours par heure croissante de fin de cours.
e On place le premier cours (pour cet ordre établi) dans la premiére salle.
e On traite les cours suivants dans cet ordre établi en premiére étape. Pour chaque cours :

— Si ce cours peut étre placé dans une salle déja utilisée, on le place dans la premiére salle possible
(dans l’ordre d’ouverture de celle-ci).

— Sinon, on ouvre une salle et on y place ce cours.

On admet que cette méthode fournit une répartition des cours dans des salles de maniére & utiliser un nombre
minimal de salles.

Exercice 15. Déterminer a la main une répartition optimale pour les cours suivants (mémes demandes que
pour lexercice 10).

Cs
Cy

Cn
Ch2 |

Ci3
(11 1 |

Programmation en Python

En Python, la liste des cours est représentée de la méme maniére que dans la partie précédente : un cours
nommé C7 commencant & I’heure d et terminant & I’heure f sera représenté par la liste Python [?C17,4d, £].

Les salles & ouvrir seront numérotées a partir de 1. Une attribution de cours & une salle sera donnée par une
liste selon I'exemple suivant : la liste ["S1","C1","C3"] représentera le fait de placer les cours C et C5 dans
la salle S.

Un planning est donné par une liste de salles attribuées. Par exemple, dans le cas de I’exemple 14, le planning
suivant :

e Salle1: C5, Cs, C
e Salle 2 : Cy, Cy
sera représenté par la liste [["s1", "c3", "c5", "c1"], ["s2", "c2", "Cc4"] 1.

Exercice 16. Ecrire le code d’une fonction AffecteSalles prenant en entrée une liste de cours, et renvoyant
en sortie le planning obtenu en appliquant la stratégie ci-dessus.

On pourra utiliser la fonction TriDemandes de la partie précédente.

On rappelle que si une variable i vaut, par exemple, 3, alors la commande "S"+str (i) renvoie "S3" (concaté-
nation du texte "S" et du texte associé a l’entier 3).

Tester cette fonction sur 'exemple de ’exercice 15 (liste des demandes en annexe).

IV. Quelques exercices

Exercice 17. Un automobiliste veut effectuer un long trajet en minimisant le nombre d’arréts a des stations
services pour faire le plein d’essence. Son véhicule a un (petit) réservoir d’une capacité de 250 km. Par
ailleurs, ’automobiliste dispose de la liste L = [120,142,90,70,130,150,84,25,110,50] formée des distances
consécutives entre deux stations-service situées le long de son trajet (et les distances au départ et & Parrivée),
stations que l'on suppose dans cet exemple numérotées de 1 & 9. Ici, la station 1 est & 120 kilométres de son
point de départ, puis 142 kilométres séparent la station 1 de la station 2, etc. La derniére entrée (50) indique
la distance de la station 9 & son point d’arrivée.

A l’aide d’une stratégie gloutonne, déterminer a la main le nombre minimal d’arréts possibles ainsi que la liste
des numéros des stations-service auxquelles s’arréter.

Ecrire le code d’une fonction Python, nommeée planifie_trajet, prenant en entrée une liste L donnant ces
distances consécutives entre deux stations-service le long d’un trajet (selon le format précédent) ainsi qu’une
capacité de réservoir c strictement supérieure au minimum des valeurs contenues dans L et renvoyant en sortie

la liste formée des numéros des stations-service auxquelles il faut s’arréter, de sorte a minimiser le nombre
d’arréts.

Exercice 18. Le théoréme de Zeckendorf affirme que tout entier naturel non nul peut s’écrire de maniére
unique comme la somme de termes distincts et non consécutifs de la suite de Fibonacci.

Cette écriture d’un entier n € N* comme une telle somme est appelée la décomposition de Zeckendorf de n.
On rappelle que la suite de Fibonacci est la suite (F},),en définie par :

Fy=F =1
vn6N7F7L+2:Fn+1+Fn

1. Ecrire le code d’une fonction Python Fibonacci prenant en entrée un entier naturel n et renvoyant en
sortie le n-iéme terme F,, de la suite de Fibonacci.

Utiliser cette fonction pour afficher & I’écran les 12 premiers termes de la suite de Fibonacci.

Veérifier que 17 = Fy + Fy + F5 + Fy + F5. Est-ce la décomposition de Zeckendorf de 17 ?

Déterminer la décomposition de Zeckendorf de 17, puis de 130.

ROl

Soit n € N*. Soit k le plus grand entier tel que Fj, < n.

(a) Justifier que k est correctement défini.

N
(b) Montrer que si la décomposition de Zeckendorf de n — Fy, s’écrit n — Fy, = Z F,;, pour un certain
j=1
entier naturel N > 1 et des entiers z1,...,x, deux & deux distincts et non consécutifs, alors la
N
décomposition de Zeckendorf de n est donnée par ’égalité : n = Fy + Z Fy;.
j=1

6. En déduire le code d’une fonction Zeckendorf prenant en entrée un entier n > 1 et renvoyant en sortie la
liste des termes de la suite de Fibonacci apparaissant dans la décomposition de Zeckendorf de n.

7. En quoi votre fonction utilise-t-elle un algorithme glouton ?

V. Annexe

Liste des demandes de 'exercice 10 :
p=[["C1",8,12],["C2",3,5],["C3",0,4],["C4",7,10],["CE",4,8]]
Liste des demandes de 'exercice 11 :

p=[["C1",0,7],["C2",6,10],(["C3",6,8],["C4",1,5],(["C5",5,7],["C6",0,2],["C7",4,10],["C8",0,1],
(-cov,3,s81,["CL0",1,3],["C11",4,6],["C12",8,10],["C13",3,7],["C14",5,9],["C15",1,4]]

	Algorithmes gloutons : principe général et premier exemple
	Des problèmes de choix
	Algorithmes gloutons
	Optimalité
	Un premier exemple : le problème du rendu de monnaie

	Problème de réservation d'une salle
	Quelques stratégies gloutonnes
	Une stratégie gloutonne optimale

	Allocation de salles de cours
	Quelques exercices
	Annexe

