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Correction du DM n°3

Exercice 1

Nous allons montrer que les suites u et v sont adjacentes.

1. Montrons que u est décroissante.

Soit n ∈ N∗.

un+1 − un =

n+1∑
k=1

1√
k
− 2

√
n+ 1−

(
n∑

k=1

1√
k
− 2

√
n

)

=
1√
n+ 1

− 2
√
n+ 1 + 2

√
n

=
1− 2

√
(n+ 1)2 + 2

√
n(n+ 1)√

n+ 1

=
2
√
n(n+ 1)− (2n+ 1)√

n+ 1
(
√
(n+ 1)2 = n+ 1 car n+ 1 ≥ 0)

Ainsi, le signe de un+1 − un est le signe de 2
√

n(n+ 1) − (2n + 1)( Remarque : pour avoir ce signe, on
peut aussi invoquer l'inégalité arithmético-géométrique)). Or par stricte croissance de la fonction carrée
sur R+ (les quantités sont positives) :

2
√
n(n+ 1) ≤ (2n+ 1) ⇐⇒ 4n(n+ 1) ≤ (2n+ 1)2 ⇐⇒ 4n2 + 4n ≤ 4n2 + 4n+ 1.

La dernière inégalité étant toujours vraie, on a 2
√
n(n+ 1)− (2n+ 1) ≤ 0 donc u est bien décroissante.

2. Montrons que v est croissante.

Soit n ∈ N∗.

vn+1 − vn =

n+1∑
k=1

1√
k
− 2

√
n+ 2−

(
n∑

k=1

1√
k
− 2

√
n+ 1

)

=
1√
n+ 1

− 2
√
n+ 2 + 2

√
n+ 1

=
1− 2

√
(n+ 1)(n+ 2) + 2

√
(n+ 1)2√

n+ 1

=
(2n+ 3)− 2

√
(n+ 1)(n+ 2)√

n+ 1
(
√

(n+ 1)2 = n+ 1 car n+ 1 ≥ 0)

Or les quantités étant positives et encore par croissance de la fonction carrée sur R+,

2n+ 3 ≥ 2
√

(n+ 1)(n+ 2) ⇐⇒ (2n+ 3)2 ≥ 4(n+ 1)(n+ 2) ⇐⇒ 4n2 + 12n+ 9 ≥ 4n2 + 12n+ 8

et la dernière inégalité étant vraie, on a vn+1 − vn ≥ 0 donc la suite v est bien croissante.

3. Montrons que un − vn −−−−−→
n→+∞

0.

Soit n ∈ N∗.

un − vn =

n∑
k=1

1√
k
− 2

√
n−

(
n∑

k=1

1√
k
− 2

√
n+ 1

)
= 2(

√
n+ 1−

√
n) (appliquons la quantité conjuguée)

= 2

√
n+ 1

2 −
√
n
2

√
n+ 1 +

√
n

(car
√
n+ 1 +

√
n ≥

√
1 +

√
0 > 0)

=
2√

n+ 1 +
√
n
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Par somme,
√
n+ 1 +

√
n −−−−−→

n→+∞
+∞ donc par inverse, on a bien

un − vn −−−−−→
n→+∞

0.

Finalement, les trois points ci-dessus montrent que les suites u et v sont adjacentes.

D'après le théorème de suites adjacentes, u et v convergent, et limn→+∞ un = limn→+∞ vn.

Exercice 2

Soit n un entier tel que un est bien dé�ni et positif. Alors, 1 + u2
n ≥ 1 donc un+1 est bien dé�ni par la

relation un+1 =
un

1 + u2
n

, et un+1 est positif comme quotient de nombres positifs. u0 = 1 donc u0 est positif. La

rédaction par récurrence habituelle (vous, vous la rédigez!) montre que pour tout n ∈ N, un est bien dé�ni et
positif.

Soit n ∈ N. 1 + u2
n ≥ 1 car u2

n ≥ 0, donc par décroissance de la fonction inverse sur R+, on a
1

1 + u2
n

≤ 1. Or,

un ≥ 0 : il vient

un+1 =
un

1 + u2
n

≤ un.

Ainsi, u est décroissante. u étant positive, elle est minorée. D'après le théorème de la limite monotone, u est
convergente. Soit l la limite de u.

Par opérations : 1 + u2
n −−−−−→

n→+∞
1 + l2.

Or, 1 + l2 ̸= 0 donc : un+1 =
un

1 + u2
n

−−−−−→
n→+∞

l

1 + l2
. Or, u converge vers l donc un+1 −−−−−→

n→+∞
l. Par unicité de

la limite :

l =
l

1 + l2
.

Soit x ∈ R. Si x = 0, alors x =
x

1 + x2
. Sinon :

x =
x

1 + x2
⇐⇒ 1 =

1

1 + x2
⇐⇒ 1 + x2 = 1 ⇐⇒ x2 = 0 ⇐⇒ x = 0

Ainsi, l'unique réel x tel que x =
x

1 + x2
est 0. Donc l = 0.

Finalement, la suite u converge vers 0.

Exercice 3

1. D'après la formule du binôme de Newton, pour tout entier n :

Pn(X) = (X + 1)n =

n∑
k=0

(
n

k

)
Xk1n−k =

n∑
k=0

(
n

k

)
Xk.

2. Soit n ∈ N∗. En dérivant Pn(X) = (X + 1)n, on trouve :

P ′
n(X) = n(X + 1)n−1 = n

n−1∑
k=0

(
n− 1

k

)
Xk =

n−1∑
k=0

n

(
n− 1

k

)
Xk.

En dérivant Pn(X) =
∑n

k=0

(
n
k

)
Xk, on trouve :

P ′
n(X) =

n∑
k=1

(
n

k

)
kXk−1 (le terme s'annule pour k = 0)

=

n−1∑
j=0

(j + 1)

(
n

j + 1

)
Xj (on pose j = k − 1)
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Par identi�cation des coe�cients, on trouve

∀j ∈ J0, n− 1K, n
(
n− 1

j

)
= (j + 1)

(
n

j + 1

)
donc (en �posant k = j + 1 dans l'énoncé ci-dessus�)

∀k ∈ J1, nK, n
(
n− 1

k − 1

)
= k

(
n

k

)
3. Il s'agit de démontrer :

Pn(X)Pm(X) =

n+m∑
p=0

(
p∑

k=0

(
n

k

)(
m

p− k

))
Xp.

On pouvait le démontrer en manipulant soigneusement une double somme, ou avec la formule du cours
comme ci-dessous. On sait que si A(X) =

∑n
k=0 akX

k et B(X) =
∑m

k=0 bkX
k sont deux polynômes, alors

la fonctions AB est le polynôme donné par

(AB)(X) =

n+m∑
p=0

cpX
p

où l'on a posé, pour p ∈ J0, n+mK,

cp =

p∑
k=0

akbp−k

avec comme convention ak = 0 et bl = 0 pour k > n et l > m.

Ici, on applique cette formule avec ak =
(
n
k

)
et bl =

(
m
l

)
pour k ∈ J0, nK et l ∈ J0,mK. On remarque que si

k > n et l > n, alors (
n

k

)
= 0 et

(
m

l

)
= 0

de sorte que les coe�cients binomiaux permettent d'écrire la formule des coe�cients du produit ci-dessus.
Il vient :

Pn(X)Pm(X) =

n+m∑
p=0

(
p∑

k=0

(
n

k

)(
m

p− k

))
Xp

ce qui est la formule voulue.

4. On a aussi par le binôme de Newton:

Pn(X)Pm(X) = (X + 1)n+m =

n+m∑
p=0

(
n+m

p

)
Xp.

Donc :
n+m∑
p=0

(
n+m

p

)
Xp =

n+m∑
p=0

(
p∑

k=0

(
n

k

)(
m

p− k

))
Xp.

Par identi�cation des coe�cients :

∀p ∈ J0, n+mK,
(
n+m

p

)
=

p∑
k=0

(
n

k

)(
m

m− k

)
ce qui est la formule voulue.
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Exercice 4

1. Soit T l'événement � on a tiré la pièce truquée� et F1 l'événement �on obtient face au premier lancer�. Le

tirage de la pièce se faisant en situation d'équiprobabilité, on a P(T ) =
1

5
et donc P(T̄ ) =

4

5
. La formule

des probabilités totales appliquée au système complet d'événement (T, T̄ ) donne :

P(F1) = P(T )PT (F1) + P(T̄ )PT̄ (F1) =
1

5
PT (F1) +

4

5
PT̄ (F1).

Or, PT (F1) = 1 car la pièce truquée contient deux faces �face�. De plus, PT̄ (F1) est la probabilité de faire

�face� en lançant une pièce classique équilibrée, donc vaut
1

2
. Finalement :

P(F1) =
1

5
+

4

5
× 1

2
=

3

5
.

2. On cherche PF1
(T ). D'après la formule de Bayes (aucune des probabilités envisagées n'est nulle):

PF1
(T ) =

PT (F1)× P(T )
P(F1)

donc d'après la question précédente :

PF1(T ) =
1× 1

5
6

10

=
1

3

3. Soit Fn l'événement �on a obtenu face aux n lancers�.

D'après la formule des probabilités totales appliquée au système complet d'événements (T, T̄ ) :

P(Fn) = P(T )PT (Fn) + P(T̄ )PT̄ (Fn).

Or, PT (Fn) = 1 car la pièce truquée ne comporte que des �face�. Calculons PT̄ (Fn), qui est la probabilité
de faire n faces de suite avec une pièce classique équilibrée. Il y a 2n résultats possibles au lancer d'une
telle pièce équilibrée n fois, et la pièce étant équilibrée, tous les résultats sont équiprobables. Donc

PT̄ (Fn) =
1

2n
. On pouvait argumenter avec l'indépendance mutuelle des lancers. Finalement :

P(Fn) =
1

5
× 1 +

4

5
× 1

2n
=

2n + 4

5× 2n
=

2n−2 + 1

5× 2n−2
.

4. On cherche pn = PFn
(T ), d'après la formule de Bayes :

PFn
(T ) =

PT (Fn)× P(T )
P(Fn)

=
1× 1

5
2n−2 + 1

5× 2n−2

=
2n−2

2n−2 + 1
.

Or,
2n−2

2n−2 + 1
=

1

1 + 1
2n−2

2n−2 −−−−−→
n→+∞

+∞ car 2 > 1 donc par opérations, il vient

pn =
1

1 + 1
2n−2

−−−−−→
n→+∞

1

1
= 1.

La limite de pn est 1 , ce qui est cohérent.
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Exercice 5

1. Par dé�nition, Card(Pk(E)) =
(
n+m
k

)
car Pk(E) est l'ensemble des parties de cardinal k de E, qui est de

cardinal n+m.

De même, Card(Pp(A)) =
(
n
p

)
et Card(Pk−p(B)) =

(
m

k−p

)
car B est de cardnal n+m− n = m.

2. Montrons d'abord que la réunion est disjointe. Soient p et p′ deux éléments distincts de J0, pK. Alors :

Ak,p(E) ∩ Ak,p′(E) = {U ∈ Pk(E)|Card(U ∩A) = p et Card(U ∩A) = p′} = ∅

car p ̸= p′. Ainsi,
k⋃

p=0

Ak,p(E) =

k⊔
p=0

Ak,p(E).

Montrons maintenant Pk(E) =
⊔k

p=0 Ak,p(E).

Il est clair que
⊔k

p=0 Ak,p(E) ⊂ Pk(E) car chaque Ak,p(E) (pour 0 ≤ p ≤ k) est une partie de Pk(E).

Réciproquement, soit U ∈ Pk(E). Notons r = Card(U ∩ A). On a bien 0 ≤ r ≤ k car Card(U ∩ A) ≤
Card(U) = k.

Alors, U ∈ Ak,r(E), donc U ∈
⊔k

p=0 Ak,p(E). On a bien démontré l'autre inclusion d'où :

Pk(E) =

k⊔
p=0

Ak,p(E).

3. Tout d'abord, si U ∈ Ak,p(E) alors par dé�nition Card(U ∩A) = p donc U ∩A ∈ Pp(A). De plus, B = Ā
donc (U ∩B) ⊔ (U ∩A) = U , ce qui montre :

Card(U ∩B) = Card(U)− Card(U ∩A) = k − p

et on a bien U ∩B ∈ Pk−p(B).

Ainsi, on a bien (U ∩A,U ∩B) ∈ Pp(A)× Pk−p(B) donc l'application ϕp est bien dé�nie.

Montrons que ϕp est bijective.

Surjectivité :

Soit (C,D) ∈ Pp(A)×Pk−p(B). Posons U = C∪D. Alors, C et D sont disjoints. En e�et, C ⊂ A,D ⊂ B
et A et B sont disjoints. Ainsi, Card(U) = Card(C) + Card(D) = p + k − p = k, et C = U ∩ A est de
cardinal p donc U est bien un élément de Ak,p(E).

De plus,

ϕp(U) = ((C ∪D) ∩A, (C ∪D) ∩B)

= ((C ∩A) ∪ (D ∩A), (C ∩B) ∪ (D ∩B)) (distributivité)

= (C,D) car C ⊂ A,D ⊂ B,A ∩B = ∅

Ainsi, U est un antécédent de (C,D) donc ϕp est bien surjective.

Injectivité :

L'assertion ∀U ∈ P(E), U = (U ∩A) ∪ (U ∩B) (car E = A ∪B) montre de suite que ϕp est injective : si
U et U ′ véri�ent ϕp(U) = ϕp(U

′) = (C,D), alors U = C ∪D = U ′.

Finalement, ϕp est bien dé�nie et bijective.

4. D'après la question précédent et le principe de bijection :

Card(Ak,p(E)) = Card(Pp(A)× Pk−p(B)) = Card(Pp(A))Card(Pk−p(B)) =

(
n

p

)(
m

k − p

)
.
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5. D'après la question 2, la réunion étant disjointe, on a :(
n+m

k

)
= Card(Pk(E)) =

k∑
p=0

Card(Ak,p(E))

donc avec la question précédente : (
n+m

k

)
=

k∑
p=0

(
n

p

)(
m

k − p

)
ce qui est la formule voulue.
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