
Lycée Hoche 2025-2026
ECG1 A Mathématiques

TP de Python numéro 8 :
Matrices et le type array de numpy

Semaine du jeudi 22 janvier.

Pensez, lors des exercices, à bien véri�er vos fonctions sur des exemples variés !

Dans tous les énoncés et exemples de ce TP, on suppose numpy importé via la commande :

import numpy as np

I. Dé�nition de matrices avec numpy

1. Modélisation informatique des matrices

Pour modéliser une matrice en informatique, on dit qu'une matrice est représentée par la liste de ses lignes,
elles-mêmes représentées comme des listes.

Par exemple, en première approche (ceci sera immédiatement changé), la matrice A =

(
1 2
3 4

)
est donnée

par la liste :

A=[[1, 2], [3, 4]]

Le problème si on s'arrêtait ici, c'est que les opérations dont on dispose sur les listes ne correspondent pas du
tout à celles sur les matrices. Par exemple, la somme de deux listes est leur concaténation :

La somme

(
1 2
3 4

)
+

(
0 0
1 1

)
n'est pas du tout


1 2
3 4
0 0
1 1

 !

A�n de représenter les matrices avec Python en ayant accès aux opérations matricielles et à d'autres outils pra-
tiques, on utilisera le type array de numpy, qui vient avec une multitude d'outils que nous allons explorer.

On rappelle que dans ce TP, numpy est importé avec l'alias np.

Le type array de numpy

� Le type array de numpy est désigné en Python par :
numpy.ndarray

(nd stands for : "n-dimensionnal".)
� Soit L une liste de liste représentant une matrice au sens précédent. Alors, la commande

A=np.array(L)

créer une nouvelle variable A contenant l'objet de type numpy.ndarray donné par la liste L.

1

Exemple 1.

Pour dé�nir une matrice en Python, on peut donc
entrer ses coe�cicents ligne par ligne dans une liste
de liste, puis transformer cette liste de liste en objet
de type array avec la commande np.array.

Remarque. Pour que np.array ait l'e�et voulu, il faut bien entrer une liste de liste représentant une
matrice, c'est-à-dire pour laquelle toutes les "lignes" sont de la même longueur.

Exercice 2. 1. Dé�nir en Python les matrices A =

(
1 2
−1 1

)
, B =

(
1 −1 0
3 2 3

)
et C =

1 2
3 1
4 −6

.

2. A�cher ces matrices avec la commande print et constater la particularité de l'a�chage.

2. Taille d'une matrice, accès aux coe�cients, aux lignes et aux colonnes

Taille d'une matrice : la fonction shape

Soit A une variable de type array.
Alors, la commande np.shape(A) renvoie le couple (n,p) formé du nombre n de lignes de A et du nombre
p de colonnes de A.

Par exemple, pour A =

1 2
3 4
5 6

, B =
(
2 3 2 3

)
et C =

1
3
5

 :

A=np.array([[1, 2], [3, 4], [5, 6]])

n, p = np.shape(A)

print(n) # Affiche 3

print(p) # Affiche 2

B=np.array([[2, 3, 2, 3]])

n, p = np.shape(B)

print(n) # Affiche 1 : B est une matrice ligne ...

print(p) # Affiche 4 : ...de taille 4

C=np.array([[1], [3], [5]])

print(np.shape(C)) # Affiche (3,1) : C est une matrice colonne de taille 3

Remarque. Attention aux matrices lignes.
� Pour saisir une matrice ligne comme

(
1 2 3

)
, on doit bienmettre deux crochets dans la commande

:
np.array([[1, 2, 3]])

Autrement dit, on rentre bien un matrice en donnant la liste de ses lignes, même si celle-ci n'a qu'une
ligne.

� Soit L=[x1,...,xn] une liste de nombres.
Alors, la commande X=np.array(L) créée une variable X de type array représentant le vecteur
(x1, ..., xn) (un vecteur n'est ici rien d'autre qu'un élément de Rn pour un certain n ∈ N∗).
La di�érence avec la notion de matrice ligne est minime mais existe. Par exemple, la taille d'un vecteur
n'est pas un couple d'entiers mais un 1-uplet formé d'un entier, ce qui peut provoquer un problème
d'exécution dans un code utilisant np.shape écrit pour des matrices. Par exemple :

2

X=np.array([1, 2, 3])

print(np.shape(X)) # affiche (3,) (et non (1,3))

n,p=np.shape(X) # provoque une erreur

Exercice 3. Écrire le code d'une fonction Python, nommée test_produit, prenant en paramètres deux vari-
ables de type array A et B représentant des matrices et renvoyant en sortie True si le produit matriciel AB
est correctement dé�ni et False sinon.

Accès aux coe�cients d'une matrice, aux lignes et aux colonnes (première version)

Soit A une variable de type array représentant une matrice. Notons (n, p) la taille de la matrice représen-
tée par A. Alors :

� Pour tout (i,j) ∈ J0, n−1K× J0, p−1K, les commandes A[i,j] et A[i][j] renvoient le coe�cient
d'indice (i+1,j+1) de la matrice représentée par A.

� Pour tout i ∈ J0, n − 1K, les commandes A[i] et A[i,:] renvoient le vecteur donné par la
i+1-ième ligne de la matrice représentée par A.

� Pour tout j ∈ J0, p− 1K, la commande A[:,j] renvoie le vecteur donné par la j+1-ième colonne
de la matrice représentée par A.

Remarque. Attention, comme pour les listes, l'indexation des coe�cients commence à 0 en Python ! C'est
une source d'erreur très courante au début, prenez vite la bonne habitude d'y penser.

Exemple 4. Anticiper les a�chages suivants, puis véri�er avec Python (avec la matrice A =

(
1 2 3
4 5 6

)
):

A=np.array([[1, 2, 3], [4, 5, 6]])

print(A[1,1]) # Affiche ...

print(A[0,2]) # Affiche

print(A[1,:]) # Affiche

print(A[:,2]) # Affiche

print(A[:,3]) # Affiche

Indice d'une variable de type array

A partir de maintenant, dans ce TP, si A est une variable de type array représentant une matrice,
l'indice d'un coe�cient, d'une ligne ou d'une colonne de l'objet A désignera son indice en Python.
Par exemple, la première ligne (au sens classique) d'un objet A de type array sera désignée comme sa
ligne d'indice 0. Le coe�cient d'indice (1, 2) de la matrice représentée par A sera désigné comme le
coe�cient d'indice (0,1) de A.

Accès aux lignes et aux colonnes (deuxième version), extraction de sous-matrices

Soit A une variable de type array représentant une matrice, dont on note (n, p) la taille.
Soient d,f deux éléments de J0, n− 1K tels que d<f.
Soient d',f' deux éléments de J0, p− 1K tels que d'<f'.

� La commande A[d:f, :] renvoie l'objet de type array obtenu à partir de A en gardant uniquement
les lignes de A de l'indice d à l'indice f-1.

� La commande A[:, d':f'] renvoie l'objet de type array obtenu à partir de A en gardant unique-
ment les colonnes de A de l'indice d' à l'indice f'-1.

� La commande A[d:f, d':f'] renvoie l'objet de type array obtenu à partir de A en gardant
uniquement les lignes de A de l'indice d à l'indice f-1 et les colonnes de A de l'indice d' à l'indice
f'-1.

� Par conséquent, la commande A[d:d+1,:] renvoie la ligne d'indice d de A en tant qu'objet de
type array représentant une matrice.

� Par conséquent, la commande A[:, d':d'+1] renvoie la colonne d'indice d' de A en tant qu'objet
de type array représentant une matrice.

3

Exemple 5. A partir de la matrice A =

2 4 6
2 4 8
2 4 1

, on peut dé�nir en Python les matrices B =
(
2 4 8

)
et C =

(
4 6
4 8

)
de la manière suivante.

A= np.array ([[2, 4, 6], [2, 4, 8], [2, 4, 1]])

B= A[1:2 ,:] # B est la ligne d'indice 1 de A, en tant que matrice

C= A[0:2 ,1:3] # C est obtenue à partir de A en gardant les lignes d'indice 0 et 1 et

colonnes d'indices 1 et 2.

3. Modi�cation d'une matrice, copie d'une matrice

Comme pour les listes, les coe�cients d'un objet de type array sont des variables. On peut donc les modi�er
avec =.

Au début de ce code (après la première ligne), la variable A représente la matrice

(
1 2
3 4

)
.

A=np.array([[1, 2], [3, 4]])

print(A) # Affiche [[1 2]

[3 4]]

A[0 ,0]=3 # Changement du coefficient d'indice (0,0)

A[1 ,0]=6 # Changement du coefficient d'indice (1,0)

print(A) # Affiche [[3 2]

[6 4]]

À la �n de ce code, la variable A représente la matrice

(
3 2
6 4

)
.

Comme pour les listes, l'utilisation du symbole = pour dé�nir une nouvelle variable contenant une matrice lie
ces matrices.

A=np.array ([[1,2], [3,4]])

B=A

B[0 ,0]=10

print(B) #Affiche [[10 2]

[3 4]]

print(A) #Affiche [[10 2]

[3 4]]

Pour copier une matrice en une matrice indépendante, on peut utiliser la commande np.copy

A=np.array ([[1,2], [3,4]])

B=np.copy(A)

B[0 ,0]=10

print(B) #Affiche [[10 2]

[3 4]]

print(A) #Affiche [[1 2]

[3 4]]

4. Égalité de matrices

Attention, le test d'égalité == entre deux matrices fonctionne de manière très particulière.

Exemple 6. Recopier et exécuter dans l'invite de commande :

Qu'est-ce-qui est renvoyé par ce test d'égalité ?

4

Exercice 7. Écrire le code d'une fonction Python d'entête def EgaliteMatrices(A,B): prenant en entrée
deux matrices A et B (de type array), et renvoyant True si ces matrices sont égales, et False sinon. On rappelle
que deux matrices sont égales si et seulement si elles ont la même taille et les mêmes familles de coe�cients.

On pourra utiliser les opérateurs de comparaison (==, >=, >...) en ayant remarqué le caractère particulier
de la valeur renvoyée.

Opérateurs booléens et matrices

Soient A et B deux objets de type array de même taille (n, p).
� La commande A==B renvoie l'objet de type array de taille (n, p) dont le coe�cient d'indice (i,j)
est le renvoi de :

A[i,j] == B[i,j]

(pour tout (i,j) ∈ J0, n− 1K× J0, p− 1K.)
� Si k est une variable numérique, la commande A>k renvoie l'objet de type array de taille (n, p)
dont le coe�cient d'indice (i,j) est le renvoi de :

A[i,j] > k

(pour tout (i,j) ∈ J0, n− 1K× J0, p− 1K.)
� Le point précédent est valable à l'identique avec les autres opérateurs de comparaison (==,>=, <,

<=) entre une matrice et un nombre.

Exercice 8. Écrire le code d'une fonction Python, nommée coefficients_pairs, prenant en paramètres une
matrice A à coe�cients entiers relatifs et renvoyant en sortie True si tous les coe�cients de A sont pairs et
False sinon.

5. Créations de matrices

Il existe de nombreuses commandes permettant de dé�nir des matrices sans devoir saisir les coe�cients à la
main.

Matrices remarquables

Soient n et p deux variables de type int.
� np.zeros((n,p)) renvoie la matrice nulle de taille (n,p) .
� np.ones((n,p)) renvoie la matrice de taille (n,p) dont tous les coe�cients valent 1.
� np.eye(n) (ou np.identity(n)) renvoie la matrice identité de taille n.
� np.eye(n,p) renvoie la matrice de taille (n,p) dont tous les coe�cients sont nuls sauf les coe�-
cients diagonaux qui valent 1.

� np.zeros(n) renvoie le vecteur de longueur n dont tous les coe�cients sont nuls.
� np.ones(n) renvoie le vecteur de longueur n dont tous les coe�cients sont égaux à 1.

Remarque. Attention à la présence des double-parenthèses dans les commandes np.zeros((n,p)) et
np.ones((n,p)). Les oublier provoquera une erreur. On retiendra que ces commandes prennent en argument
une taille, et qu'une taille est un couple pour une matrice.

Exemple 9.

A = np.zeros (3)

print(A) # Affiche [0. 0. 0.]

B = np.zeros ((2,2))

print(B) # Affiche [[0. 0.]

[0. 0.]]

C = np.ones (5)

print(C) # Affiche [1. 1. 1. 1. 1.]

D = np.ones ((3,3))

print(D) # Affiche [[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

5

E = np.eye (3)

print(E) # Affiche [[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]]

F = np.eye(2,4)

print(F) # Affiche [[1. 0. 0. 0.]

[0. 1. 0. 0.]]

Remarque. Les commandes np.linspace et np.arange rencontrées lors du TP 4 dé�nissent des vecteurs
de type array. Ça peut être pratique dans certaines situations. Par exemple :
X=np.arange(0,2,0.5) a le même e�et que X = np.array([0, 0.5, 1, 1.5]).

6. Une stratégie courante pour dé�nir des matrices

Très souvent, pour dé�nir une matrice donnée en Python :

� On dé�nit une matrice A de la bonne taille dont les coe�cients sont tous nuls avec la commande

A=np.zeros((n,p))

� On a�ecte un à un les coe�cients de A à l'aide de boucles.

Exercice 10. On pose, pour tous entiers i et j, ai,j = 2i3j+1. Écrire un code Python permettant de dé�nir la
matrice (ai,j)(i,j)∈J1,20K×J1,10K en Python.

Exercice 11. Dans cet exercice, on suppose que les fonctionnalités de la partie II ne sont pas connues.
Écrire le code d'une fonction Python, nommée somme_matrices, prenant en paramètres deux matrices A et B
de même taille et renvoyant en sortie la matrice A+B.

Exercice 12. Dans cet exercice, on suppose que les fonctionnalités de la partie II ne sont pas connues.
Écrire le code d'une fonction Python, nommée transpose_matrice, prenant en paramètre une matrice A et
renvoyant en sortie la matrice tA.

Exercice 13. Dans cet exercice, on suppose que les fonctionnalités de la partie II ne sont pas connues.
Écrire le code d'une fonction Python, nommée produit_matrices, prenant en paramètres deux matrices
(Python) A et B telles que le produit AB est correctement dé�ni et renvoyant en sortie la matrice AB.

Exercice 14. Écrire le code d'une fonction Python, nommée test_commutation, prenant en paramètres deux
matrices carrés A et B de même taille et renvoyant en sortie True si les matrices A et B commutent et False
sinon.

II. Opérations sur les matrices

On va maintenant voir les opérations disponibles sur les objets de type array.

A partir de maintenant, on parlera simplement de matrice pour désigner des variables Python de type array

représentant des matrices.

1. Opérations coe�cients par coe�cients

Opérations arithmétiques de base entre matrices

Soient A et B deux matrices de même taille.
Alors, les opérations arithmétiques usuelles : +, -, *, /, ** s'appliquent coe�cients par coe�cients
aux matrices avec les commandes :
A+B, A-B, A*B, A/B, A**B,

à condition que tous les calculs intervenant soient correctement dé�nis.

Remarque. Dans certains cas, il peut y avoir des problèmes si A et B ont des coe�cients de type int. On
travaille généralement avec des coe�cients de type float pour éviter ça, même si ceux-ci sont des entiers.

6

Exemple 15. Véri�er la compréhension du point précédent en observant les valeurs a�chées par les com-
mandes ci-dessous.

A=np.array([[2.0, 1.0], [0.0, 3.0]])

B=np.array([[-1.0, 1.0], [4.0, 2.0]])

print(A+B)

print(A-B)

print(A*B)

print(A/B)

print(A**B)

Remarque. En particulier, le symbole de multiplication * n'est pas le produit matriciel. Par contre,
la somme + et la di�érence - donnent bien la somme et la di�érence matricielle.

Produit d'une matrice par un réel

Soit A une matrice et x un réel (de type float ou int). Alors, la commande :
x*A

renvoie la matrice obtenue en multipliant chaque coe�cient de A par x.

Remarque. On a bien l'opération · de multiplication d'une matrice par un réel avec le symbole *.

Exemple 16. Véri�er ce qui précède en exécutant le code suivant.

A = np.array ([[2.0 ,0.0] ,[1.0 ,3.0]])

B = 3*A

C = -2*np.eye(3)

print(A)

print(B)

print(C)

Somme d'une matrice et d'un réel

Soit A une matrice et x un réel (de type float ou int). Alors, la commande :
A+x

renvoie la matrice obtenue en ajoutant x à chaque coe�cient de A.

Remarque. Attention, n'écrivez pas n'importe quoi dans vos copies : cette opération n'existe toujours
pas en mathématiques.

Exemple 17. Véri�er ce qui précède en exécutant le code suivant.

A = np.array ([[1 ,3] ,[-2 ,5]])

print(A+2)

print(A-5)

print (3*A+1)

Fonctions usuelles de numpy

Soit A une matrice. Alors, l'application des fonctions usuelles de numpy (p.abs, np.sqrt, np.exp,

np.log, np.floor) à la matrice A renvoie la matrice obtenue en appliquant ces fonctions à chaque
coe�cients de A.

Exemple 18. Véri�er ce qui précède en exécutant le code suivant.

7

A=np.array([[1.1, 2.3], [3.5, 4.0]])

print(np.sqrt(A))

print(np.exp(A))

print(np.floor(A))

On peut également, à partir d'une fonction f dé�nie par vos soins, créer une version de f qui s'applique coe�cient
par coe�cient à une matrice.

Vectorisation de fonctions : np.vectorize

Soit f une fonction informatique représentant une fonction réelle de la variable réelle.
Alors, la commande g = np.vectorize(f)

créer une fonction g qui applique la fonction f coe�cient par coe�cient à une matrice donnée en entrée :
l'appel de g(A) renvoie la matrice obtenue en remplaçant chaque coe�cient a de A par f(a), et ce pour
toute matrice A.

Exemple 19. Véri�er ce qui précède en complétant et en exécutant le code suivant.

def f(x):

f(x) renvoi x si x >0 et 0 sinon.

if x >0:

return(x)

return (0)

A=np.array([[6, -2], [-3, 1]])

g=np.vectorize(f)

print(g(A))

2. Produit matriciel et transposition

Produit matriciel

Soient A et B deux matrices Python représentant des matrices A et B telles que le produit AB soit bien
dé�ni.
Alors, la commande

np.dot(A,B)

renvoie la matrice Python représentant la matrice AB.

Transposition

Soit A une matrice Python.
Alors, la commande

np.transpose(A)

renvoie la transposée de A.

Exemple 20. Véri�er ce qui précède en exécutant le code suivant.

A=np.array ([[0, 1], [0, 0]])

print("Transposée : ", np.transpose(A))

print("Carré de A : ", np.dot(A,A))

B=np.array([[1, 1], [1, 1]])

print(np.dot(A,B))

print(np.dot(B,A))

Exercice 21. Dans cet exercice, on suppose que les fonctionnalités de la partie suivante ne sont pas connues.
Écrire le code d'une fonction Python, nommée puissance_matrice, prenant en paramètres une matrice carrée
A et un entier naturel n et renvoyant en sortie la matrice An.

8

Exercice 22. 1. Écrire le code d'une fonction Python, nommée est_symetrique, prenant en paramètre une
matrice A et renvoyant en sortie True si la matrice A est symétrique et False sinon.

2. Écrire le code d'une fonction Python, nommée est_antisymetrique, prenant en paramètre une matrice
A et renvoyant en sortie True si la matrice A est antisymétrique et False sinon.

3. Plus d'opérations avec le sous-module numpy.linalg de numpy

Le sous module numpy.linagl de numpy contient des commandes permettant des opérations plus avancées sur
les matrices (et vous en verrez bien d'autres l'année prochaine).

Cette année, on utilisera deux commandes :

� Une commande permettant de calculer des puissances d'une matrice carrée (plutôt que d'utiliser np.dot
de manière répétée),

� Une commande permettant de calculer l'inverse d'une matrice inversible.

Import du sous-module numpy.linalg

Dans les encadrés ci-dessous, on supposera le module numpy.linalg importé à l'aide de la commande :
import numpy.linalg as al

Puissances d'une matrice carrée

Soit A une matrice carrée (en Python).
Alors, pour toute variable n de type int, la commande
al.matrix_power(A,n)

renvoie la puissance n-ième An de la matrice A.

Exemple 23. Utiliser cette commande pour a�cher les puissances Ak de la matrice A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

,

pour k ∈ J0, 5K. Que remarquez-vous ?

Inverse d'une matrice inversible

Soit A une matrice Python représentant une matrice inversible.
Alors, l'inverse de A est renvoyé par la commande :

al.inv(A)

Exemple 24. Donner l'inverse de A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

.

III. Exercices

Exercice 25. Écrire le code d'une fonction Python, nommée somme_puissances_matrice, prenant en paramètres
une matrice carrée A telle que A ∈Mn(R) et renvoyant en sortie la matrice In +A+ · · ·+An.

On pourra observer que pour tout k ∈ J1, nK, In +A+ · · ·+Ak = In +A
(
In +A+ · · ·+Ak−1

)
.

Exercice 26. Dans cet exercice, on s'intéresse à la création informatique du triangle de Pascal. Les matrices
à construire ne devront pas l'être en saisissant à la main les coe�cients un par un.

9

1. Écrire un code Python permettant de dé�nir la matrice


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

.

2. Écrire un code Python permettant de dé�nir la matrice


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

. On utilisera la même

méthode que celle qu'on utilise pour écrire le triangle de Pascal à la main.

3. Écrire le code d'une fonction Python, nommée triangle_Pascal, prenant en paramètre un entier naturel
n et renvoyant en sortie la matrice M ∈Mn+1(R) dont les coe�cients sont ceux du triangle de Pascal, de(
0
0

)
jusqu'à

(
n
n

)
. Tester ensuite cette fonction pour n = 10.

4. Écrire le code d'une fonction Python, nommée VdM, prenant en paramètre un entier naturel n et renvoy-

ant en sortie la valeur de la somme
n∑

k=0

(
n

k

)2

.

5. À l'aide de nombreux tests e�ectués grâce à cette fonction, conjecturer, puis démontrer, une formule ex-

plicite donnant la valeur de
n∑

k=0

(
n

k

)2

en fonction de n, pour tout n ∈ N.

Exercice 27. Dans cet exercice, on s'intéresse à l'implémentation de l'algorithme du pivot de Gauss.

Soit A =

 0 −1 1
−1 1 0
2 0 −2

 et B =

 1 1 1
−3 1 3
3 −3 −3

.

1. À l'aide de Python, e�ectuer les opérations élémentaires suivantes sur la matrice A sans redé�nir à la
main les coe�cients un à un :

� échanger les lignes L1 et L3.

� puis remplacer la ligne L2 par 2L2 + L1

� puis remplacer la ligne L3 par 2L3 + L2

A�cher la matrice obtenue : que peut-on conclure?

2. Écrire le code d'une fonction Python, nommée multiplie_ligne, prenant en paramètres une matrice
A, un nombre réel a et un entier naturel i et renvoyant en sortie la matrice obtenue à partir de A en
multipliant terme à terme par a tous les coe�cients de la ligne d'indice i.

3. Écrire le code d'une fonction Python, nommée echange_lignes, prenant en paramètres une matrice A
et deux entiers naturels i et j et renvoyant en sortie la matrice obtenue à partir de A en échangeant les
lignes d'indices i et j.

4. Écrire le code d'une fonction Python, nommée combinaison_lignes, prenant en paramètres une matrice
A, deux nombres réels a et b et deux entiers naturels i et j et renvoyant en sortie la matrice obtenue à
partir de A en remplaçant Li par la combinaison aLi + bLj .

5. Tester les fonctions dé�nies ci-dessus pour e�ectuer les opérations élémentaires suivantes sur la matrice
B :

� L2 ←→ L3

� L2 ←− L2 − 3L1

� L3 ←− L3 + 3L1

� L3 ←− 6L3 + 4L2

10

Faire a�cher la matrice obtenue : la matrice B est-elle inversible?

6. Écrire le code d'une fonction Python, nommée pivot_Gauss, prenant en paramètres une matrice A et
renvoyant en sortie la matrice obtenue par application de l'algorithme du pivot de Gauss au système
linéaire associé à A jusqu'à le mettre sous forme triangulaire.

Tester cette fonction avec la matrice C =


6 −3 2 −1
−5 2 −4 1
2 −1 3 −1
−1 1 −2 1

.

11

	Définition de matrices avec numpy
	Modélisation informatique des matrices
	Taille d'une matrice, accès aux coefficients, aux lignes et aux colonnes
	Modification d'une matrice, copie d'une matrice
	Égalité de matrices
	Créations de matrices
	Une stratégie courante pour définir des matrices

	Opérations sur les matrices
	Opérations coefficients par coefficients
	Produit matriciel et transposition
	Plus d'opérations avec le sous-module numpy.linalg de numpy

	Exercices

