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I. Généralités sur les graphes

On attribue généralement la première étude de la notion de graphe à Leonhard Euler, lors d'un article
rédigé en 1736 dans lequel il se demandait par exemple s'il était possible de visiter la ville de Königsberg
en empruntant exactement une fois chacun de ses ponts.

Un graphe est la donné de sommets reliés par des arêtes. Ils permettent de représenter de nombreuses
situations. Ils peuvent être orientés ou non, pondérés ou non. Exemples : à noter.

1. Notion de graphe non orienté

Dé�nition 1. On appelle graphe non orienté la donnée d'un couple G = (S,A) où :

(i) S est un ensemble �ni appelé ensemble des sommets du graphe G. les éléments de S sont
appelés les sommets de G,

(ii) A est un ensemble de parties de S, toutes de cardinal 1 ou 2, appelé ensemble des arêtes de
G. Les éléments de A sont appelés les arêtes de G.

Représentation : Un graphe est souvent donné par sa représentation graphique.

Le graphe G représenté ci-dessous :

est formé de 5 sommets - nommés par les entiers 0, 1, 2, 3 et 4 - et de 5 arêtes. On encode mathéma-
tiquement ce graphe en posant G = (S,A) où

(i) S = {0, 1, 2, 3, 4},

(ii) A = {{0, 1}, {1, 2}, {1, 3}, {2}, {2, 3}}.

On désignera ainsi par {0, 1} l'arête reliant les sommets 0 et 1. On remarque une arête d'un type
particulier : l'arête {2}, qui relie le sommet 2 à lui-même (on parle de boucle). Ainsi, dans la dé�nition
ci-dessus, lorsqu'on dit que les parties de S éléments de A sont de cardinal 1 ou 2, c'est qu'on autorise
ces arêtes à être des boucles.

Dé�nition 2. Soit G = (S,A) un graphe non orienté.

(i) On dit que deux sommets s ∈ S et s′ ∈ S de G sont adjacents (ou voisins) si {s, s′} ∈ A
(autrement dit, si {s, s′} est une arête de G, c'est-à-dire si s et s′ sont reliés par une arête de
G).

(ii) On dit qu'un sommet s ∈ S est isolé s'il n'est adjacent à aucun autre sommet de S (un
sommet n'étant adjacent qu'à lui-même est considéré isolé).

(iii) On appelle boucle de G tout arête de G de la forme {s}, où s ∈ S.

(iv) On dit que G est un graphe simple s'il n'admet aucune boucle.

(v) On appelle ordre du graphe G le nombre Card(S) de ses sommets.

(vi) Soit a ∈ A une arête de G. On appelle extrémités de a les deux sommets s et s′ de G tels
que a = {s, s′}. Si a est une boucle {s}, ses deux extrémités sont le sommet s.

(vii) On appelle degré d'un sommet le nombre de fois qu'il est l'extrémité d'une arête (les boucles
sont comptées deux fois).
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Remarque. On considère parfois des graphes pouvant contenir des multi-arêtes : ce sont des graphes
pour lesquels deux mêmes sommets peuvent être reliés par plusieurs arêtes. Dans ce cas, un graphe
est dit simple s'il n'a aucune boucle et si deux sommets sont reliés par au plus une arête.

Exemple 3. Considérons les graphes non orientés G,H et P représentés ci-dessous.

G = (SG , AG)

SG = J1, 5K
AG = . . .

H = (SH, AH)

SH = J0, 3K
AH = . . .

P = (SP , AP)

SP = J0, 6K
AP = . . .

Alors :

(i) Regardons le graphe G. Les sommets 3 et 5 sont adjacents. Les sommets 1 et 5 ne sont pas
adjacents, le sommets 5 et 4 non plus. Le graphe G est simple, il n'a aucune boucle. En�n, G
n'a aucun sommet isolé.
Ce graphe est d'ordre 5. Le sommet 1 est de degré 3, le sommet 5 est de degré 1. Les extrémités
de l'arête {1, 3} sont les sommets 1 et 3.

(ii) Regardons H. On peut remarquer que pour tous sommets s et s′ distincts de H, s et s′ sont
adjacents. On dira que le graphe H est complet (voir plus loin). Ce graphe est simple et n'a pas
de sommet isolé.
H est d'ordre 4, et tous les sommets de H sont de degré 3.

(iii) Regardons P. Les sommets 5 et 6 sont isolés. De plus, ce graphe a 3 boucles : {2}, {3} et {5}.
Ce n'est donc pas un graphe simple. Les sommets 0 et 2 sont adjacents, mais les sommets 3 et
4 ne le sont pas.
Ce graphe P est d'ordre 7, les deux extrémités de l'arête {5} sont le sommet 5. Les sommets 2
et 3 sont tous les deux de degré 3.

2. Le lemme des poignées de mains (cas non orienté)

Théorème 4. Soit G un graphe non orienté. Notons n l'ordre de G, s1, . . . , sn ses sommets de
degrés respectifs d1, . . . dn. Soit en�n p = Card(A) le nombre d'arêtes de G. Alors :

2p =

n∑
i=1

di.

Autrement dit, la somme des degrés des sommets de G est égale au double de son nombre d'arêtes.

Démonstration. Chaque arête de G compte deux extrémités, il y a donc au total 2p extrémités des
arêtes de G. D'autre part, pour tout i ∈ J1, nK, le sommet si est compté exactement di fois comme

l'extrémité d'une arête, par dé�nition du degré d'un sommet. Il y a donc
n∑

i=1

di extrémités des arêtes

de G. Cela prouve bien :

2p =

n∑
i=1

di.
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Remarque. En particulier, la somme des degrés des sommets d'un graphe (non orienté) est un entier
pair.

Exercice 5. Est-il possible, dans une assemblée de 15 personnes, que chaque personne connaisse exacte-
ment 5 autres personnes?

Exercice 6. (TD) On considère un groupe de n ∈ N∗ personnes se réunissant pour une conférence.
On suppose que chaque personne salue chaque autre personne par une poignée de mains. Combien de
poignées de mains ont-elles été échangées?

Une conséquence :

Proposition 7. Tout graphe non orienté a un nombre pair de sommets de degré impair.

Démonstration. À noter.

3. Chaînes d'un graphe non orienté, connexité

Dé�nition 8. Soit G = (S,A) un graphe non orienté. Soit k ∈ N. On appelle chaîne de longueur

k du graphe G la donnée d'une suite �nie (s1, s2, . . . , sk+1) ∈ Sk+1 de sommets de G dont les sommets
consécutifs sont adjacents :

∀i ∈ J1, kK, {si, si+1} ∈ A.

Dans ce cas, les sommets s1 et sk+1 sont appelés les extrémités de cette chaîne. On dit aussi que
cette chaîne va du sommet s1 au sommet sk+1.
Autrement dit, une chaîne d'un graphe G est la donnée d'une suite de sommets consécutivement
reliés par une arête, et la longueur d'une chaîne est le nombre d'arêtes qui la composent.

Dé�nition 9. Soit G un graphe non orienté.

(i) On dit que deux sommets donnés de G sont reliés par une chaîne s'il existe une chaîne de
G passant par ces sommets.

(ii) On dit que le graphe G est connexe si pour tous sommets s et s′ de G, s et s′ sont reliés par
une chaîne.

Exemple 10. Considérons les graphes non orientés G et H représentés ci-dessous.

G H

(i) (0, 2, 7, 0, 0, 2, 5) est une chaîne de G, de longueur 6. On décrit souvent une chaîne sous la forme :

0− 2− 7− 0− 0− 2− 5

où les arêtes sont "rendues plus visibles". Cette chaîne est une chaîne de 0 vers 5.
Le graphe G est connexe. Par exemple, les sommets 1 et 6 sont reliés par une chaîne, comme
par exemple :

1− 5− 6− 3− 3.
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(ii) Le graphe H n'est pas connexe, car les sommets 1 et 4 ne sont pas reliés par une chaîne. Deux
chaîne des H sont données par :

0− 5− 4− 5− 6 et 1− 7− 1− 3− 2− 3.

La première est de longueur 4, la seconde de longueur 5.

Par contre, 0− 5− 6− 0 n'est pas une chaîne de H car {6, 0} (qu'on peut aussi noter 6− 0) n'est
pas une arête de H.

Remarque. Vu la dé�nition, une chaîne de longueur 0 d'un graphe est tout simplement donnée par
un sommet de ce graphe. Tout sommet est alors relié à lui-même par une chaîne : celle de longueur 0
qu'il dé�nit.

4. Notion de graphe orienté

Dé�nition 11. On appelle graphe orienté la donnée G = (S,A) d'un couple d'ensembles, où :

(i) S est un ensemble �ni, appelé ensemble des sommets de G. On appelle sommet de G tout
élément de S.

(ii) A est une partie de S2, appelé ensemble des arêtes (orientées) de G. Les éléments de A sont
appelés les arêtes de G.

Exemple 12. Les graphes orientés sont souvent donnés par une représentation graphique. Par ex-
emple, le graphe orienté G représenté ci-dessous :

est donné par G = (S,A) où:

(i) S = . . .

(ii) A = . . .

Ainsi, l'orientation des arêtes est encodée par le fait qu'une arête est la donnée d'un couple, et non
d'un ensemble. L'arête partant du sommet 0 et allant au sommet 1 est encodée par le couple (0, 1),
l'arête partant de 0 et allant vers 3 est (0, 3), l'arête allant dans l'autre sens est (3, 0).
Dans la représentation graphique ci-dessus, il y a deux arêtes entre 0 et 3 (une dans chaque sens),
représentées comme une arête avec des �èches des deux côtés.

Dé�nition 13. Soit G = (S,A) un graphe orienté.

(i) On appelle ordre de G le nombre Card(S) de ses sommets.

(ii) On appelle boucle de G toute arête de la forme (s, s), où s ∈ S.

(iii) On dit que le graphe G est simple s'il n'a aucune boucle.

(iv) Soit a ∈ A une arête de G, soient s1, s2 les sommets de G tels que a = (s1, s2). On dit que
s1 est l'origine (ou l'extrémité initiale, ou sortante) de l'arête a, et que s2 est son but (ou son
extrémité �nale, ou entrante). On dit aussi que l'arête a va du sommet s1 vers le sommet s2.

(v) Soit s un sommet de G. On appelle degré sortant de s l'entier noté d+(s) donné par le nombre
d'arêtes dont s est l'origine. On appelle degré entrant de s l'entier noté d−(s) donné par le
nombre d'arêtes dont s est le but. On appelle degré total de s l'entier d(s) = d+(s) + d−(s).
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Exemple 14. Considérons les graphes orientés G,H et P représentés ci-dessous.

G = (SG , AG)

SG = J0, 3K
AG = . . .

H = (SH, AH)

SH = J0, 3K
AH = . . .

P = (SP , AP)

SP = J0, 4K
AP = . . .

Alors :

(i) Regardons le graphe orienté G. Il est d'ordre 4, et ne contient aucune boucle : c'est un graphe
simple. L'arête (2, 0) a le sommet 2 comme origine, et le sommet 0 comme but. Il y a deux
arêtes d'extrémités 0 et 3 : les arêtes (3, 0) et (0, 3). Le sommet 3 est de degré entrant d−(3) = 2,
de degré sortant d+(3) = 3, et de degré total 5.

(ii) Regardons le graphe orientéH. Il est d'ordre 4, et n'est pas simple (il a trois boucles : (1, 1), (2, 2)
et (3, 3)). Le sommet 3 est l'extrémité initiale d'une seule arête ( l'arête (3, 3) ), et l'extrémité
�nale de 3 arêtes ( les arêtes (1, 3), (0, 3) et (3, 3)). Il est donc de degré entrant 3 et de degré
sortant 1.

(iii) Le graphe P, d'ordre 5, n'est pas simple. Le sommet 4 est de degré total 2 (car de degrés entrant
et sortant 1).

Proposition 15. (Lemme des poignées de mains pour les graphes orientés) Soit G un
graphe orienté, notons n son ordre et s1, . . . , sn ses sommets. Soit p le nombre d'arêtes de G.
Alors :

n∑
i=1

d+(si) =

n∑
i=1

d−(si) = p

et
n∑

i=1

d(si) = 2p.

Démonstration. Chacune des p arêtes de G compte exactement une extrémité initiale (resp. une
extrémité �nale), donc il y a exactement p extrémités initiales (resp. �nales) des arêtes de G. Chaque
sommet si (1 ≤ i ≤ n) est l'extrémité initiale (resp. �nale) d'exactement d+(si) arête (resp. d−(si) arêtes)

donc ce nombre total d'extrémités initiales (resp. �nales) est de
n∑

i=1

d+(si) (resp.
n∑

i=1

d−(si)). Cela montre

la première formule. La seconde formule s'obtient en sommant les deux égalités ainsi obtenues.

5. Chemins et connexité d'un graphe orienté

Pour les graphes orientés, il y a beaucoup de variations des notions de chaînes et de connexité vues
pour les graphes non orientés. On ne parle plus de chaîne, mais de chemins : les arêtes doivent êtres
parcourues "dans leur sens", et la notion de connexité au programme est celle dite de "forte" connexité.
Les variations mentionnés viennent du fait qu'on pourrait aussi ignorer l'orientation des arêtes (ce qu'on
ne fait pas ici).

Si ces subtilités doivent être mentionnées, on utilisera le terme indiqué en parenthèse.
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Dé�nition 16. Soit G = (S,A) un graphe orienté.

(i) Soit k ∈ N. On appelle chemin (orienté) de longueur k la donnée (s1, s2, . . . , sk+1) d'un
(k + 1)-uplet d'arêtes de G tel que :

∀i ∈ J1, kK, (si, si+1) ∈ A.

On peut représenter un tel chemin sous la forme suivante :

s1 → s2 → . . . → sk → sk+1.

(ii) Soient s et s′ deux sommets de G. On appelle chemin de s vers s′ tout chemin de la forme

s = s1 → s2 → . . . → sk → sk+1 = s′

pour un certain entier naturel k.

(iii) On dit que G est (fortement) connexe si pour tous sommets s et s′ de G, il existe un chemin
de s vers s′.

Remarque. Attention : dans toutes ces dé�nitions, l'orientation des arêtes compte et l'ordre des
sommets compte.

Remarque. Un chemin de longueur 0 est donc la donnée d'un sommet, et un chemin de longueur 1
est donné par une arête. Plus généralement, la longueur d'un chemin est donc le nombre de fois qu'il
"parcourt" une arête.

Exemple 17. Considérons les graphes orientés G et H représentés ci-dessous.

G H

(i) Considérons le graphe G. 2 → 3 → 3 → 1 est un chemin de longueur 3 du graphe G, du sommet
2 vers le sommet 1. En particulier, les boucles comptent dans la longueur d'un chemin. De
même :

2 → 3 → 0 → 2 → 3 → 3

est un autre chemin du sommet 2 vers le sommet 3, de longueur 5.
Dans ce même graphe, il n'existe pas de chemin du sommet 1 vers le sommet 3, car aucune arête
ne part du sommet 1. Par conséquent, ce graphe n'est pas connexe.

(ii) Dans le graphe H,
1 → 0 → 2 → 3

est un chemin de longueur 3 du sommet 1 vers le sommet 3. On peut véri�er que ce graphe est
connexe : pour tout choix de sommets i et j, il existe un chemin du sommet i vers le sommet j.
Il y a tout de même 4× 3 = 12 véri�cations à faire si on veut lister toutes les possibilités.
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II. Matrice d'adjacence et connexité

1. Matrice d'adjacence d'un graphe

Dé�nition 18. (i) Soit G = (S,A) un graphe non orienté. Notons n l'ordre de G, et choisissons
une numérotations s1, . . . , sn des sommets de G.
On appelle matrice d'adjacence de G (associée à cette numérotation) la matrice M =
(mi,j)1≤i,j≤n ∈ Mn(R) donnée par :

∀(i, j) ∈ J1, nK2,mi,j =

{
1 si {si, sj} ∈ A

0 sinon
.

(ii) Soit G = (S,A) un graphe orienté. Notons n l'ordre de G, et choisissons une numérotations
s1, . . . , sn des sommets de G.
On appelle matrice d'adjacence de G (associée à cette numérotation) la matrice M =
(mi,j)1≤i,j≤n ∈ Mn(R) donnée par :

∀(i, j) ∈ J1, nK2,mi,j =

{
1 si (si, sj) ∈ A

0 sinon
.

Remarque. Pour pouvoir considérer la matrice d'adjacence d'un graphe (orienté ou non), il faut
donc choisir une numérotation de ses sommets. Par conséquent, un graphe n'a pas "une" matrice
d'adjacence, mais "des" matrices d'adjacence. Cependant, on fait souvent l'abus de langage de parler
de "la" matrice d'adjacence d'un graphe, ce qui est légitime uniquement une fois une numérotation
des sommets �xée.
Lorsque les sommets d'un graphe d'ordre n ∈ N∗ sont les entiers numérotés de 1 à n, on se permet de
considérer qu'ils sont naturellement numérotés.

Exemple 19. Considérons les graphes (orientés ou non) ci-dessous.

G H

(i) On numérote les sommets A,B,C,D de G, non orienté, dans l'ordre alphabétique (A est le
sommet 1, B le sommet 2, etc.). La matrice d'adjacence de G obtenue est :

M =


. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .


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(ii) On numérote les sommets A,B,C,D de H, orienté, dans l'ordre alphabétique (A est le sommet 1,
B le sommet 2, etc.). La matrice d'adjacence de H obtenue est :

M =


. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .



Remarque. Les coe�cients diagonaux valant 1 de la matrice d'adjacence d'un graphe (à sommets
numérotés) donnent les boucles de ce graphe.

On peut faire quelques observations simples sur la matrice d'adjacence.

Proposition 20. Soit G un graphe non orienté. Alors, pour toute numérotation choisie des sommets
de G, la matrice d'adjacence de G est symétrique.

Démonstration. Soit n l'ordre de G (un graphe non orienté). Supposons �xée une numérotation
s1, . . . , sn des sommets de G, et soit M la matrice d'adjacence de G ainsi obtenue.

Alors, pour tout (i, j) ∈ J1, nK2, mi,j =

{
1 si {si, sj} ∈ A

0 sinon
=

{
1 si {sj , si} ∈ A

0 sinon
= mj,i.

Donc M est symétrique.

Proposition 21. Soit G un graphe orienté dont les sommets sont numérotés s1, . . . sn (où n est
l'ordre de G). Notons M = (mi,j)1≤i,j≤n sa matrice d'adjacence. Alors, pour tout i ∈ J1, nK :

d+(si) =

n∑
j=1

mi,j

d−(si) =

n∑
j=1

mj,i.

Démonstration. En exercice. Avec les notations de l'énoncé
n∑

j=1

mi,j est une somme de termes valant 0

ou 1, avec exactement un terme 1 par arête partant de si, donc compte bien le degré sortant de si.

Remarque. Cas non orienté : Attention, la proposition analogue est fausse pour les graphes non
orientés ! Il faudrait l'adapter pour prendre en compte que les boucles comptent pour deux dans le
degré. On peut tout de même dire ceci :
Soit G un graphe non orienté simple dont les sommets sont numérotés s1, . . . sn (où n est l'ordre de
G). Notons M = (mi,j)1≤i,j≤n sa matrice d'adjacence. Alors, pour tout i ∈ J1, nK :

d(si) =

n∑
j=1

mi,j =

n∑
j=1

mj,i.

2. Matrice d'adjacence, chaînes et chemins

Le calcul des puissances de "la" matrice d'adjacence d'un graphe non orienté permet de compter ses
chaînes.

Proposition 22. Soit G un graphe non orienté. Notons n son ordre et supposons �xée une numéro-
tation s1, . . . , sn des sommets de G. Notons M la matrice d'adjacence ainsi obtenue.
Alors, pour tout entier naturel k, et pour tout (i, j) ∈ J1, nK2, le coe�cient d'indice (i, j) de la
matrice Mk est le nombre de chaînes de longueur k de G du sommet si vers le sommet sj.
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On a de même une version "graphe orienté".

Proposition 23. Soit G un graphe orienté. Notons n son ordre et supposons �xée une numérotation
s1, . . . , sn des sommets de G. Notons M la matrice d'adjacence ainsi obtenue.
Alors, pour tout entier naturel k, et pour tout (i, j) ∈ J1, nK2, le coe�cient d'indice (i, j) de la
matrice Mk est le nombre de chemins de longueur k de G de si vers sj.

Remarque. Ces énoncés se véri�e facilement dans le cas k = 0 et k = 1 : pour le cas k = 0, un chemin
ou une chaîne de longueur 0 ne parcourt pas d'arête, et consiste donc en la donnée d'un sommet, ce
qui est bien résumé par la matrice M0 = In (il y a un chemin - ou une chaîne- de si vers sj de longueur
0 si et seulement si si = sj , et aucun sinon).
Pour k = 1, un chemin (ou une chaîne) de longueur 1 se résume à la donnée d'une arête, ce qui est
bien l'information contenue dans M1 = M .

Démonstration. Dans le cas orienté : à noter.

Exercice 24. Considérons le graphe G représenté ci-dessous.

(i) Donner la matrice d'adjacence A de G.

(ii) Montrer que A3 = 8A.

(iii) En déduire que pour tout entier p ≥ 1, A2p = 8p−1A2. Puis, déterminer A2p+1 pour tout entier
naturel p.

(iv) Montrer que tout chemin de longueur paire partant du sommet 1 arrive au sommet 1.

(v) Quel est le nombre de chaînes de longueur 8 du sommet 2 vers le sommet 3 ?

3. Connexité et matrice d'adjacence

Voici une conséquence très pratique de la partie précédente, et le théorème le plus important du chapitre.
Nous l'utiliserons beaucoup en python.

Théorème 25. Soit G un graphe non orienté dont les sommets sont numérotés. Notons n son
ordre. Soit M ∈ Mn(R) la matrice d'adjacence de G ainsi obtenue. Alors, il est équivalent de dire :

(i) G est connexe, et

(ii) La matrice In +M +M2 + . . .+Mn−1 est à coe�cients strictement positifs.

Et sa version "graphe orienté" :

Théorème 26. Soit G un graphe orienté dont les sommets sont numérotés. Notons n son ordre.
Soit M ∈ Mn(R) la matrice d'adjacence de G ainsi obtenue. Alors, il est équivalent de dire :

(i) G est connexe, et

(ii) La matrice In +M +M2 + . . .+Mn−1 est à coe�cients strictement positifs.

Démonstration. Version orientée : à noter.
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III. Quelques notions supplémentaires sur les graphes

1. Graphes et démonstrations par récurrence

Idée : On peut souvent démontrer des résultats par récurrence (forte) en théorie des graphes. La
récurrence peut porter sur le nombre de sommets du graphe, son nombre d'arête, ou sur la somme des
deux. Moralement, on s'imagine construire tout graphe en ajoutant un à un ses sommets et ses arêtes à
partir du graphe vide, et on démontre qu'a chaque ajout, la propriété voulue est véri�ée.

Prenons par exemple le problème de concours blanc ci-dessous.

Exercice 27. Tous les graphes considérés dans cet exercice seront simples et non-orientés (et on
appellera donc graphe tout graphe simple non-orienté).

On rappelle qu'un cycle d'un graphe est un chemin de ce graphe dont les deux extrémités sont égales.

Soit G un graphe, on appelle triangle de G tout cycle de longueur 3 de G. Un graphe ne comportant pas
de triangle est dit sans triangle.

Dans ce problème, on démontre le théorème ci-dessous et on s'intéresse brièvement au cas d'égalité :

Theorème 1 : Le nombre maximal d'arêtes d'un graphe sans triangle d'ordre n est ⌊n
2

4
⌋.

[...] Partie 2

Le but de cette partie est de démontrer le théorème 1. Pour cela, on pose pour tout n ∈ N∗:

H(n) : "Tout graphe G d'ordre n sans triangle admet au plus ⌊n
2

4
⌋ arêtes"

et on va démontrer "∀n ∈ N∗,H(n)" par récurrence forte.

Pour tout graphe G, on notera a(G) le nombre d'arêtes de G.

(i) Démontrer H(1) et H(2).

(ii) Démontrer H(3).

(iii) Soit n ≥ 4. On suppose, pour l'hérédité traitée dans ces sous questions, que H(k) est vraie pour
tout k ∈ J1, n− 1K et on cherche à démontrer H(n). On considère donc un graphe G d'ordre n sans

triangle, et on veut démontrer que a(G) ≤ ⌊n
2

4
⌋. Pour tout sommet s de G, on notera d(s) le degré

de s.

(a) Que dire si G n'a aucune arête?

(b) On suppose à partir de maintenant que G a au moins une arête, et soit {u, v} une arête de G.
Les sommets u et v peuvent-ils être adjacents à un même sommet?

(c) En déduire que d(u) + d(v) ≤ n.

(d) Soit G′ le graphe obtenu à partir de G en supprimant les sommets u et v ainsi que toutes les
arêtes qui leurs sont reliés. En déduire que a(G) ≤ a(G′) + n− 1.

(e) Montrer que a(G′) ≤ ⌊ (n− 2)2

4
⌋.

(f) En déduire a(G) ≤ ⌊n
2

4
⌋ et conclure la démonstration.

[...]
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2. Graphes (orientés ou non) pondérés

L'idée est d'attribuer un nombre réel (appelé poids) à chaque arête d'un graphe. Cela est naturel dans de
nombreuses situations. Par exemple, on peut vouloir considérer le graphe non orienté pondéré suivant,
les nombres indiqués étant les temps de transport en heures, en train, d'une ville à l'autre.

Il s'agit ici surtout de comprendre comment on modélise cela mathématiquement.

Cette attribution est modélisée mathématiquement par une application de l'ensemble A des arêtes vers
R. Par exemple, dans le graphe ci dessous, la pondération p : A → R considérée sur le graphe G = (S,A)
des villes mentionnées, reliées si elles ont une ligne directe de train, véri�e :

p({Paris, Lyon}) = 2, 05.

Dé�nition 28. Soit G = (S,A) un graphe (orienté ou non). On appelle pondération sur G toute
application p : A → R.
On appelle graphe orienté (resp. non orienté) pondéré la donnée (G, p) d'un graphe G orienté (resp.
non orienté) et d'une pondération p sur G.

Nous reparlerons beaucoup des graphes pondérés en Python, à travers l'algorithme de Dijsktra permettant
de trouver une chaîne (ou un chemin) de poids minimal entre deux points (c'est à dire, dont la somme
des poids des arêtes est minimale).

3. Graphe complet

Dé�nition 29. Soit n ≥ 1 un entier naturel. On appelle graphe complet d'ordre n tout graphe
non orienté simple tel que pour tous sommets s et s′ distincts, s et s′ sont adjacents.

Exemple 30. Soit n ≥ 1 un entier naturel. Il y a en fait un unique graphe complet d'ordre n au
choix près des sommets. En choisissant comme ensemble de sommets l'ensemble J0, n− 1K, on obtient
le graphe communément noté Kn dont les premières représentations sont ci-dessous.

K1 K2 K3 K4 K5 K6

Exercice 31. Soit n ∈ N∗ et Kn le graphe complet d'ordre n de sommets 1, 2, . . . , n.

(i) Quel est le nombre total d'arêtes de Kn ?

(ii) Donner la matrice d'adjacence M de Kn.
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(iii) Donner une matrice J telle que M = J − In.

(iv) En déduire le calcul de Mp, pour tout entier naturel p.

(v) Donner le nombre de chaînes de longueur p de i vers j dans Kn, en fonction de i et j.

4. Graphes eulériens

Dé�nition 32. Soit G un graphe non orienté.

(i) Une chaîne de G est dite fermée si ses deux extrémités sont égales.

(ii) On appelle cycle de G toute chaîne fermée de longueur non nulle de G ne passant pas deux
fois par la même arête.

(iii) On dit qu'un cycle de G est eulérien s'il passe exactement une fois par chaque arête de G.
(iv) On dit que le graphe G est eulérien s'il existe un cycle eulérien de G.

Exemple 33. Comme vous le savez depuis votre plus tendre enfance, le graphe K5 est eulérien.

Un cycle eulérien est par exemple :

0− 1− 2− 3− 4− 0− 3− 1− 4− 2− 0.

Par contre, K4 n'est pas eulérien.

On peut le démontrer de la manière suivante, par l'absurde. Supposons K4 eulérien. Soit c un cycle
eulérien de K4. Sans perte de généralité, on peut supposer que c est d'extrémité 0, car tous les
sommets jouent le même rôle.
Dans ce cas, le sommet 1 étant de degré 3, c passe nécessairement au moins deux fois par le sommet
1. c est alors de la forme :

0− . . .− i− 1− j − . . .− 1− . . .− 0

Ainsi, c parcourrait 4 fois des arêtes ayant 1 pour extrémité, ce qui contredit le caractère eulérien de c
(le sommet 1 étant de degré 3, une arête devrait être parcourue deux fois par c). K4 n'est donc pas
eulérien.

On a plus généralement ce théorème, lié au travail d'Euler sur les ponts de Konigsberg.

Page 13



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

Théorème 34. (Euler, admis, "HP" mais culture générale) Soit G un graphe non orienté connexe.
Alors, il est équivalent de dire :

(i) G est eulérien, et

(ii) tout sommet de G est de degré pair.

Remarque. L'hypothèse de connexité n'est pas contraignante : si G n'est pas connexe, si deux
composantes connexes (dé�nition plus bas) ont une arête, alors il n'est pas eulérien. Sinon, G s'obtient
à partir d'un graphe connexe en ajoutant un nombre �ni de sommets isolés sans boucle, et on peut
appliquer le théorème à la seule composante connexe de G ayant une arête.

Remarque. D'après ce théorème, le graphe completKn est eulérien ssi n est impair (tous les sommets
de Kn sont de degré n−1). Vous pouvez maintenant essayer de généraliser le tracé enfantin mentionné
précédemment à tout graphe complet d'ordre impair.

5. (Thème classique) Graphes bipartis

Dé�nition 35. On appelle graphe bipartis tout graphe (orienté ou non) G = (S,A) tel qu'il existe
deux parties G ("gauche") et D ("droite") de S telles que :

(i) S = G ∪D, et la réunion est disjointe, et

(ii) toute arête de G relie un sommet de G à un sommet de D.

Exemple 36. Les deux graphes ci-dessous sont visiblement bipartis...

G H

en "posant" :

(i) G = J0, 2K et D = J3, 7K pour G,
(ii) G = J0, 3K et D = J4, 5K pour H.

Exemple 37. Toute graphe complet d'ordre au moins 3 n'est pas bipartis. Par exemple, posons
K5 = (S,A).

Supposons par l'absurde donnée une partition S =
G ∪ D de l'ensemble S = J0, 4K comme dans la
dé�nition ci-dessus (toute arête relie un élément
de G à un élément de D). On peut supposer que
0 ∈ G (les rôles de G et D étant interchangeables).
Alors, 0 étant voisin de tout autre sommet, on
a nécessairement D = J1, 4K. C'est absurde, car
{1, 2} est une arête deK5 dont les deux extrémités
sont éléments deD, contredisant ainsi la dé�nition
de la notion de graphe bipartis.
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Exercice 38. HEC 2023, di�cile Soit G un graphe connexe simple non orienté.

(i) Montrer que si G est bipartis, alors la longueur de tout cycle de G est paire.

(ii) Démontrer la réciproque.

Indications pour la (ii) :

� Soit s un sommet de G = (S,A). Poser G l'ensemble des sommets s′ de G tel que : tout chemin de
s vers s′ est de longueur paire. En particulier, par hypothèse, s ∈ G.

� Poser D = S \G. La réunion disjointe S = G ∪D est triviale.

� Démontrer par l'absurde que toute arête de G relie un élément de G à un élément de D et conclure.

6. (Très HP) Composante connexe d'un graphe non orienté

Vous n'aurez à priori des exercices sur cette notion qu'à condition que le sujet la redé�nisse, elle est
hors programme. Sans entrer dans les détails techniques, nous faisons ici passer l'idée de ce qu'est une
composante connexe d'un graphe.

Dé�nition 39. Soit G = (S,A) un graphe non orienté.

(i) On appelle sous graphe de G tout graphe de la forme (S′, A′) où S′ est une partie de S.
Autrement dit, un sous graphe d'un graphe donné G est un graphe obtenu en ne gardant que
certains sommets et certaines arêtes de G.

(ii) On dit qu'un sous graphe G′ de G est un sous graphe induit de G si toute arête de G entre des
sommets de G′ est aussi une arête de G′.

(iii) On appelle composante connexe de G tout sous graphe induit connexe "maximal" G′ de G (en
le sens suivant : tout graphe induit contenant strictement plus de sommets que ceux de G′

n'est pas connexe).

Exemple 40. (i) Si un graphe G est connexe, alors il n'a qu'une composante connexe : le graphe G.
(ii) Considérons le graphe G ci-dessous.

Il admet deux composantes connexes, les graphes G1 et G2 ci dessous.

G1 G2

Les composantes connexes portent bien leur nom, il s'agit des plus grands sous graphes connexes
du graphe initial.
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IV. Annexe : un problème sur les graphes sans triangle

1. Énoncé

Les questions mathématiques devront être proprement justi�ées, avec un raisonnement précis. Tous les
graphes considérés dans cet exercice seront simples et non-orientés (et on appellera donc graphe tout
graphe simple non-orienté).

On rappelle qu'un cycle d'un graphe est un chemin de ce graphe dont les deux extrémités sont égales.

Soit G un graphe, on appelle triangle de G tout cycle de longueur 3 de G. Un graphe ne comportant
pas de triangle est dit sans triangle.

Dans ce problème, on démontre le théorème ci-dessous et on s'intéresse brièvement au cas d'égalité :

Theorème 1 : Le nombre maximal d'arêtes d'un graphe sans triangle d'ordre n est ⌊n
2

4
⌋.

Partie 1 : Généralités sur les graphes

(i) Soit G un graphe d'ordre n ∈ N∗, dont les sommets sont numérotés de 1 à n.

(a) Rappeler la dé�nition de la matrice d'adjacence de G.

(b) Soient A la matrice d'adjacence de G et k ∈ N∗. Que représentent les coe�cients de Ak ?

(c) Donner une condition nécessaire et su�sante pour que G soit connexe utilisant la matrice
d'adjacence de G.

On s'intéresse aux représentations informatiques des graphes. Pour toutes les questions d'informatiques,
on numérote les sommets d'un graphe d'ordre n de 0 à n − 1. On peut représenter un graphe par sa
matrice d'adjacence, mais aussi en donnant la liste de ses adjacences. Notons s0, . . . , sn−1 les sommets
numérotés d'un graphe G. Pour i ∈ J0, n − 1K, on appelle liste d'adjacence de si toute liste formée des
numéros des sommets adjacents à si. On appelle liste des adjacences de G toute liste de la forme

[V(0), . . . , V(n− 1)]

où V(i) est une liste d'adjacence de si pour tout i ∈ J0, n− 1K.

(ii) (a) Donner une représentation graphique du graphe dont les sommets sont les entiers de 0 à 3, et
de liste d'adjacence [[1,2,3],[0],[0,3],[0,2]].

(b) Donner la matrice d'adjacence de ce graphe.

(c) Donner l'ensemble S des sommets de ce graphe, et l'ensemble V des arêtes de ce graphe.

(iii) Recopier et compléter le code Python suivant d'une fonction prenant en entrée la matrice d'adjacence
d'un graphe (de type np.ndarray) et renvoyant une liste des adjacences de ce graphe.

import ...

def MatVersListe(A):

L=[]

n,p=np.shape(A)

for i in range(n):

V=...

for j in range(n):

if ...:

V.append(j)

L.append(V)

return(L)

(iv) Écrire le code d'une fonction Python d'entête def ListeVersMat(L): prenant en entrée une liste
d'adjacence d'un graphe G et renvoyant en sortie sa matrice d'adjacence.
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(v) (a) Soit A la matrice d'adjacence d'un graphe G. Quel lien existe-t-il entre A3 et les triangles de
G ?

(b) En déduire le code d'une fonction Python d'entête def SansTriangles(A): prenant en entrée
la matrice d'adjacence A d'un graphe G, et renvoyant True si G est sans triangle, et False

sinon.

(vi) On veut écrire une fonction permettant de donner la liste des triangles d'un graphe donné par une
liste de ses adjacences. On représentera un triangle passant par les sommets si, sj , et sk tels que
i < j < k par la liste [i,j,k].

(a) Décrire la sortie de la fonction suivante, prenant en entrée :

� une liste L des adjacences d'un graphe G (de sommets numérotés de 0 à n− 1)

� le numéro k d'un sommet de G.

def NT(L,k):

V=L[k]

Rep=[]

for u in V:

for v in V:

if (v in L[u]) and k<u<v:

Rep.append([k,u,v])

return(Rep)

(b) A l'aide de la question précédente, écrire une fonction Python d'entête def

ListeTriangles(L): prenant en entrée une liste L des adjacences de G, et renvoyant en sortie
la liste des triangles de G. Par exemple, la fonction devra renvoyer (à l'ordre près des triangles)

[[0, 2, 3], [1, 2, 3]]

pour le graphe ci-dessous.

Partie 2 : Le théorème 1

Le but de cette partie est de démontrer le théorème 1. Pour cela, on pose pour tout n ∈ N∗:

H(n) : "Tout graphe G d'ordre n sans triangle admet au plus ⌊n
2

4
⌋ arêtes"

et on va démontrer "∀n ∈ N∗,H(n)" par récurrence forte.

Pour tout graphe G, on notera a(G) le nombre d'arêtes de G.

(vii) Démontrer H(1) et H(2).

(viii) Démontrer H(3).

(ix) Soit n ≥ 4. On suppose, pour l'hérédité traitée dans ces sous questions, que H(k) est vraie pour
tout k ∈ J1, n− 1K et on cherche à démontrer H(n). On considère donc un graphe G d'ordre n sans

triangle, et on veut démontrer que a(G) ≤ ⌊n
2

4
⌋. Pour tout sommet s de G, on notera d(s) le degré

de s.

(a) Que dire si G n'a aucune arête?

(b) On suppose à partir de maintenant que G a au moins une arête, et soit {u, v} une arête de G.
Les sommets u et v peuvent-ils être adjacent à un même sommet?
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(c) En déduire que d(u) + d(v) ≤ n.

(d) Soit G′ le graphe obtenu à partir de G en supprimant les sommets u et v ainsi que toutes les
arêtes qui leurs sont reliés. En déduire que a(G) ≤ a(G′) + n− 1.

(e) Montrer que a(G′) ≤ ⌊ (n− 2)2

4
⌋.

(f) En déduire a(G) ≤ ⌊n
2

4
⌋ et conclure la démonstration.

Partie 3 : Cas d'égalité et graphes bipartis

On dit qu'un graphe G = (S,A) est bipartis s'il existe deux parties G et D de S telles que:

� G ∩D = ∅

� G ∪D = S

� Toute arête de G relie un sommet de G à un sommet de D.

(x) Montrer que le graphe K3,3 représenté ci-dessous est bipartis.

(xi) Montrer qu'un graphe bipartis est sans triangle.

(xii) Soit n ∈ N∗. On pose Sn = J1, 2nK, Gn = J1, nK, Dn = Jn+1, 2nK, et An = {{i, j}, i ∈ Gn, j ∈ Dn}.
On pose en�n Kn,n = (Sn, An).

(a) Représenter K4,4.

(b) Écrire une fonction Python d'entête def K(n): prenant en entrée un entier n et renvoyant en
sortie une liste des adjacences de Kn,n.

(c) Soit n ∈ N. Quel est le nombre d'arêtes de Kn,n ?

(d) Que dire sur la borne ⌊n
2

4
⌋ donnée par le théorème 1 ?
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2. Corrigé

Partie 1

(i) (a) Soit G un graphe d'ordre n ∈ N dont les sommets sont numérotés de 1 à n. On appelle alors
matrice d'adjacence de G la matrice A ∈ Mn,n(R) donnée par :

∀(i, j) ∈ J1, nK2, Ai,j =

{
1 si les sommets i et j sont adjacents

0 sinon
.

(b) Pour i et j entiers entre 1 et n, le coe�cient d'indice (i, j) de Ak est le nombre de chemins de
longueur k du sommet i au sommet j.

(c) Le graphe G est connexe si et seulement si Id+A+A2+. . .+An−1 est une matrice à coe�cients
strictement positifs (où A est la matrice d'adjacence de G et n son ordre).

(ii) (a) Voici une représentation du graphe donné.

(b) La matrice d'adjacence de ce graphe est


0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

.

(c) L'ensemble S des sommets de ce graphe est S = J0, 3K .

L'ensemble de ses arêtes est A = {{0, 1}, {0, 2}, {0, 3}, {2, 3}}.

(iii) import numpy as np

def MatVersListe(A):

L=[] #future liste des adjacences

n,p=np.shape(A)

for i in range(n):

V=[] # V sera la liste des voisins de i

for j in range(n):

if A[i,j]!=0: #Si A[i,j]!=0, i et j sont voisins

V.append(j)

L.append(V) #On rajoute V à L

return(L)

(iv) import numpy as np

def ListeVersMat(L):

n=len(L) #nombre de sommets

A=np.zeros((n,n)) #La future matrice d'adjacence

for i in range(n): #Remplissons la i eme colonne de A avec les adjacences du sommet i

for j in L[i]: #L[i] est la liste des sommets adjacents au sommet i

A[i,j]=1

return(A)

(v) (a) Le coe�cient d'indice (i, j) de A3 dénombre les chemins de longueur 3 du graphe G du sommet
i au sommet j. Or, un triangle étant un cycle de longueur 3 de G, il s'agit d'un chemin de
longueur 3 d'un sommet à lui-même. Finalement,

Pour tout entier k strictement positif et inférieur à l'ordre de G, le k-ième coe�cient diagonal
de A3 est le nombre de triangles passant par le k-ième sommet.
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(b) import numpy as np

import numpy.linalg as al

def SansTriangles(A):

B=al.matrix_power(A,3)

n,p=np.shape(A)

for i in range(n):

if A[i,i]!=0:

return(False)

return(True)

(vi) (a)
Cette fonction renvoie la liste des triangles de la forme [k,u,v], c'est à
dire la liste des triangles passant par le sommet numéro k et dont les autres
sommets ont un indice supérieur à k.

(b) def ListeTriangles(L):

LT = [] #contiendra la liste des triangles

n=len(L) #ordre du graphe

for i in range(len(L)): #pour chaque sommet,

D=NT(L,i) #on va rajouter les triangles commençant par ce sommet

LT=LT+D concaténation des listes L et D

return(LT)

Partie 2

(vii) Pour démontrer H(1), on doit démontrer que tout graphe sans triangle d'ordre 1 admet au plus

⌊1
4
⌋ = 0 arêtes. Or, tous les graphes considérés étant simples, un graphe d'ordre 1 a exactement 0

arêtes, d'où H(1).

De plus, les graphes étant simples et non orientés, il y a exactement deux graphes d'ordre 2 (les

dessiner sur la copie!). Un graphe d'ordre 2 a donc 0 ou 1 arêtes, donc au plus ⌊2
2

4
⌋ = 1 arête, ce

qui démontre H(2).

On a bien démontré H(1) et H(2).

(viii) Voici, avec les conventions de l'énoncé, tous les graphes d'ordre 3, à numérotation près des sommets.

En e�et, un tel graphe a au plus 3 arêtes. Tous les graphes d'ordre 3 sans triangle ont donc au plus
2 arêtes (le seul graphe ayant un triangle parmi ceux ci-dessus est le dernier). Or,

⌊3
2

2
⌋ = ⌊4.5⌋ = 4

donc la borne donnée par H(3) est bien respectée.

On a bien démontré H(3).

(ix) (a) Si G n'a aucune arête, il a bien moins de ⌊n
2

4
⌋ ≥ 0 arêtes donc :

Tout graphe G sans arête d'ordre n véri�e a(G) ≤ ⌊n
2

4
⌋.

(b) Par l'absurde, si u et v étaient adjacent à un même sommet k, alors le chemin

u− v − k − u

serait un triangle de G, ce qui contredis que G est sans triangle.

u et v ne peuvent donc pas être adjacent à un même sommet.
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(c) Notons respectivement D(u) et D(v) l'ensemble des voisins de u et de v. Par dé�nition,

d(u) = Card(D(u)) et d(v) = Card(D(v)).

D'après la question précédente, D(u) et D(v) sont disjoints donc

Card(D(u) ∪D(v)) = Card(D(u)) + Card(D(v)).

De plus, D(u) ∪D(v) est une partie de l'ensemble des sommets de G, de cardinal n, donc

Card(D(u) ∪D(v)) ≤ n.

Finalement, on a bien d(u) + d(v) ≤ n.

(d) Pour passer du graphe G au graphe G′, les arêtes supprimées sont exactement les arêtes passant
par u ou par v. Il y a d(u) arêtes passant par u, d(v) arêtes passant par v, et exactement 1
arête passant à la fois par u et v.

Ainsi, le nombre d'arêtes supprimées pour passer de G à G′ est exactement

d(u) + d(v)− 1.

On a donc :
a(G) = a(G′) + d(u) + d(v)− 1 ≤ a(G′) + n− 1

d'après la question précédente.

On a bien démontré a(G) ≤ a(G′) + n− 1.

(e) G′ est un graphe d'ordre n − 2 ≥ 1. De plus, G′ est sans triangle car G est sans triangle, et
tout triangle de G′ serait un triangle de G.

D'après H(n− 2) (supposé vrai pour l'hérédité) appliqué à G′, on a donc :

a(G′) ≤ ⌊ (n− 2)2

4
⌋.

(f) On a donc :

a(G) ≤ a(G′) + n− 1 d'après 9(d)

≤ ⌊ (n− 2)2

4
⌋+ n− 1 d'après la question précédente

= ⌊ (n− 2)2

4
+ n− 1⌋ car n− 1 ∈ Z

= ⌊n
2 − 4n+ 4 + 4n− 1

4
⌋

= ⌊n
2

4
⌋

donc on a bien démontré a(G) ≤ ⌊n
2

4
⌋.

Finalement, on a traité l'initialisation avec H(1),H(2),H(3) en questions 7 et 8 et, par récur-
rence forte, on a démontré que pour tout entier n ≥ 4, si H(1), . . . ,H(n − 1) sont tous vrais,
alors pour tout graphe G d'ordre n sans triangle, que G ait au moins une arête ou non, on a

a(G) ≤ ⌊n
2

4
⌋, ce qui démontre bien H(n).

Par principe de récurrence, on a bien démontré que H(n) est vrai pour tout entier n ≥ 1, d'où
le théorème 1.

Page 21



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

Partie 3

(x) Il su�t de prendre G = {1, 3, 5} et D = {2, 4, 6} : on véri�e aisément que toute arête de K3,3 relie
bien un élément de G à un élément de D.

K3,3 est bien bipartis.

(xi) Soit G = (S,A) un graphe bipartis, et G et D deux parties de S comme dans la dé�nition de la
notion de graphe bipartis.

Supposons par l'absurde que G admette un triangle u − v − w − u. Alors, d'après le principe des
tiroirs, au moins deux des trois sommets u,v et w sont dans le même ensemble G ou D. Si, par
exemple, u et v sont tous deux dans G, alors on aurait une arête u− v entre deux éléments de G,
ce qui contredis les conditions sur G et D (tout arête de G reliant un élément de G à un élément
de D, on aurait v ∈ D, ce qui contredis G ∩D = ∅).

Tout graphe bipartis est bien sans triangle.

(xii) (a) Voici la représentation graphique demandée :

(b) On numérote les sommets de Kn,n de 0 à 2n− 1. Les listes d'adjacences de Kn,n sont faciles
à donner : elles sont [n,n+1,...,2*n-1] pour les n premières, et et [0,1,...,n-1] pour les
n dernières. On en tire le code suivant.

def K(n):

D=[i for i in range(n,2*n)] #n premières listes d'adjacences

F=[i for i in range(n)] #n dernières listes d'adjacences

Rep=[D]*n+[F]*n #Rep vaut [D,D,...,D,F,F,...,F], n répétitions

return(Rep)

(c) Chaque arête de Kn,n reliant un élément de Gn à un élément de Dn, il su�t de compter le
nombre d(k) des arêtes dont une extrémité est un élément k de Gn, et, chaque arête de Kn,n

passant par exactement un élément de Gn, de sommer ces valeurs de d(k) pour k ∈ Gn.

Si k ∈ Gn, on a d(k) = n car par dé�nition de An, il y a exactement une arête k − v de Kn,n

passant par k pour chaque élément v de Dn.

Gn étant de cardinal n, il y a donc n× n = n2 arêtes dans le graphe Kn,n.

(d) Kn,n est clairement bipartis donc sans triangle d'après la question 11.

De plus, il est d'ordre 2n et dispose de n2 arêtes.

Or, ⌊ (2n)
2

4
⌋ = ⌊n2⌋ = n2.

Ainsi, la borne donnée par le théorème 1 est atteinte pour Kn,n, donc

cette borne est optimale.
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