Chapitre 14 : Théorie des graphes

ECG1 A 2025-2026, Lycée Hoche
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I. Généralités sur les graphes

On attribue généralement la premiére étude de la notion de graphe & Leonhard Euler, lors d’un article
rédigé en 1736 dans lequel il se demandait par exemple §’il était possible de visiter la ville de Konigsberg
en empruntant exactement une fois chacun de ses ponts.

Un graphe est la donné de sommets reliés par des arétes. Ils permettent de représenter de nombreuses
situations. Ils peuvent étre orientés ou non, pondérés ou non. Exemples : & noter.

1. Notion de graphe non orienté

Définition 1. On appelle graphe non orienté la donnée d’un couple G = (S, A) ou :

(1) S est un ensemble fini appelé ensemble des sommets du graphe G. les éléments de S sont
appelés les sommets de G,

(71) A est un ensemble de parties de S, toutes de cardinal 1 ou 2, appelé ensemble des arétes de
G. Les éléments de A sont appelés les arétes de G.

Représentation : Un graphe est souvent donné par sa représentation graphique.

Le graphe G représenté ci-dessous :

e

est formé de 5 sommets - nommeés par les entiers 0, 1, 2, 3 et 4 - et de 5 arétes. On encode mathéma-
tiquement ce graphe en posant G = (S, A) ou

(i) S = {07 1) 2737 4}7

(1) A={{0,1},{1,2},{1,3},{2},{2,3}}.

On désignera ainsi par {0,1} Paréte reliant les sommets 0 et 1. On remarque une aréte d’un type
particulier : Paréte {2}, qui relie le sommet 2 & lui-méme (on parle de boucle). Ainsi, dans la définition
ci-dessus, lorsqu’on dit que les parties de S éléments de A sont de cardinal 1 ou 2, c¢’est qu’on autorise
ces arétes & étre des boucles.

Définition 2. Soit G = (S, A) un graphe non orienté.
(¢) On dit que deux sommets s € S et s’ € S de G sont adjacents (ou voisins) si {s,s'} € A
(autrement dit, si {s, s’} est une aréte de G, c’est-a-dire si s et s’ sont reliés par une aréte de
g).
(#9) On dit qu’un sommet s € S est isolé §’il n’est adjacent & aucun autre sommet de S (un
sommet n’étant adjacent qu’a lui-méme est considéré isolé).

On appelle boucle de G tout aréte de G de la forme {s}, ou s € S.
On dit que G est un graphe simple s’il n’admet aucune boucle.
On appelle ordre du graphe G le nombre Card(S) de ses sommets.

Soit a € A une aréte de G. On appelle extrémités de a les deux sommets s et s’ de G tels
que a = {s,s'}. Si a est une boucle {s}, ses deux extrémités sont le sommet s.

(vit) On appelle degré d’un sommet le nombre de fois qu'’il est I'extrémité d’une aréte (les boucles
sont comptées deux fois).

Page 2



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

Remarque. On considére parfois des graphes pouvant contenir des multi-arétes : ce sont des graphes
pour lesquels deux mémes sommets peuvent étre reliés par plusieurs arétes. Dans ce cas, un graphe
est dit simple s’il n’a aucune boucle et si deux sommets sont reliés par au plus une aréte.

Fremmm——-

Exemple 3. Considérons les graphes non orientés G, H et P représentés ci-dessous.

G = (Sg,Ag) H = (Su, An) P = (Sp,Ap)

2 /1
\0/
S

4

5 z——/”,3 O
So=TL5] S =1[0.3] S5 = [0,0]
Ag = ... Aw = ... Ap = ...

Alors :

(i) Regardons le graphe G. Les sommets 3 et 5 sont adjacents. Les sommets 1 et 5 ne sont pas
adjacents, le sommets 5 et 4 non plus. Le graphe G est simple, il n’a aucune boucle. Enfin, G
n’a aucun sommet isolé.

Ce graphe est d’ordre 5. Le sommet 1 est de degré 3, le sommet 5 est de degré 1. Les extrémités
de laréte {1,3} sont les sommets 1 et 3.

(71) Regardons H. On peut remarquer que pour tous sommets s et s’ distincts de H, s et s’ sont
adjacents. On dira que le graphe H est complet (voir plus loin). Ce graphe est simple et n’a pas
de sommet isolé.

‘H est d’ordre 4, et tous les sommets de H sont de degré 3.

(741) Regardons P. Les sommets 5 et 6 sont isolés. De plus, ce graphe a 3 boucles : {2}, {3} et {5}.
Ce n’est donc pas un graphe simple. Les sommets 0 et 2 sont adjacents, mais les sommets 3 et
4 ne le sont pas.
Ce graphe P est d’ordre 7, les deux extrémités de laréte {5} sont le sommet 5. Les sommets 2
et 3 sont tous les deux de degré 3.

2. Le lemme des poignées de mains (cas non orienté)

Théoréme 4. Soit G un graphe non orienté. Notons n ordre de G, si,...,s, ses sommets de
degrés respectifs d, . ..d,. Soit enfin p = Card(A) le nombre d’arétes de G. Alors :

i=1

Autrement dit, la somme des degrés des sommets de G est égale au double de son nombre d’arétes.

Démonstration. Chaque aréte de G compte deux extrémités, il y a donc au total 2p extrémités des

arétes de G. D’autre part, pour tout ¢ € [1,n], le sommet s; est compté exactement d; fois comme
n

Pextrémité d’une aréte, par définition du degré d’un sommet. Il y a donc Z d; extrémités des arétes
i=1
de G. Cela prouve bien :

n
i=1
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Remarque. En particulier, la somme des degrés des sommets d’un graphe (non orienté) est un entier
pair.

Exercice 5. Est-il possible, dans une assemblée de 15 personnes, que chaque personne connaisse exacte-
ment 5 autres personnes?

Exercice 6. (TD) On considére un groupe de n € N* personnes se réunissant pour une conférence.
On suppose que chaque personne salue chaque autre personne par une poignée de mains. Combien de
poignées de mains ont-elles été échangées?

Une conséquence :

Proposition 7. Tout graphe non orienté a un nombre pair de sommets de degré impair.

Démonstration. A noter. [

3. Chaines d’un graphe non orienté, connexité

Définition 8. Soit G = (S, A) un graphe non orienté. Soit k¥ € N. On appelle chaine de longueur
k du graphe G la donnée dune suite finie (s1, 8o, . .., s141) € S¥T! de sommets de G dont les sommets
consécutifs sont adjacents :

Vi € [[].,k]], {Si,8i+1} e A.

Dans ce cas, les sommets s; et si41 sont appelés les extrémités de cette chaine. On dit aussi que
cette chaine va du sommet s; au sommet sjy1.

Autrement dit, une chaine d’un graphe G est la donnée d’une suite de sommets consécutivement
reliés par une aréte, et la longueur d’une chaine est le nombre d’arétes qui la composent.

Définition 9. Soit G un graphe non orienté.

(7) On dit que deux sommets donnés de G sont reli€s par une chaine s’il existe une chaine de
G passant par ces sommets.

(#¢) On dit que le graphe G est connexe si pour tous sommets s et s’ de G, s et s’ sont reliés par
une chaine.

Exemple 10. Considérons les graphes non orientés G et H représentés ci-dessous.

H

(1) (0,2,7,0,0,2,5) est une chaine de G, de longueur 6. On décrit souvent une chaine sous la forme :
0—-2—-7-0-0—-2-5

ot les arétes sont "rendues plus visibles". Cette chaine est une chaine de 0 vers 5.
Le graphe G est connexe. Par exemple, les sommets 1 et 6 sont reliés par une chaine, comme
par exemple :

1-5-6—-3-3.
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(it) Le graphe H n’est pas connexe, car les sommets 1 et 4 ne sont pas reliés par une chaine. Deux

Fremmm——-

4.

chaine des ‘H sont données par :
0-5—-4—-5—-6etl1—-7—-1-3-2-3.

La premiére est de longueur 4, la seconde de longueur 5.

Par contre, 0 — 5 — 6 — 0 n’est pas une chaine de H car {6,0} (qu’on peut aussi noter 6 — 0) n’est
pas une aréte de H.

Remarque. Vu la définition, une chaine de longueur 0 d’un graphe est tout simplement donnée par
un sommet de ce graphe. Tout sommet est alors relié & lui-méme par une chaine : celle de longueur 0
qu’il définit.

Notion de graphe orienté

Définition 11. On appelle graphe orienté la donnée G = (S, A) d’un couple d’ensembles, ot :

(7) S est un ensemble fini, appelé ensemble des sommets de G. On appelle sommet de G tout
élément de S.

1 est une partie de S*, appelé ensemble des arétes (orientées) de G. Les éléments de A son
i) A est tie de S? lé ble d &t ientées) de G. Les éléments de A sont
appelés les arétes de G.

Exemple 12. Les graphes orientés sont souvent donnés par une représentation graphique. Par ex-
emple, le graphe orienté G représenté ci-dessous :

est donné par G = (S, A) ou:

(i) S=...

(i) A=...
Ainsi, orientation des arétes est encodée par le fait qu’une aréte est la donnée d’un couple, et non
d’un ensemble. L’aréte partant du sommet O et allant au sommet 1 est encodée par le couple (0,1),
Paréte partant de 0 et allant vers 3 est (0,3), Paréte allant dans 'autre sens est (3,0).

Dans la représentation graphique ci-dessus, il y a deux arétes entre 0 et 3 (une dans chaque sens),
représentées comme une aréte avec des fleches des deux cotés.

Définition 13. Soit G = (5, A) un graphe orienté.
(i) On appelle ordre de G le nombre Card(S) de ses sommets.
) On appelle boucle de G toute aréte de la forme (s,s), ou s € S.
(#i7) On dit que le graphe G est simple s’il n’a aucune boucle.
)

Soit a € A une aréte de G, soient s1, so les sommets de G tels que a = (s1,s2). On dit que
s1 est lorigine (ou lextrémité initiale, ou sortante) de 'aréte a, et que so est son but (ou son
extrémité finale, ou entrante). On dit aussi que l’aréte a va du sommet s; vers le sommet 5.
(v) Soit s un sommet de G. On appelle degré sortant de s I’entier noté d*(s) donné par le nombre

d’arétes dont s est I'origine. On appelle degré entrant de s l’entier noté d~ (s) donné par le
nombre d’arétes dont s est le but. On appelle degré total de s Uentier d(s) = d*(s) +d ™ (s).
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Exemple 14. Considérons les graphes orientés G, H et P représentés ci-dessous.

G = (8¢, 4g) H = (Su, An) P = (Sp,Ap)
— o @
1 -
o 2‘<'g\
3\ol 2 \0 1
Sg = [[053]] Sy = [[O>3ﬂ Sp = [[0’4]]
Ag=... Ay = ... Ap =...

Alors :

(i) Regardons le graphe orienté G. Il est d’ordre 4, et ne contient aucune boucle : c¢’est un graphe
simple. L’aréte (2,0) a le sommet 2 comme origine, et le sommet 0 comme but. Il y a deux
arétes d’extrémités 0 et 3 : les arétes (3,0) et (0,3). Le sommet 3 est de degré entrant d—(3) = 2,
de degré sortant d*(3) = 3, et de degré total 5.

(79) Regardons le graphe orienté H. Il est d’ordre 4, et n’est pas simple (il a trois boucles : (1, 1), (2,2)
et (3,3)). Le sommet 3 est Pextrémité initiale d’une seule aréte ( laréte (3,3) ), et Uextrémité
finale de 3 arétes ( les arétes (1,3), (0,3) et (3,3)). Il est donc de degré entrant 3 et de degré
sortant 1.

(7i7) Le graphe P, d’ordre 5, n’est pas simple. Le sommet 4 est de degré total 2 (car de degrés entrant
et sortant 1).

Proposition 15. (Lemme des poignées de mains pour les graphes orientés) Soit G un
graphe orienté, notons n son ordre et si,...,s, ses sommets. Soit p le nombre d’arétes de G.

Alors : . .
S dt(s)) = d (s;)=p
i=1 i=1

et

Démonstration. Chacune des p arétes de G compte exactement une extrémité initiale (resp. une

extrémité finale), donc il y a exactement p extrémités initiales (resp. finales) des arétes de G. Chaque

sommet s; (1 < i < n) est extrémité initiale (resp. finale) d’exactement d(s;) aréte (resp. d~(s;) arétes)
n n

donc ce nombre total d’extrémités initiales (resp. finales) est de Z d*(s;) (resp. Z d™(s;)). Cela montre
i=1 i=1
la premiére formule. La seconde formule s’obtient en sommant les deux égalités ainsi obtenues. [

5. Chemins et connexité d’un graphe orienté

Pour les graphes orientés, il y a beaucoup de variations des notions de chaines et de connexité vues
pour les graphes non orientés. On ne parle plus de chaine, mais de chemins : les arétes doivent étres
parcourues "dans leur sens", et la notion de connexité au programme est celle dite de "forte" connexité.
Les variations mentionnés viennent du fait qu’on pourrait aussi ignorer I’orientation des arétes (ce qu’on
ne fait pas ici).

Si ces subtilités doivent étre mentionnées, on utilisera le terme indiqué en parenthése.
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memmmm--

Fremmm——-

Définition 16. Soit G = (S, A) un graphe orienté.
(1) Soit k € N. On appelle chemin (orienté) de longueur k la donnée (si1,s2,...,Sk+1) d'un
(k 4+ 1)-uplet d’arétes de G tel que :

Vi € [1,k], (si, 8i41) € A.
On peut représenter un tel chemin sous la forme suivante :
51— 82 —> ... =% Sp — Skil-
(#) Soient s et s’ deux sommets de G. On appelle chemin de s vers s’ tout chemin de la forme
S§=8] — 8 — ... 8k —> Spr1 =8

pour un certain entier naturel k.

(797) On dit que G est (fortement) conneze si pour tous sommets s et s’ de G, il existe un chemin
de s vers s’

Remarque. Attention : dans toutes ces définitions, 'orientation des arétes compte et ordre des
sommets compte.

Remarque. Un chemin de longueur 0 est donc la donnée d’un sommet, et un chemin de longueur 1
est donné par une aréte. Plus généralement, la longueur d’un chemin est donc le nombre de fois qu’il
"parcourt" une aréte.

Exemple 17. Considérons les graphes orientés G et H représentés ci-dessous.
g H

0 G2 :
1 =—

AN 2

(i) Considérons le graphe G. 2 — 3 — 3 — 1 est un chemin de longueur 3 du graphe G, du sommet
2 vers le sommet 1. En particulier, les boucles comptent dans la longueur d’un chemin. De
meéme :

253—-0—-22—-23—3

est un autre chemin du sommet 2 vers le sommet 3, de longueur 5.
Dans ce méme graphe, il n’existe pas de chemin du sommet 1 vers le sommet 3, car aucune aréte
ne part du sommet 1. Par conséquent, ce graphe n’est pas connexe.
(i¢) Dans le graphe H,
1-0—-2—=3

est un chemin de longueur 3 du sommet 1 vers le sommet 3. On peut vérifier que ce graphe est
connexe : pour tout choix de sommets i et j, il existe un chemin du sommet i vers le sommet j.
Il y a tout de méme 4 x 3 = 12 vérifications a faire si on veut lister toutes les possibilités.
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II. Matrice d’adjacence et connexité

1. DMatrice d’adjacence d’un graphe

Définition 18. (i) Soit G = (S, A) un graphe non orienté. Notons n 'ordre de G, et choisissons
une numérotations sq,..., s, des sommets de G.
On appelle matrice d’adjacence de G (associée a cette numérotation) la matrice M =
(Mg j)1<ij<n € Myp(R) donnée par :

Lsi{s;,s;} €A
0 sinon

V(Z,j) € [[Ln]]gvmi,j = {

(#) Soit G = (S, A) un graphe orienté. Notons n l'ordre de G, et choisissons une numérotations
S1,...,8, des sommets de G.
On appelle matrice d’adjacence de G (associée a cette numérotation) la matrice M =
(mi,j)lgi)jgn S Mn(R) donnée par :

1si(s;,85) €A
0 sinon

Y(i,§) € [1,n]?, mi; = {

Remarque. Pour pouvoir considérer la matrice d’adjacence d’un graphe (orienté ou non), il faut
donc choisir une numérotation de ses sommets. Par conséquent, un graphe n’a pas "une" matrice
d’adjacence, mais "des" matrices d’adjacence. Cependant, on fait souvent ’abus de langage de parler
de "la" matrice d’adjacence d’un graphe, ce qui est légitime uniquement une fois une numérotation
des sommets fixée.

Lorsque les sommets d’un graphe d’ordre n € N* sont les entiers numérotés de 1 & n, on se permet de
considérer qu’ils sont naturellement numérotés.

Exemple 19. Considérons les graphes (orientés ou non) ci-dessous.

g H

— N

(1) On numérote les sommets A, B,C, D de G, non orienté, dans l'ordre alphabétique (A est le
sommet 1, B le sommet 2, etc.). La matrice d’adjacence de G obtenue est :

L

Page 8



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

(i¢) On numérote les sommets A, B, C, D de H, orienté, dans I’ordre alphabétique (A est le sommet 1,
B le sommet 2, etc.). La matrice d’adjacence de H obtenue est :

Remarque. Les coefficients diagonaux valant 1 de la matrice d’adjacence d’un graphe (& sommets
numérotés) donnent les boucles de ce graphe.

On peut faire quelques observations simples sur la matrice d’adjacence.

Proposition 20. Soit G un graphe non orienté. Alors, pour toute numérotation choisie des sommets
de G, la matrice d’adjacence de G est symétrique.

Démonstration. Soit n l'ordre de G (un graphe non orienté). Supposons fixée une numérotation

$1,. .-, 8, des sommets de G, et soit M la matrice d’adjacence de G ainsi obtenue.
1si{s;,s;} €A 1s¢i{s;,s;} €A

Alors, pour tout (4,7) € [1,n]?, m;,; = . {si 5} = ] {sjosi i
0 sinon 0 sinon

Donc M est symétrique. [

Proposition 21. Soit G un graphe orienté dont les sommets sont numérotés si,...s, (ot n est
Vordre de G). Notons M = (m; j)i<i j<n Sa matrice d’adjacence. Alors, pour tout i € [1,n] :

d(si) =Y mi;
j=1

df(sl-) = Z mji.
j=1

n

Démonstration. En exercice. Avec les notations de I’énoncé E m, ; est une somme de termes valant 0
Jj=1

ou 1, avec exactement un terme 1 par aréte partant de s;, donc compte bien le degré sortant de s;. [

Remarque. Cas non orienté : Attention, la proposition analogue est fausse pour les graphes non
orientés ! Il faudrait ’adapter pour prendre en compte que les boucles comptent pour deux dans le
degré. On peut tout de méme dire ceci :

Soit G un graphe non orienté simple dont les sommets sont numérotés sy, ...s, (o n est lordre de
G). Notons M = (m; j)1<i j<n S matrice d’adjacence. Alors, pour tout i € [1,n] :

n n

d(Sl) = me- = ijvi'

j=1 j=1

2. Matrice d’adjacence, chaines et chemins

Le calcul des puissances de "la" matrice d’adjacence d’un graphe non orienté permet de compter ses
chaines.

Proposition 22. Soit G un graphe non orienté. Notons n son ordre et supposons fixée une numeéro-
tation s1,...,8, des sommets de G. Notons M la matrice d’adjacence ainsi obtenue.

Alors, pour tout entier naturel k, et pour tout (i,7) € [1,n]?, le coefficient d’indice (i,j) de la
matrice M" est le nombre de chaines de longueur k de G du sommet s; vers le sommet 55.
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On a de méme une version "graphe orienté".

Proposition 23. Soit G un graphe orienté. Notons n son ordre et supposons fixée une numérotation
S1,-..,8n des sommets de G. Notons M la matrice d’adjacence ainsi obtenue.

Alors, pour tout entier naturel k, et pour tout (i,5) € [1,n]?, le coefficient d’indice (i,j) de la
matrice M* est le nombre de chemins de longueur k de G de s; vers s;.

Remarque. Ces énoncés se vérifie facilement dansle cas k = 0et k = 1: pour le cas kK = 0, un chemin
ou une chaine de longueur 0 ne parcourt pas d’aréte, et consiste donc en la donnée d’un sommet, ce
qui est bien résumé par la matrice M° = I,, (il y a un chemin - ou une chaine- de s; vers s; de longueur
0 si et seulement si s; = s;, et aucun sinon).

Pour k£ = 1, un chemin (ou une chaine) de longueur 1 se résume & la donnée d’une aréte, ce qui est
bien ’information contenue dans M' = M.

Démonstration. Dans le cas orienté : & noter. [

Exercice 24. Considérons le graphe G représenté ci-dessous.

IV
N

(7) Donner la matrice d’adjacence A de G.
(i1) Montrer que A% = 8A.

(iii) En déduire que pour tout entier p > 1, A%? = 82~1 A2, Puis, déterminer A?’*! pour tout entier
naturel p.

(iv) Montrer que tout chemin de longueur paire partant du sommet 1 arrive au sommet 1.

(v) Quel est le nombre de chaines de longueur 8 du sommet 2 vers le sommet 3 7

3. Connexité et matrice d’adjacence

Voici une conséquence trés pratique de la partie précédente, et le théoréme le plus important du chapitre.
Nous l'utiliserons beaucoup en python.

Théoréme 25. Soit G un graphe non orienté dont les sommets sont numérotés. Notons n son
ordre. Soit M € M, (R) la matrice d’adjacence de G ainsi obtenue. Alors, il est équivalent de dire :

(i) G est conneze, et
(ii) La matrice I,, + M + M? + ...+ M"~! est a coefficients strictement positifs.

Et sa version "graphe orienté"

Théoréme 26. Soit G un graphe orienté dont les sommets sont numérotés. Notons n son ordre.
Soit M € M,,(R) la matrice d’adjacence de G ainsi obtenue. Alors, il est équivalent de dire :

(i) G est conneze, et
(ii) La matrice I, + M + M? + ...+ M"~! est a coefficients strictement positifs.

Démonstration. Version orientée : & noter. [
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III. Quelques notions supplémentaires sur les graphes

1. Graphes et démonstrations par récurrence

Idée : On peut souvent démontrer des résultats par récurrence (forte) en théorie des graphes. La
récurrence peut porter sur le nombre de sommets du graphe, son nombre d’aréte, ou sur la somme des
deux. Moralement, on s’imagine construire tout graphe en ajoutant un & un ses sommets et ses arétes a
partir du graphe vide, et on démontre qu’a chaque ajout, la propriété voulue est vérifiée.

Prenons par exemple le probléme de concours blanc ci-dessous.

Exercice 27. Tous les graphes considérés dans cet exercice seront simples et non-orientés (et on
appellera donc graphe tout graphe simple non-orienté).

On rappelle qu’un cycle d’un graphe est un chemin de ce graphe dont les deux extrémités sont égales.

Soit G un graphe, on appelle triangle de G tout cycle de longueur 3 de G. Un graphe ne comportant pas
de triangle est dit sans triangle.
Dans ce probléme, on démontre le théoréme ci-dessous et on s’intéresse brievement au cas d’égalité :

2
Theoréme 1 : Le nombre mazimal d’arétes d’un graphe sans triangle d’ordre n est Ln—J

[...] Partie 2

Le but de cette partie est de démontrer le théoréme 1. Pour cela, on pose pour tout n € N*:

2
H(n) : "Tout graphe G d’ordre n sans triangle admet au plus L%j arétes”

et on va démontrer "Vn € N* ,H(n)" par récurrence forte.
Pour tout graphe G, on notera a(G) le nombre d’arétes de G.
(i) Démontrer H(1) et H(2).
(it) Démontrer H(3).

(iit) Soit n > 4. On suppose, pour U’hérédité traitée dans ces sous questions, que H(k) est vraie pour
tout k € [1,n — 1] et on cherche 4 démontrer H(n). On considére donc un graphe G d’ordre n sans

n
triangle, et on veut démontrer que a(G) < LZJ Pour tout sommet s de G, on notera d(s) le degré

de s.
(a) Que dire si G n’a aucune aréte?

(b) On suppose a partir de maintenant que G a au moins une aréte, et soit {u,v} une aréte de G.
Les sommets u et v peuvent-ils étre adjacents o un méme sommet?

(c) En déduire que d(u) + d(v) < n.

(d) Soit G' le graphe obtenu a partir de G en supprimant les sommets u et v ainsi que toutes les
arétes qui leurs sont reliés. En déduire que a(G) < a(G')+n — 1.

(n—2)°

(e) Montrer que a(G') < | 1 |

2
(f) En déduire a(G) < L%j et conclure la démonstration.

[]
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2. Graphes (orientés ou non) pondérés

L’idée est d’attribuer un nombre réel (appelé poids) & chaque aréte d’un graphe. Cela est naturel dans de
nombreuses situations. Par exemple, on peut vouloir considérer le graphe non orienté pondéré suivant,
les nombres indiqués étant les temps de transport en heures, en train, d’une ville & I’autre.

Versailles
Rennes /
\ar/

Nant/
.%\I

Lyon

11 s’agit ici surtout de comprendre comment on modélise cela mathématiquement.

Cette attribution est modélisée mathématiquement par une application de I’ensemble A des arétes vers
R. Par exemple, dans le graphe ci dessous, la pondération p : A — R considérée sur le graphe G = (5, A)
des villes mentionnées, reliées si elles ont une ligne directe de train, vérifie :

p({Paris, Lyon}) = 2,05.

Définition 28. Soit G = (5, A) un graphe (orienté ou non). On appelle pondération sur G toute
application p: A — R.

Ou appelle graphe orienté (resp. non orienté¢) pondéré la donnée (G, p) d’un graphe G orienté (resp.
non orienté) et d’une pondération p sur G.

Nous reparlerons beaucoup des graphes pondérés en Python, a travers I’algorithme de Dijsktra permettant
de trouver une chaine (ou un chemin) de poids minimal entre deux points (c’est & dire, dont la somme
des poids des arétes est minimale).

3. Graphe complet

Définition 29. Soit n» > 1 un entier naturel. On appelle graphe complet d’ordre n tout graphe
non orienté simple tel que pour tous sommets s et s’ distincts, s et s’ sont adjacents.

Exemple 30. Soit n» > 1 un entier naturel. Il y a en fait un unique graphe complet d’ordre n au
choix prés des sommets. En choisissant comme ensemble de sommets 1’ensemble [0, n — 1], on obtient
le graphe communément noté K,, dont les premiéres représentations sont ci-dessous.

PRV N

Exercice 31. Soit n € N* et K, le graphe complet d’ordre n de sommets 1,2,...,n

K,

S

(1) Quel est le nombre total d’arétes de K,, 7

(i¢) Donner la matrice d’adjacence M de K,,.
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(497) Donner une matrice J telle que M = J — I,,.
(iv) En déduire le calcul de MP, pour tout entier naturel p.

(v) Donner le nombre de chaines de longueur p de i vers j dans K, en fonction de i et j.

4. Graphes eulériens

Définition 32. Soit G un graphe non orienté.
(7) Une chaine de G est dite fermée si ses deux extrémités sont égales.

(#4) On appelle cycle de G toute chaine fermée de longueur non nulle de G ne passant pas deux
fois par la méme aréte.

(7i7) On dit qu’un cycle de G est eulérien s’il passe exactement une fois par chaque aréte de G.

(iv) On dit que le graphe G est eulérien s’il existe un cycle eulérien de G.

Exemple 33. Comme vous le savez depuis votre plus tendre enfance, le graphe K5 est eulérien.

\1

3

=

Un cycle eulérien est par exemple :
0-1-2-3-4-0-3-1—-4-2-0.

Par contre, K4 n’est pas eulérien.

3)

On peut le démontrer de la maniére suivante, par I’absurde. Supposons K, eulérien. Soit ¢ un cycle
eulérien de K. Sans perte de généralité, on peut supposer que c¢ est d’extrémité 0, car tous les
sommets jouent le méme role.
Dans ce cas, le sommet 1 étant de degré 3, ¢ passe nécessairement au moins deux fois par le sommet
1. c est alors de la forme :

0—...—i—1—j—...—1—...—0

Ainsi, ¢ parcourrait 4 fois des arétes ayant 1 pour extrémité, ce qui contredit le caractére eulérien de ¢
(le sommet 1 étant de degré 3, une aréte devrait étre parcourue deux fois par c¢). K4 n’est donc pas
eulérien.

On a plus généralement ce théoréme, lié au travail d’Euler sur les ponts de Konigsberg.
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Théoréme 34. (Euler, admis, "HP" mais culture générale) Soit G un graphe non orienté conneze.
Alors, il est équivalent de dire :

(i) G est eulérien, et

(ii) tout sommet de G est de degré pair.

reemmmmmm—--

5.

Remarque. L’hypothése de connexité n’est pas contraignante : si G n’est pas connexe, si deux
composantes connexes (définition plus bas) ont une aréte, alors il n’est pas eulérien. Sinon, G s’obtient
a partir d’un graphe connexe en ajoutant un nombre fini de sommets isolés sans boucle, et on peut
appliquer le théoréme & la seule composante connexe de G ayant une aréte.

Remarque. D’aprés ce théoréme, le graphe complet K, est eulérien ssi n est impair (tous les sommets
de K, sont de degré n—1). Vous pouvez maintenant essayer de généraliser le tracé enfantin mentionné
précédemment & tout graphe complet d’ordre impair.

(Théme classique) Graphes bipartis

Définition 35. On appelle graphe bipartis tout graphe (orienté ou non) G = (S, A) tel qu’il existe
deux parties G ("gauche") et D ("droite") de S telles que :

(i) S =GU D, et la réunion est disjointe, et

(#4) toute aréte de G relie un sommet de G & un sommet de D.

Exemple 36. Les deux graphes ci-dessous sont visiblement bipartis...

g H

en "posant" :
(1) G=10,2] et D= 3,7] pour G,
(15) G =10,3] et D = [4,5] pour H.

Exemple 37. Toute graphe complet d’ordre au moins 3 n’est pas bipartis. Par exemple, posons
K5 = (S, A).

Supposons par I’absurde donnée une partition S =

\ G U D de T'ensemble S = [0,4] comme dans la
" définition ci-dessus (toute aréte relie un élément

de G a un élément de D). On peut supposer que

0 € G (lesroles de G et D étant interchangeables).

0 Alors, 0 étant voisin de tout autre sommet, on
a nécessairement D = [1,4]. C’est absurde, car

{1, 2} est une aréte de K5 dont les deux extrémités
sont éléments de D, contredisant ainsi la définition

/ de la notion de graphe bipartis.
2
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Exercice 38. HEC 2023, difficile Soit G un graphe connexe simple non orienté.
(i) Montrer que si G est bipartis, alors la longueur de tout cycle de G est paire.
(i¢) Démontrer la réciproque.

Indications pour la (i) :

e Soit s un sommet de G = (S, A). Poser G l’ensemble des sommets s' de G tel que : tout chemin de
s vers s’ est de longueur paire. En particulier, par hypothése, s € G.

e Poser D =S\ G. La réunion disjointe S = G U D est triviale.

o Démontrer par l'absurde que toute aréte de G relie un élément de G a un élément de D et conclure.

6. (Trés HP) Composante connexe d’un graphe non orienté

Vous n’aurez a priori des exercices sur cette notion qu’a condition que le sujet la redéfinisse, elle est
hors programme. Sans entrer dans les détails techniques, nous faisons ici passer 'idée de ce qu’est une
composante connexe d’un graphe.

Définition 39. Soit G = (S, A) un graphe non orienté.

(7) On appelle sous graphe de G tout graphe de la forme (S’, A’) ot S’ est une partie de S.
Autrement dit, un sous graphe d’un graphe donné G est un graphe obtenu en ne gardant que
certains sommets et certaines arétes de G.

(#4) On dit qu’un sous graphe G’ de G est un sous graphe induit de G si toute aréte de G entre des
sommets de G’ est aussi une aréte de G’.

(#i7) On appelle composante connexe de G tout sous graphe induit connexe "maximal" G’ de G (en
le sens suivant : tout graphe induit contenant strictement plus de sommets que ceux de G’
n’est pas connexe).

Exemple 40. (i) Siun graphe G est connexe, alors il n’a qu’une composante connexe : le graphe G.

(74) Considérons le graphe G ci-dessous.

2
AR ES)

~
~

Il admet deux composantes connexes, les graphes G; et Go ci dessous.

G1 G2

Les composantes connexes portent bien leur nom, il s’agit des plus grands sous graphes connexes
du graphe initial.
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IV. Annexe : un probléme sur les graphes sans triangle

1. Enoncé

Les questions mathématiques devront étre proprement justifiées, avec un raisonnement précis. Tous les
graphes considérés dans cet exercice seront simples et non-orientés (et on appellera donc graphe tout
graphe simple non-orienté).

On rappelle qu’un cycle d’'un graphe est un chemin de ce graphe dont les deux extrémités sont égales.

Soit G un graphe, on appelle triangle de G tout cycle de longueur 3 de G. Un graphe ne comportant
pas de triangle est dit sans triangle.

Dans ce probléme, on démontre le théoréme ci-dessous et on s’intéresse briévement au cas d’égalité :
2

n
Theoréme 1 : Le nombre mazximal d’arétes d’un graphe sans triangle d’ordre n est LZJ

Partie 1 : Généralités sur les graphes

(1) Soit G un graphe d’ordre n € N*, dont les sommets sont numérotés de 1 a n.
(a) Rappeler la définition de la matrice d’adjacence de G.
(b) Soient A la matrice d’adjacence de G et k € N*. Que représentent les coefficients de AF ?

(c) Donner une condition nécessaire et suffisante pour que G soit connexe utilisant la matrice
d’adjacence de G.

On s’intéresse aux représentations informatiques des graphes. Pour toutes les questions d’informatiques,
on numérote les sommets d’un graphe d’ordre n de 0 4 n — 1. On peut représenter un graphe par sa
matrice d’adjacence, mais aussi en donnant la liste de ses adjacences. Notons sg,...,S,_1 les sommets
numérotés d’un graphe G. Pour ¢ € [0,n — 1], on appelle liste d’adjacence de s; toute liste formée des
numéros des sommets adjacents & s;. On appelle liste des adjacences de G toute liste de la forme

[V(O)7 s ,V(n - 1)]
ou V(i) est une liste d’adjacence de s; pour tout i € [0,n — 1].

(it) (a) Donner une représentation graphique du graphe dont les sommets sont les entiers de 0 a 3, et
de liste d’adjacence [[1,2,3],[0],[0,3],[0,21].

(b) Donner la matrice d’adjacence de ce graphe.
(c) Donner ’ensemble S des sommets de ce graphe, et 'ensemble V' des arétes de ce graphe.

(7i7) Recopier et compléter le code Python suivant d’une fonction prenant en entrée la matrice d’adjacence
d’un graphe (de type np.ndarray) et renvoyant une liste des adjacences de ce graphe.

import
def MatVersListe(A):
L=[]
n,p=np.shape(A)
for i in range(n):
V=...
for j in range(n):
if ...
V.append(j)
L.append (V)
return(L)

(iv) Ecrire le code d’une fonction Python d’entéte def ListeVersMat(L): prenant en entrée une liste
d’adjacence d’un graphe G et renvoyant en sortie sa matrice d’adjacence.
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(v) (a) Soit A la matrice d’adjacence d’un graphe G. Quel lien existe-t-il entre A® et les triangles de

G?

(b) En déduire le code d’une fonction Python d’entéte def SansTriangles(A): prenant en entrée
la matrice d’adjacence A d’'un graphe G, et renvoyant True si G est sans triangle, et False
sinon.

(vi) On veut écrire une fonction permettant de donner la liste des triangles d’un graphe donné par une
liste de ses adjacences. On représentera un triangle passant par les sommets s;, s;, et si tels que
1 < j < k par la liste [1i,j,k].
(a) Décrire la sortie de la fonction suivante, prenant en entrée :
e une liste L des adjacences d’un graphe G (de sommets numérotés de 0 a n — 1)

e le numéro k d’un sommet de G.

def NT(L,k):
V=L [k]
Rep=[]
for u in V:
for v in V:
if (v in L[ul]) and k<u<v:
Rep.append([k,u,v])
return(Rep)

(b) A laide de la question précédente, écrire une fonction Python d’entéte def
ListeTriangles(L) : prenant en entrée une liste L des adjacences de G, et renvoyant en sortie
la liste des triangles de G. Par exemple, la fonction devra renvoyer (& 'ordre prés des triangles)

[[0,2,3],[1,2,3]]

pour le graphe ci-dessous.

Partie 2 : Le théoréme 1

Le but de cette partie est de démontrer le théoréme 1. Pour cela, on pose pour tout n € N*:

2
H(n) : "Tout graphe G d’ordre n sans triangle admet au plus L%J arétes"

et on va démontrer "Vn € N*, H(n)" par récurrence forte.

Pour tout graphe G, on notera a(G) le nombre d’arétes de G.
(vii) Démontrer H(1) et H(2).
(viii) Démontrer H(3).

(iz) Soit n > 4. On suppose, pour ’hérédité traitée dans ces sous questions, que H(k) est vraie pour
tout k € [1,n — 1] et on cherche & démontrer H(n). On considére donc un graphe G d’ordre n sans

n
triangle, et on veut démontrer que a(G) < LZJ Pour tout sommet s de G, on notera d(s) le degré

de s.
(a) Que dire si G n’a aucune aréte?
(b) On suppose a partir de maintenant que G a au moins une aréte, et soit {u, v} une aréte de G.

Les sommets u et v peuvent-ils étre adjacent & un méme sommet?
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(c) En déduire que d(u) + d(v) < n.

(d) Soit G’ le graphe obtenu a partir de G en supprimant les sommets u et v ainsi que toutes les
arétes qui leurs sont reliés. En déduire que a(G) < a(G’) +n — 1.

(n—2)*

(e) Montrer que a(G') < | 1 |.

2
(f) En déduire a(G) < L%J et conclure la démonstration.

Partie 3 : Cas d’égalité et graphes bipartis
On dit qu’un graphe G = (S, A) est bipartis s’il existe deux parties G et D de S telles que:
e GND=10
e GUD=S
e Toute aréte de G relie un sommet de G' & un sommet de D.
(x) Montrer que le graphe K3 3 représenté ci-dessous est bipartis.

4 2

(zi) Montrer qu’un graphe bipartis est sans triangle.

(xii) Soit n € N*. On pose S, = [1,2n], G, = [1,n], D,, = [n+1,2n], et A, = {{4,j},i € Gpn,j € Dy}
On pose enfin K, , = (Sp, An).

(a) Représenter Ky 4.

(b) Ecrire une fonction Python d’entéte def K(n): prenant en entrée un entier n et renvoyant en
sortie une liste des adjacences de K, .

(c¢) Soit n € N. Quel est le nombre d’arétes de K, ,, ?

2
(d) Que dire sur la borne L%j donnée par le théoréme 1 7
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2. Corrigé

Partie 1

(¢7) (a) Soit G un graphe d’ordre n € N dont les sommets sont numérotés de 1 & n. On appelle alors
matrice d’adjacence de G la matrice A € M,, ,,(R) donnée par :

1 si les sommets i et j sont adjacents

0 sinon

V(Z,]) € [[17nﬂ27Ai,j = {

(b) Pour i et j entiers entre 1 et n, le coefficient d’indice (i,5) de A* est le nombre de chemins de
longueur k£ du sommet ¢ au sommet j.

(c) Le graphe G est connexe si et seulement si Id+A+A2+...4+ A" est une matrice & coefficients
strictement positifs (ot A est la matrice d’adjacence de G et n son ordre).

(it) (a) Voici une représentation du graphe donné.

0 1
¢
13 2
01 1 1
o 100 0
(b) | La matrice d’adjacence de ce graphe est 10 0 1
1 01 0

(c) L’ensemble S des sommets de ce graphe est | S = [0,3] |.

L’ensemble de ses arétes est ‘ A={{0,1},{0,2},{0,3},{2,3}}. ‘

(i13) import numpy as np
def MatVersListe(A):
L=[] #future liste des adjacences
n,p=np.shape(A)
for i in range(n):
V=[] # V sera la liste des voisins de i
for j in range(n):
if A[i,j]!=0: #Si A[i,j]1!=0, i et j sont voisins
V.append(j)
L.append(V) #0n rajoute V & L
return(L)

(iv) import numpy as np
def ListeVersMat(L):
n=len(L) #nombre de sommets
A=np.zeros((n,n)) #La future matrice d’adjacence
for i in range(n): #Remplissons la i eme colonne de A avec les adjacences du sommet i
for j in L[i]: #L[i] est la liste des sommets adjacents au sommet i
Ali,jl=1
return(A)

(v) (a) Le coefficient d’indice (i,5) de A3 dénombre les chemins de longueur 3 du graphe G du sommet
7 au sommet j. Or, un triangle étant un cycle de longueur 3 de G, il s’agit d’un chemin de
longueur 3 d’un sommet & lui-méme. Finalement,

Pour tout entier k strictement positif et inférieur a 'ordre de G, le k-iéme coefficient diagonal
de A? est le nombre de triangles passant par le k-iéme sommet.

Page 19



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

(b) import numpy as np

import numpy.linalg as al

def SansTriangles(A):
B=al.matrix_power (4,3)
n,p=np.shape(A)
for i in range(n):

if A[i,i]!'=0:
return(False)

return(True)

Cette fonction renvoie la liste des triangles de la forme [k,u,v], c’est a
(vi) (a) | dire la liste des triangles passant par le sommet numéro k et dont les autres
sommets ont un indice supérieur a k.

(b) def ListeTriangles(L):
LT = [] #contiendra la liste des triangles
n=len(L) #ordre du graphe
for i in range(len(L)): #pour chaque sommet,

D=NT(L,1i) #on va rajouter les triangles commengant p:
LT=LT+D concaténation des listes L et D
return(LT)

Partie 2

(vii) Pour démontrer H(1), on doit démontrer que tout graphe sans triangle d’ordre 1 admet au plus
| =] = 0 arétes. Or, tous les graphes considérés étant simples, un graphe d’ordre 1 a exactement 0
arétes, d’ou H(1).
De plus, les graphes étant simples et non orientés, il y a exactement deux graphes d’ordre 2 (les
dessiner sur la copie!). Un graphe d’ordre 2 a donc 0 ou 1 arétes, donc au plus L;J =1 aréte, ce

qui démontre H(2).

’ On a bien démontré H(1) et H(2). ‘

(viii) Voici, avec les conventions de I’énoncé, tous les graphes d’ordre 3, & numérotation prés des sommets.
) ) *—@ I—O V
@ ]
En effet, un tel graphe a au plus 3 arétes. Tous les graphes d’ordre 3 sans triangle ont donc au plus
2 arétes (le seul graphe ayant un triangle parmi ceux ci-dessus est le dernier). Or,
32
L?J =|4.5] =4

donc la borne donnée par H(3) est bien respectée.

’ On a bien démontré #H(3).

2
(iz) (a) Si G n’a aucune aréte, il a bien moins de L%J > 0 arétes donc :

n2

Tout graphe G sans aréte d’ordre n vérifie a(G) < LZJ

(b) Par Pabsurde, si u et v étaient adjacent & un méme sommet k, alors le chemin
u—v—k—u

serait un triangle de G, ce qui contredis que G est sans triangle.

‘ u et v ne peuvent donc pas étre adjacent & un méme sommet.
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(c) Notons respectivement D(u) et D(v) ’ensemble des voisins de u et de v. Par définition,

d(u) = Card(D(u)) et d(v) = Card(D(v)).

D’aprés la question précédente, D(u) et D(v) sont disjoints donc

Card(D(u) U D(v)) = Card(D(u)) + Card(D(v)).

De plus, D(u) U D(v) est une partie de I’ensemble des sommets de G, de cardinal n, donc

Card(D(u) U D(v)) < n.

‘Finalement, on a bien d(u) + d(v) < n. ‘

d) Pour passer du graphe G au graphe G’, les arétes supprimées sont exactement les arétes passant
g g
par u ou par v. Il y a d(u) arétes passant par u, d(v) arétes passant par v, et exactement 1
aréte passant a la fois par u et v.

Ainsi, le nombre d’arétes supprimées pour passer de G & G’ est exactement
d(u) +d(v) — 1.

On a donc :
a(G) = a(¢') + d(u) + d(v) = 1 < a(') +n — 1

d’aprés la question précédente.

‘On a bien démontré a(G) < a(g’') +n — 1. ‘

(e) G’ est un graphe d’ordre n — 2 > 1. De plus, G’ est sans triangle car G est sans triangle, et
tout triangle de G’ serait un triangle de G.

D’aprés H(n — 2) (supposé vrai pour ’hérédité) appliqué & G’, on a donc :

(n —2)°

a(@) < |7

(f) On a donc :

a(G) <a(@)+n—1 d’apres 9(d)
(n —2)? SN . .
< LTJ +n—1 d’aprés la question précédente
—92)2
:L%—&—n—lj carn—1€7Z

n2—4dn+4+4n—1
=1 : ]

= 7]

n2

donc |on a bien démontré a(G) < LZJ

Finalement, on a traité 'initialisation avec H(1), H(2), H(3) en questions 7 et 8 et, par récur-
rence forte, on a démontré que pour tout entier n > 4, si H(1),...,H(n — 1) sont tous vrais,
alors pour tout graphe G d’ordre n sans triangle, que G ait au moins une aréte ou non, on a

a(G) < L%J, ce qui démontre bien H(n).

Par principe de récurrence, on a bien démontré que H(n) est vrai pour tout entier n > 1, d’ou
le théoréme 1.
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Partie 3

(z)

(i)

Il suffit de prendre G = {1,3,5} et D = {2,4,6} : on vérifie aisément que toute aréte de K3 3 relie
bien un élément de G & un élément de D.

’ K3 3 est bien bipartis. ‘

Soit G = (S, A) un graphe bipartis, et G et D deux parties de S comme dans la définition de la
notion de graphe bipartis.

Supposons par 'absurde que G admette un triangle u — v — w — u. Alors, d’aprés le principe des
tiroirs, au moins deux des trois sommets u,v et w sont dans le méme ensemble G ou D. Si, par
exemple, u et v sont tous deux dans G, alors on aurait une aréte u — v entre deux éléments de G,
ce qui contredis les conditions sur G et D (tout aréte de G reliant un élément de G & un élément
de D, on aurait v € D, ce qui contredis GN D = ().

’ Tout graphe bipartis est bien sans triangle. ‘

(a) Voici la représentation graphique demandée :

1 2 3 4

(b) On numérote les sommets de K, , de 0 & 2n — 1. Les listes d’adjacences de K, ,, sont faciles
& donner : elles sont [n,n+1,...,2*n-1] pour les n premiéres, et et [0,1,...,n-1] pour les
n derniéres. On en tire le code suivant.

def K(n):
D=[i for i in range(n,2*n)] #n premiéres listes d’adjacences
F=[i for i in range(n)] #n derniéres listes d’adjacences
Rep=[D] *n+[F]*n #Rep vaut [D,D,...,D,F,F,...,F], n répétitions
return(Rep)

(c) Chaque aréte de K, , reliant un élément de G,, & un élément de D,, il suffit de compter le
nombre d(k) des arétes dont une extrémité est un élément k de G,, et, chaque aréte de K, ,
passant par exactement un élément de G,,, de sommer ces valeurs de d(k) pour k € G,,.

Si k € Gy, on a d(k) = n car par définition de A,, il y a exactement une aréte k — v de K,
passant par k pour chaque élément v de D,,.

‘ G, étant de cardinal n, il y a donc n x n = n? arétes dans le graphe K, ,,. ‘

(d) K, n est clairement bipartis donc sans triangle d’aprés la question 11.
De plus, il est d’ordre 2n et dispose de n? arétes.
(2n)
4
Ainsi, la borne donnée par le théoréme 1 est atteinte pour K,,, donc

= 2] = 2

Or, |

‘cette borne est optimale. ‘
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