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Correction du DM n°2

Exercice 1

1. (a) Tout d'abord, la fonction f : R∗
+ → R∗

+ est bien dé�nie car pour tout réel x > 0, on a 1+x > 0 donc√
1 + x est bien dé�ni, et strictement positif.

f est alors la composée sur R∗
+ de t 7→ 1 + t par t 7→

√
t. Ces fonctions sont strictement croissantes

sur leur domaine de dé�nition.

Par composition, f est strictement croissante sur R∗
+.

Calculons les limites. t+ 1 −−−→
t→0

1 donc par continuité de x 7→
√
x en 1 et par composition :

f(t) −−−→
t→0

√
1 = 1.

De plus,
√
x −−−−−→

x→+∞
+∞ et t+ 1 −−−−→

t→+∞
+∞ donc par composition :

f(t) −−−−→
t→+∞

+∞.

On peut, avec toutes ces informations, tracer le tableau de variation de f .

(b) Soit x ∈ [1,+∞[.

f(x) = x ⇐⇒
√
x+ 1 = x

(1)⇐⇒ x+ 1 = x2

⇐⇒ x2 − x− 1 = 0

(2)⇐⇒ x =
1 +

√
5

2
ou x =

1−
√
5

2

(3)⇐⇒ x =
1 +

√
5

2

(1) : par croissante stricte de t 7→ t2 sur R+, et car x ≥ 1 donc (
√
x+ 1, x) ∈ (R+)

2.
(2) : Il faut calculer le discriminant et argumenter sur la copie.

(3) : x ≥ 1 et
1−

√
5

2
< 0 donc x ̸= 1−

√
5

2
.

En�n, on a bien
1 +

√
5

2
≥ 1 (car

√
5 > 1) donc :

L'unique réel α ≥ 1 tel que f(α) = α est α =
1 +

√
5

2
.

(c) Soit g la fonction dé�nie sur R∗
+ par g(x) = f(x)− x. Alors pour tout x ∈ R∗

+ :

g(x) > 0 ⇐⇒ f(x) > x

⇐⇒ x+ 1 > x2 (par croissance stricte de t 7→ t2 sur R∗
+)

⇐⇒ x2 − x− 1 < 0

D'après l'étude de polynôme faite à la question précédente, les racines de X2 −X − 1 sont
1−

√
5

2
et α donc ce polynôme du second degré à coe�cient dominant positif est strictement négatif sur

]
1−

√
5

2
, α[, et positif en dehors.

Ici, x > 0 donc x2 − x− 1 < 0 ⇐⇒ x ∈]0, α[. En�n, g(x) = 0 ⇐⇒ f(x) = x ⇐⇒ x = α.

Le tableau de signe de g est donc le suivant :
x 0 α +∞
g(x) + 0 -

2. (a) Montrons par récurrence : ∀n ∈ N, H(n) : ”un ∈ [1, α]”.
Initialisation : u1 = 1 ∈ [1, α] donc l'initialisation est démontrée.
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Hérédité : Soit n ∈ N tel que H(n), montrons H(n+ 1). Par H(n), 1 ≤ un ≤ α.
Par croissance de f , f(1) ≤ f(un) ≤ f(α).
Mais un+1 = f(un) et f(α) = α par dé�nition. On a donc :

f(1) =
√
2 ≤ un+1 ≤ α.

En�n, 1 ≤
√
2 donc un+1 ∈ [1, α]. Ceci démontre H(n+ 1), d'où l'hérédité.

Conclusion : On a montré par récurrence : ∀n ∈ N, un ∈ [1, α]

(b) Soit n ∈ N. Alors, un ∈ [1, α] d'après la question précédente. D'après la question 1c relative au signe
de g:

g(un) ≥ 0.

Ainsi, f(un)− un ≥ 0 d'où un+1 ≥ un.

On a démontré ∀n ∈ N, un+1 ≥ un : La suite u est croissante.

(c) u est croissante d'après la question précédente, et majorée par α d'après la question 2a. D'après le
théorème de la limite monotone, u converge vers un réel l.

On a alors un+1 −−−−−→
n→+∞

l+1, et la suite u étant minorée par 1, par passage à la limite des inégalités :

l ≥ 1.

Ainsi, l + 1 ∈ R+. Par composition avec la fonction t 7→
√
t continue sur R+ :

√
un + 1 −−−−−→

n→+∞

√
l + 1.

On a alors : 
√
un + 1 −−−−−→

n→+∞

√
l + 1

un+1 −−−−−→
n→+∞

l

∀n ∈ N, un+1 =
√
un + 1

.

Par unicité de la limite :

l =
√
l + 1

On a donc f(l) = l et l ≥ 1. D'après la question 1b, l = α.

Finalement, u converge vers α.

3. (a) Démontrons par récurrence :

∀n ∈ N, P (n) : ”un+1 ≤ un”.

Initialisation : P (0) s'écrit u1 ≤ u0. Calculons u1.

u1 = f(u0) = f(2) =
√
3. Or, 3 < 4 =⇒

√
3 <

√
4 = 2.

Par conséquent, u1 < u0, d'où l'initialisation.

Hérédité : Soit n ∈ N tel que P (n). Montrons P (n+ 1).

Par P (n) :

un+1 ≤ un.

Par croissance de f :

un+2 = f(un+1) ≤ f(un) = un+1.

Ceci démontre P (n+ 1) d'où l'hérédité.

On a montré par récurrence :

∀n ∈ N, un+1 ≤ un.

La suite u est donc décroissante. Remarquons au passage qu'on peut montrer, avec les mêmes ar-
guments et la monotonie stricte de f , que u est strictement décroissante.
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(b) La suite u est décroissante, et minorée par 0 car une récurrence immédiate montre : ∀n ∈ N, un ∈ R∗
+

(car f est à valeurs dans R∗
+).

Par le théorème de la limite monotone, la suite u converge vers un réel l. On sait de plus :

∀n ∈ N, un > 0.

Par passage à la limite des inégalités :

l ≥ 0.

En�n, un+1 −−−−−→
n→+∞

l et
√
un + 1 −−−−−→

n→+∞

√
l + 1. Par dé�nition, ∀n ∈ N, unn+ 1 =

√
un + 1. Donc

par unicité de la limite :

l =
√
l + 1.

On en tire l = α ou l =
1−

√
5

2
, et vu que l ≥ 0, il vient :

l = α.

Finalement, la suite u converge vers α.

4. Tout d'abord, on en peut déduire de ces données que u est croissante. En e�et, la suite considérée dans
les questions du 3 véri�e ces hypothèses (avec f(x) =

√
x+ 1) et est décroissante et non constante (sinon,

elle convergerait vers u0 = 2, or 2 ̸= α), donc non croissante (toute suite croissante et décroissante est
constante).

Pour démontrer que u est monotone, on procède par disjonction des cas.

1e cas : Si u1 ≤ u0.

Dans ce cas, montrons que u est décroissante.

Démontrons par récurrence :

∀n ∈ N, P (n) : ”un+1 ≤ un”.

Initialisation : P (0) s'écrit u1 ≤ u0, ce qui est vrai par hypothèse (du 1e cas), d'où l'initialisation.

Hérédité : Soit n ∈ N tel que P (n). Montrons P (n+ 1).

Par P (n) :

un+1 ≤ un.

Par croissance de f :

un+2 = f(un+1) ≤ f(un) = un+1.

Ceci démontre P (n+ 1) d'où l'hérédité.

On a bien démontré que dans ce cas, u est décroissante (donc monotone).

2e cas : Sinon, u1 > u0 et on montre, de même, que u est croissante (récurrence similaire, les inégalités
sont échangées partout).

Dans tous les cas, la suite u est monotone.

Exercice 2

1. Soit x ∈ R∗
+. Alors,

2

x
est bien dé�ni et positif comme quotient de réels positifs (à dénominateur non nul).

Par conséquent, f(x) = 1 +
2

x
est un réel bien dé�ni et supérieur à 1 donc strictement positif.

Ainsi, f : R∗
+ → R∗

+ est bien dé�nie.

Une récurrence immédiate montre que pour tout entier n, un est bien dé�ni et un ∈ R∗
+ (le seul argument

étant que f(R∗
+) ⊂ R∗

+).
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2. f est décroissante sur R∗
+ comme somme des fonctions décroissantes t 7→ 1 et t 7→ 2

t
.

Par conséquent, pour tout x ∈ [1, 3] :

1 ≤ x ≤ 3 =⇒ f(3) = 2 ≤ f(x) ≤ f(1) = 3 =⇒ 1 ≤ x ≤ 3.

Ceci démontre bien f([1, 3]) ⊂ [1, 3].

Montrons par récurrence :

∀n ∈ N, un ∈ [1, 3].

L'initialisation est claire (u0 = 1 ∈ [1, 3]), et pour l'hérédité, si n ∈ N véri�e un ∈ [1, 3], alors f(un) ∈ [1, 3]
car f([1, 3]) ⊂ [1, 3], donc un+1 ∈ [1, 3], ce qui conclut.

3. Soit g = f ◦f . Alors, g est croissante comme composée de deux fonctions décroissantes (f est décroissante).

De plus, pour tout entier n :

vn+1 = u2n+2 = f(u2n+1) = f(f(u2n)) = g(vn).

De plus, u1 = 1 +
2

1
= 3 puis u2 = 1 +

2

3
=

5

3
. Donc v1 =

5

3
≥ v0 = 1.

On a donc v0 ≤ v1 et ∀n ∈ N, vn+1 = g(vn), où g est croissante.

Montrons par récurrence que ∀n ∈ N, P (n) : ”vn+1 ≥ vn”.

(Ici, on refait le raisonnement de l'exercice 1, question 4 : le résultat n'est pas au programme, il faut le
refaire.)

Initialisation : On a déjà montré v1 ≥ v0 , ce qui est P (0), d'où l'initialisation.

Hérédité : Soit n ∈ N tel que P (n). Montrons P (n+ 1).

Par P (n), vn+1 ≥ vn. Par croissance de g, vn+2 = g(vn+1) ≥ g(vn) = vn+1. Ceci démontre P (n+1), d'où
l'hérédité.

Finalement, La suite v est croissante.

4. De même, pour tout entier n, wn+1 = g(wn) et on a w1 = u3 = 1 +
2

u2
= 1 +

6

5
=

11

5
donc w1 ≤ w0 = 3

(car 11 ≤ 3× 5).

Par un raisonnement similaire à celui écrit question 4 exercice 1, w est décroissante.

5. Les suites v et w sont monotones. De plus,

∀n ∈ N, un ∈ [1, 3]

donc
∀n ∈ N, vn = u2n ∈ [1, 3] et wn = u2n+1 ∈ [1, 3].

Ainsi, v et w sont monotones et bornées. Par le théorème de la limite monotone, v et w convergent.
Notons l la limite de v, et l′ la limite de w.

Alors, 1 ≤ vn ≤ 3 pour tout entier n, donc par passage à la limite des inégalités :

1 ≤ l ≤ 3

et de même :
1 ≤ l′ ≤ 3

De plus, g : x 7→ 1+
2

1 + 2
x

est continue sur son domaine de dé�nition (R∗
+ ici) comme fraction rationnelle.

Donc, comme l ∈ R∗
+ :

vn −−−−−→
n→+∞

l =⇒ g(vn) −−−−−→
n→+∞

g(l).

Mais on a aussi :
g(vn) = vn+1 −−−−−→

n→+∞
l.
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Par unicité de la limite :
g(l) = l.

Par un raisonnement similaire :
g(l′) = l′.

Résolvons donc l'équation g(x) = x d'inconnue x ∈ [1, 3].

Soit x ∈ [1, 3].

g(x) = x ⇐⇒ 1 +
2

1 + 2
x

= x

⇐⇒ 1 +
2

x
+ 2 = x+ 2

⇐⇒ x2 − x− 2 = 0

X2 −X − 2 est un polynôme du second degré, de discriminant 9 et donc de racines −1 et 2.

Ainsi, comme x ∈ [1, 3] :
x2 − x− 2 = 0 ⇐⇒ x = 2.

L'unique réel x ∈ [1, 3] tel que g(x) = x est donc 2 : l = l′ = 2.

Finalement, v et w convergent vers 2.

6. Les suites (u2n)n et (u2n+1)n convergent vers la même limite 2, d'après la question précédente. Par

théorème sur les sous suites de rangs pairs et impairs, la suite u converge également vers 2 .
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