
Lycée Hoche, ECG1A 2025-2026

Correction du DS n°4

Exercice 1

1. (a) Montrons par récurrence :

∀n ∈ N∗, H(n) : " Pour tous événements A1, . . . , An, P(A1 ∪ · · · ∪An) ≤
n∑

k=1

P(Ak)"

• Initialisation : H(1) est clair car l'union et la somme ne comporte alors qu'un seul terme.
Montrons H(2) qui nous sera utile dans la suite.
Soient A1 et A2 deux événements. Alors, d'après les propriétés de la probabilité :

P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2)

Par positivité P, P(A1 ∩A2) ≥ 0, d'où

P(A1 ∪A2) ≤ P(A1) + P(A2)

Ce qui montre H(2).
• Hérédité : Soit n ∈ N≥2. Supposons H(n) et montrons H(n+ 1).
Soient A1, . . . , An+1 des événements.
Posons A = A1 ∪ · · · ∪An et B = An+1. D'après H(2),

P(A1 ∪ · · · ∪An+1) = P(A ∪B) ≤ P(A) + P(B)

Or, d'après H(n),

P(A) = P(A1 ∪ · · · ∪An) ≤
n∑

k=1

P(Ak)

d'où

P(A1 ∪ · · · ∪An+1) ≤
n∑

k=1

P(Ak) + P(An+1) =

n+1∑
k=1

P(Ak)

Ce qui montre H(n+ 1) et achève l'hérédité.
• Conclusion : On a montré par récurrence : pour tout n ∈ N∗ et pour tous événements A1, . . . , An,

P(A1 ∪ · · · ∪An) ≤
n∑

k=1

P(Ak)

(b) i. Par passage au complémentaire,

P(A ∩B ∩ C) = 1− P(A ∩B ∩ C) = 1− P(Ā ∪ B̄ ∪ C̄)

Or, P(A ∩B ∩ C) = 0 donc P(Ā ∪ B̄ ∪ C̄) = 1

ii. En utilisant la question 1.a et la question précédente,

1 = P(Ā ∪ B̄ ∪ C̄) ≤ P(Ā) + P(B̄) + P(C̄)

Or, P(A) = P(B) = P(C) = p donc par passage au complémentaire P(Ā) = P(B̄) = P(C̄) = 1−p.
Ainsi,

1 ≤ 3(1− p)

d'où, p ≤ 2

3

iii. Si p = 0, il est clair que p ≤ 1

2
.

Si p ̸= 0, on peut considérer la probabilité conditionnelle PC , et alors :

PC(A ∪B) = PC(A) + PC(B)− PC(A ∩B)
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Or, par dé�nition et comme P (A ∩B ∩ C) = 0,

PC(A ∩B) =
P(A ∩B ∩ C)

P(C)
= 0

De plus, comme A et C sont indépendants et B et C aussi, on a PC(A) = P(A) et PC(B) = P(B)
Il vient alors : PC(A ∪B) = P(A) + P(B) = 2p
Une probabilité étant une application à valeurs dans [0, 1], on obtient

2p ≤ 1 c'est-à-dire p ≤ 1

2

2. (a) La fonction f est polynomiale donc dérivable sur R, et pour tout t ∈ R,

f ′(t) = t2 + 1 ≥ 1 > 0

car le carré d'un nombre réel est positif.

Ainsi, la fonction f est strictement croissante sur R.

(b)

1 import numpy as np

2 import matplotlib.pyplot as plt

3 def f(t) :

4 return t**3 + t

5 X = np.linspace ( -20 ,20 ,500)

6 Y = [f(x) for x in X]

7 plt.plot(X,Y)

8 plt.show()

(c) Déterminons d'abord les limites de f en ±∞.
On a t3 −−−−→

t→+∞
+∞ donc par somme f(t) −−−−→

t→+∞
+∞.

De même, t3 −−−−→
t→−∞

−∞ donc par somme f(t) −−−−→
t→−∞

−∞.

La fonction f est strictement croissante et continue (car dérivable) sur R.
On en déduit que f(R) = ] lim

t→−∞
f(t), lim

t→+∞
f(t)[ = R. Ainsi, d'après le théorème de la bijection

monotone, f est bijective . On note g sa fonction réciproque. Alors, pour tout x ∈ R, f(g(x)) = x

d'où ∀x ∈ R, g(x)3 + g(x) = x

(d) D'après le théorème de la bijection monotone, la fonction g est strictement croissante.

Pour tout x ∈ R,
g(−x) =

(1)
g(−f(g(x))) =

(2)
g(f(−g(x))) = −g(x)

(1) Comme g est la fonction réciproque de f , on a f(g(x)) = x
(2) La fonction f est impaire.

On en déduit que la fonction g est impaire.

(e) La fonction g est strictement croissante et non majorée sur R car g(R) = R. D'après le théorème de

convergence monotone, g(x) −−−−−→
x→+∞

+∞ Remarquons que pour tout t ∈ R∗
+,

t

f(t)1/3
=

t

(t3 + t)1/3
=

t

t
× 1(

1 +
1

t2

)1/3
=

 1

1 +
1

t2


1/3

Par somme et inverse,
1

1 +
1

t2

−−−−→
t→+∞

1, et par composition et continuité de la fonction racine cubique

t

f(t)1/3
−−−−→
t→+∞

1

Or, g(x) −−−−−→
x→+∞

+∞ donc par composition,

2
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g(x)

x1/3
=

g(x)

f(g(x))1/3
−−−−−→
x→+∞

1

3. (a) Soit n ∈ N.

S(n, 0) = (−1)0
(
n

0

)
= 1

et, en utilisant la formule du binôme de Newton,

S(n, n)

n∑
k=0

(−1)k
(
n

k

)
= (−1 + 1)n = 0n

Donc, ∀n ∈ N, S(n, 0) = 1 et S(n, n) =

{
1 si n = 0
0 sinon

(b) i. En utilisant la formule du triangle de Pascal, on obtient rapidement :

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

ii.

1 import numpy as np

2 n = 10

3 A = np.eye(n+1,n+1)

4 for i in range(1,n+1) :

5 A[i,0] = 1

6 for j in range(1,i+1) :

7 A[i,j]=A[i-1,j-1] + A[i-1,j]

8 print(A)

iii.

S(4, 2) = (−1)0
(
4

0

)
+ (−1)1

(
4

1

)
+ (−1)2

(
4

2

)
= 1− 4 + 6 = 3

S(4, 3) = (−1)0
(
4

0

)
+ (−1)1

(
4

1

)
+ (−1)2

(
4

2

)
+ (−1)3

(
4

3

)
= 1− 4 + 6− 4 = −1

S(5, 2) = (−1)0
(
5

0

)
+ (−1)1

(
5

1

)
+ (−1)2

(
5

2

)
= 1− 5 + 10 = 6

S(5, 3) = (−1)0
(
5

0

)
+ (−1)1

(
5

1

)
+ (−1)2

(
5

2

)
+ (−1)3

(
5

3

)
= 1− 5 + 10− 5 = −4

S(5, 4) = (−1)0
(
5

0

)
+(−1)1

(
5

1

)
+(−1)2

(
5

2

)
+(−1)3

(
5

3

)
+(−1)3

(
5

4

)
= 1−5+10−10+5 = 1

(c) En regardant la ligne du triangle de Pascal pour n = 3 et les coe�cients S(4, ·), on a

1 3 3 1
1 −3 3 −1 0

En regardant la ligne du triangle de Pascal pour n = 4 et les coe�cients S(5, ·), on a

1 4 6 4 1
1 −4 6 −4 1 0

On peut émettre la conjecture suivante :

∀n ∈ N∗,∀p ∈ J0, n− 1K, S(n, p) = (−1)p
(
n− 1

p

)
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Remarque. On peut étendre cette formule pour p ∈ J0, nK avec la convention
(
n
k

)
= 0 pour k > n.

(d) On peut éviter une démonstration par récurrence en utilisant un télescopage.
Soient n ∈ N≥2 et p ∈ J1, n− 1K. D'après la formule du triangle de Pascal, pour tout k ∈ J0, n− 1K,(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Ainsi,

S(n, p) = (−1)0
(
n

0

)
+

p∑
k=1

(−1)k
(
n

k

)

= 1 +

p∑
k=0

(−1)k
[(

n− 1

k − 1

)
+

(
n− 1

k

)]

= 1 +

p∑
k=0

[
(−1)k

(
n− 1

k

)
− (−1)k−1

(
n− 1

k − 1

)]
=
(1)

1 +

[
(−1)p

(
n− 1

p

)
− (−1)0

(
n− 1

0

)]
S(n, p) = (−1)p

(
n− 1

p

)
(1) car on reconnaît une somme télescopique.
Cette formule reste vraie avec p = 0. Le cas n = 1 étant évident, on a bien montré :

∀n ∈ N∗,∀p ∈ J0, n− 1K, S(n, p) = (−1)p
(
n− 1

p

)
(e) Si n = 0, S(0, 0) = 1. Fixons alors n ∈ N∗.

D'après la question précédente, la question a et la formule du binôme de Newton :

n∑
p=0

S(n, p) = S(n, n) +

n−1∑
p=0

S(n, p) =

n−1∑
p=0

(−1)p
(
n− 1

p

)
= ((−1) + 1)n−1 = 0n−1

Finalement, ∀n ∈ N,
n∑

p=0

S(n, p) =

{
1 si n = 0 ou n = 1
0 sinon

4. (a) Soit n ∈ N, E un ensemble de cardinal 2n, A une partie de E à n éléments et B = E\A (qui est
aussi une partie de E à n éléments).
On note C l'ensemble des parties à n éléments de E. Dénombrons de deux manières di�érentes C.
D'une part, par dé�nition il y a

(
2n
n

)
parties à n éléments de 2n donc

Card(C) =
(
2n

n

)
D'autre part, pour construire un élément de C, on distingue n+ 1 cas disjoints : pour k ∈ J0, nK

- la partie de E contient exactement k éléments de A. Pour construire une telle con�guration, on
choisit successivement :

· k éléments dans la partie A. Il y a
(
n
k

)
possibilités

· n− k éléments dans la partie A. Il y a
(

n
n−k

)
possibilités

Par principe multiplicatif, il y a
(
n
k

)
×
(

n
n−k

)
telles parties.

Ces cas étant disjoints, on obtient

Card(C) =
n∑

k=0

(
n

k

)(
n

n− k

)
=
(1)

n∑
k=0

(
n

k

)(
n

k

)
=

n∑
k=0

(
n

k

)2

(1) par symétrie des coe�cients binomiaux
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Avec ces deux points :

n∑
k=0

(
n

k

)2

=

(
2n

n

)

(b) i. On peut modéliser l'expérience de n lancers successifs d'une pièce par l'univers Ω = {P, F}n .

Il vient
Card(Ω) = Card({P, F})n = 2n

La pièce étant non truquée, l'expérience est en situation d'équiprobabilté. On peut donc munir Ω

de sa probabilité uniforme P .

ii. Soit k ∈ J0, nK. Comme la probabilité P est uniforme,

P(Nk) =
Card(Nk)

Card(Ω)

Dénombrons l'ensemble Nk. Un élément de Nk est entièrement déterminer par la position des
"Pile" dans les n lancers. Il y a donc autant de possibilités que de parties à k éléments d'un
ensemble de cardinal n, donc

(
n
k

)
. Par conséquent,

Card(Nk) =

(
n

k

)
Il vient

∀k ∈ J0, nK, P(Nk) =
1

2n

(
n

k

)
iii. Pour tout k ∈ J0, nK, les événements Nk et Rk sont indépendants car les résultats de Ninon

n'in�uencent pas ceux de Raphaëlle, et vice-versa.

iv. L'événement A est réalisé lorsque Ninon et Raphaëlle obtiennent le même nombre de "Pile",
c'est-à-dire lorsqu'il existe k ∈ J0, nK tel que Ninon et Raphaëlle aient obtenu exactement k
"Pile". Ces cas étant disjoints, on a

A =

n⊔
k=0

Nk ∩Rk

v. On a :

P(A) = P

(
n⊔

k=0

Nk ∩Rk

)
=
(1)

n∑
k=0

P(Nk ∩Rk) =
(2)

n∑
k=0

P(Nk)× P(Rk)

(1) par additivité de P car la réunion est disjointe
(2) par indépendance de Nk et Rk pour tout k ∈ J0, nK

De plus, le rôle de Ninon et de Raphaëlle sont symétriques donc on a pour tout k ∈ J0, nK,
P(Nk) = P(Rk). En utilisant la question 4.b.ii,

P(A) =

n∑
k=0

1

2n

(
n

k

)
× 1

2n

(
n

k

)
=

1

4n

n∑
k=0

(
n

k

)2

En�n, d'après la question 4.a,

P(A) =
1

4n

(
2n

n

)
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5. On utilise un tri à bulles

1 import numpy as np

2 def tri(L) :

3 n = len(L)

4 for i in range(n) :

5 for j in range(n-1) :

6 if L[j] < L[j+1] :

7 L[j], L[j+1] = L[j+1], L[j]

8 return L

6. Montrons (a) =⇒ (b), (b) =⇒ (c) et (c) =⇒ (a).

• (a) =⇒ (b) : Supposons que f est injective. Soient A et B deux parties de E.
Montrons par double inclusion que f(A ∩B) = f(A) ∩ f(B).
Soit y ∈ f(A∩B). On dispose alors de x ∈ A∩B tel que y = f(x). Alors en particulier, x ∈ A et y = f(x)
donc y ∈ f(A). De même, y ∈ f(B). Ainsi y ∈ f(A) ∩ f(B).
Réciproquement, soit y ∈ f(A) ∩ f(B). On dispose alors de x ∈ A tel que y = f(x) et de x′ ∈ B tel que
y = f(x′). Ainsi, f(x) = f(x′). Par injectivité de f , x = x′. On en déduit alors que x ∈ A ∩ B. Comme
y = f(x), y ∈ f(A ∩B).
Par double inclusion, f(A ∩B) = f(A) ∩ f(B), ce qui montre (b).

• (b) =⇒ (c) : Supposons que (b) est vraie. Soient A et B deux parties de E. Supposons que A∩B = ∅.
Alors, d'après (b),

f(A) ∪ f(B) = f(A ∪B) = f(∅) = ∅
Ce qui montre (c).

• (c) =⇒ (a) : Supposons que (c) est vraie et montrons que f est injective. Soit (x, x′) ∈ E2. Sup-

posons que x ̸= x′. Posons alors A = {x} et B = {x′}. On a donc A ∩ B = ∅. D'après (c), on a alors
f(A) ∩ f(B) = ∅. Or, f(A) = {f(x)} et f(B) = {f(x′)} donc f(x) ̸= f(x′). Ceci étant vrai pour tout
(x, x′) ∈ E2, f est injective. Ce qui montre (a).

Ainsi, les trois assertions sont équivalentes.

7. (a)
1 def seuil(n) :

2 N = 0

3 while 3**(N+1) <= n :

4 N = N+1

5 return(N)

(b) L'algorithme suivant renvoie la décomposition (⋆1) sous forme d'une liste [aN , aN−1, . . . , a0].

1 def base(n) :

2 L=[]

3 N = seuil(n)

4 while n >= 0 :

5 a = 0

6 while 3**N <= n :

7 a = a+1

8 n = n-3**N

9 L.append(a)

10 return L

Exercice 2 D'après ESCP 2024

1. (a) On a A2 =

12 8 8
8 12 8
16 16 20

 et donc

A2 − 8A =

12 8 8
8 12 8
16 16 20

−
24 8 8

8 24 8
16 16 32

 =

−12 0 0
0 −12 0
0 0 −12

 = −12I

6
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Le réel a = −12 convient.

(b) D'après la question précédente, A× (A− 8I) = −12I donc A× B = I avec B = − 1

12
(A− 8I). On

en déduit que A est inversible à droite donc A est inversible. De plus,

A−1 = B = − 1

12
(A− 8I)

2. (a) Pour tout X = t
(
x y 2

)
∈M3,1(R),

AX = 6X ⇐⇒

 3x+ y + 2 = 6x
x+ 3y + 2 = 6y

2x+ 2y + 8 = 12
⇐⇒

 −3x+ y = −2
x− 3y = −2

2x+ 2y = 4

⇐⇒
(1)

 −8y = −8
x− 3y = −2

8y = 8
⇐⇒
(2)

{
x− 3y = −2

y = 1

(1) L1 ← L1 + 3L2 et L3 ← L3 − 2L2

(2) Les lignes L1 et L2 sont les mêmes
Il vient :

AX = 6X ⇐⇒
{

x = 1
y = 1

La solution de l'équation AX = 6X d'inconnue X = t
(
x y 2

)
∈M3,1(R) est X = t

(
1 1 2

)

(b) Par calcul direct : A

 1
−1
0

 =

 2
−2
0

 = 2

 1
−1
0

 et A

 1
0
−1

 =

 2
0
−2

 = 2

 1
0
−1



3. (a) Par calcul direct : PQ =

4 0 0
0 4 0
0 0 4

 = 4I

On en déduit que P est inversible à gauche donc P est inversible et

P−1 =
1

4
Q

(b) Par calcul direct : PDP−1 =
1

4
PDQ =

1

4
P ×

6 6 6
2 −6 2
4 4 −4

 =
1

4

12 16 4
4 0 4
8 8 16

 = A

(c) Montrons par récurrence :

∀n ∈ N, H(n) : "An = PDnP−1"

• Initialisation : A0 = I et PD0P−1 = PIP−1 = PP−1 = I. Ce qui montre H(0).
• Hérédité : Soit n ∈ N. Supposons H(n). D'après la question précédente et H(n),

An+1 = A×An = PDP−1 × PDnP−1 = PDIDnP−1 = PDDnP−1 = PDn+1P−1

Ce qui montre H(n+ 1) et achève l'hérédité.
• Conclusion : On a montré par récurrence :

∀n ∈ N, An = PDnP−1

4. (a) Pour tout n ∈ N∗, on note :

� Cn l'événement : "Romain lit un livre de chevaux le jour n",

� Pn l'événement : "Romain lit un livre de princesses le jour n",

� Dn l'événement : "Romain lit un livre de dinosaures le jour n".

7
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de telle sorte que cn = P(Cn), pn = P(Pn) et dn = P(Dn).
Soit n ∈ N∗. Supposons que cn ̸= 0, pn ̸= 0 et dn ̸= 0.
Ainsi (Cn, Pn, Dn) est un système complet d'événements avec P(Cn) ̸= 0, P(Pn) ̸= 0 et P(Dn) ̸= 0.
D'après la formule des probabilités totales avec conditionnement :

cn+1 = P(Cn+1) = P(Cn)PCn
(Cn+1) + P(Pn)PPn

(Cn+1) + P(Dn)PDn
(Cn+1)

D'après l'énoncé : PCn(Cn+1) =
1

2
, PPn(Cn+1) =

1

6
et PDn(Cn+1) =

1

6
. Il vient

cn+1 =
1

2
cn +

1

6
pn +

1

6
dn

(b) Soit n ∈ N. La famille (Cn, Pn, Dn) est un système complet d'événements. D'après la formule des
probabilités totales :

cn+1 = P(Cn+1) = P(Cn+1 ∩ Cn) + P(Cn+1 ∩ Pn) + P(Cn+1 ∩Dn)

pn+1 = P(Pn+1) = P(Pn+1 ∩ Cn) + P(Pn+1 ∩ Pn) + P(Pn+1 ∩Dn)

dn+1 = P(Dn+1) = P(Dn+1 ∩ Cn) + P(Dn+1 ∩ Pn) + P(Dn+1 ∩Dn)

Traitons le terme P(Pn+1 ∩Dn).

• Si dn ̸= 0 alors par dé�nition de la probabilité conditionnelle en utilisant l'énoncé,

P(Pn+1 ∩Dn) = P(Dn)× PDn
(Pn+1) =

1

6
dn

• Si dn = 0 alors P(Dn) = 0. Comme Pn+1 ∩Dn ⊂ Dn, il vient 0 ≤ P(Pn+1 ∩Dn) ≤ P(Dn) = 0 par

croissance de la probabilité. D'où P(Pn+1 ∩Dn) = 0 =
1

6
dn.

Dans tous les cas, P(Pn+1 ∩Dn) = 0 =
1

6
dn. De façon similaire,

P(Cn+1 ∩ Cn) =
1

2
cn, P(Cn+1 ∩ Pn) =

1

6
pn, P(Cn+1 ∩Dn) =

1

6
dn

P(Pn+1 ∩ Cn) =
1

6
cn, P(Pn+1 ∩ Pn) =

1

2
pn

P(Dn+1 ∩ Cn) =
1

3
cn, P(Dn+1 ∩ Pn) =

1

3
pn, P(Dn+1 ∩Dn) =

2

3
dn

On obtient �nalement

cn+1 =
1

2
cn +

1

6
pn +

1

6
dn

pn+1 =
1

6
cn +

1

2
pn +

1

6
dn

dn+1 =
1

3
cn +

1

3
pn +

2

3
dn

On reconnaît

Xn+1 =

1/2 1/6 1/6
1/6 1/2 1/6
1/3 1/3 2/3

Xn =
1

6

3 1 1
1 3 1
2 2 4

Xn =
1

6
AXn

(c) Montrons par récurrence

∀n ∈ N∗, H(n) : "Xn =
1

6n−1
An−1X1"

• Initialisation : On a
1

61−1
A1−1X1 =

1

1
IX1 = X1

Ce qui montre H(1).
• Hérédité : Soit n ∈ N∗. Supposons H(n). D'après la question précédente et H(n),

Xn+1 =
1

6
AXn =

(
1

6
A

)
×
(

1

6n−1
An−1X1

)
=

1

6n
AnX1

8
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Ce qui montre H(n+ 1) et achève l'hérédité.
• Conclusion : On a montré par récurrence :

∀n ∈ N∗, Xn =
1

6n−1
An−1X1

(d) Soit n ∈ N∗. D'après la question précédente et la question 3.c,

Xn =
1

6n−1
An−1X1 =

1

6n−1
PDn−1P−1X1

Or dn = [Xn]3,1 et X1 = t
(
0 0 1

)
donc

dn =

[
1

6n−1
PDn−1P−1X1

]
3,1

=
1

6n−1
[PDn−1P−1X1]3,1

=
1

6n−1

3∑
k=1

[PDn−1P−1]3,k[X1]k,1 =
1

6n−1
[PDn−1P−1]3,3

Comme D est une matrice diagonale, Dn−1 =

6n−1 0 0
0 2n−1 0
0 0 2n−1

.

Il vient alors PDn−1 =

 ∗ ∗ ∗
∗ ∗ ∗

2× 6n−1 0 −2n−1

 puis PDn−1P−1 =
1

4

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ 2(6n−1 + 2n−1)


Finalement,

dn =
1

6n−1
× 2

4
(6n−1 + 2n−1) =

1

2

(
1 +

1

3n−1

)

Comme |1
3
| < 1,

1

3n−1
−−−−→
n→∞

0 et par somme puis produit de limites, dn −−−−→
n→∞

1

2

Exercice 3 D'après EM Lyon 2025

1. (a) Montrons par récurrence

∀n ∈ N, H(n) : "un > 0"

• Initialisation : On a u0 = 1 > 0. Ce qui montre H(1).
• Hérédité : Soit n ∈ N∗. Supposons H(n). D'après H(n), un > 0 et par stricte positivité de
l'exponentielle, on a un+1 = une

1/un > 0. Ce qui montre H(n+ 1) et achève l'hérédité.
• Conclusion : On a montré par récurrence :

∀n ∈ N, un > 0

(b) Soit n ∈ N. D'après la question précédente, un > 0 donc 1/un > 0. Alors, par stricte croissance de
l'exponentielle, e1/un > e0 = 1. Il vient

un+1

un
= e1/un > 1

Par stricte positivité de un, on obtient : un+1 > un.

Ceci étant vrai pour tout n ∈ N, la suite u est strictement croissante.

(c) Supposons par l'absurde que la suite u est majorée. Comme elle est de plus croissante, d'après le
théorème de convergence monotone, elle converge vers un réel ℓ. Or, par croissance de u, on a

∀n ∈ N, un ≥ u0 = 1

Par préservation des inégalités larges par passage à la limite : ℓ ≥ 1. Notons que :

∀n ∈ N, un+1 = une
1/un

9
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D'une part, un+1 −−−−−→
n→+∞

ℓ

D'autre part, par inverse
1

un
−−−−−→
n→+∞

1

ℓ
, puis par continuité de la fonction exponentielle sur R,

e1/un −−−−−→
n→+∞

e1/ℓ. En�n, par produit, une
1/un −−−−−→

n→+∞
ℓe1/ℓ

Par unicité de la limite : ℓ = ℓe1/ℓ. Comme ℓ ≥ 1 > 0, en divisant par ℓ, on a e1/ℓ = 1. En composant

par la fonction ln, on obtient
1

ℓ
= 0. C'est absurde.

On en déduit que la suite u n'est pas majorée. Comme elle est croissante, d'après le théorème de
convergence monotone,

lim
n→+∞

un = +∞

2.

1 import numpy as np

2 u = 1

3 n = 0

4 while u < 10**6 :

5 u = u*np.exp (1/u)

6 n = n+1

7 print(n)

3.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 def u(n) :

4 u = 1

5 L=[1]

6 for i in range(1,n+1) :

7 u = u*np.exp (1/u)

8 L.append(u)

9 return L

10 liste_x = range (50)

11 liste_y = u(49)

12 plt.plot(liste_x , liste_y , '+')

13 plt.show()

4. En +∞ : On a
1

x
−−−−−→
x→+∞

0 donc par continuité de la fonction exponentielle e1/x −−−−−→
x→+∞

e0 = 1.

Par produit, f(x) −−−−−→
x→+∞

+∞

En 0 : On remarque que pour tout x > 0,

f(x) =
e1/x

1/x

Or,
1

x
−−−−→
x→0+

+∞ et par croissance comparée
eX

X
−−−−−→
X→+∞

+∞. Ainsi, par composition, f(x) −−−→
x→0

+∞

5. La fonction f est dérivable sur R∗
+ en tant que composée et produit de fonctions qui le sont.

Pour tout x > 0,

f ′(x) = e1/x + x×
(
− 1

x2
e1/x

)
=

(
1− 1

x

)
e1/x

et alors, par stricte positivité de la fonction exponentielle,

f ′(x) ≥ 0 ⇐⇒ 1− 1

x
≥ 0 ⇐⇒ 1 ≥ 1

x
⇐⇒ x ≥ 1

En remplaçant les inégalités larges par des égalités dans les équivalences, on obtient le tableau de variation :

10
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x

f ′(x)

f

0 1 +∞

− 0 +

+∞
ee

+∞+∞

6. On utilise la dichotomie en remarquant que f(1) = e < 3 et f(3) = 3e1/3 > 3

1 import numpy as np

2 def g(x) :

3 return x*np.exp(1/x) - 3

4 a,b = 1,3

5 p = 10**( -4)

6 while b-a > p :

7 m = (a+b)/2

8 if g(m)*g(a) < 0 :

9 b = m

10 else :

11 a = m

12 print((a+b)/2)

7. (a) Par convexité de la fonction exponentielle :

∀X ∈ R, eX ≥ 1 +X

Soit x > 0. En appliquant cette inégalité à X =
1

x
, on a e1/x ≥ 1 +

1

x
et alors xe1/x ≥ x+ 1. D'où

∀x > 0, f(x) ≥ x+ 1

(b) L'inégalité (⋆2) donne :

∀x ≥ 1,
1

2x
≤ f(x)− (x+ 1) ≤ e

x

Or,
1

2x
−−−−−→
x→+∞

0 et
e

x
−−−−−→
x→+∞

0. D'après le théorème des gendarmes,

f(x)− (x+ 1) −−−−−→
x→+∞

0

8. D'après les questions précédentes, Cf admet une asymptote verticale d'équation x = 0 et une asymptote
oblique en +∞ d'équation y = x+ 1.

11
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9. Soit k ∈ N. On a montré à la question 1.b que

uk+1

uk
= e1/uk > 0

En composant par ln, on a

ln(uk+1)− ln(uk) =
1

uk

10. Soit n ∈ N∗. D'après la question précédente :

n−1∑
k=0

(ln(uk+1)− ln(uk)) =

n−1∑
k=0

1

uk

On reconnaît une somme télescopique. Après l'hécatombe,

ln(un)− ln(u0) =

n−1∑
k=0

1

uk

Et comme u0 = 1, on a

∀n ∈ N∗, ln(un) =

n−1∑
k=0

1

uk

11. (a) Soit k ∈ N∗. Par croissance de la suite u : ∀k ≥ 0, uk ≥ u0 = 1.
En appliquant l'inégalité (⋆2) à x = uk,

1

2uk
≤ f(uk)− uk − 1 ≤ e

uk

Par dé�nition, on a uk+1 = f(uk),

1 +
1

2uk
≤ uk+1 − uk ≤ 1 +

e

uk

(b) Soit n ∈ N∗. En sommant les inégalités précédentes pour k allant de 0 de n− 1 :

n−1∑
k=0

(
1 +

1

2uk

)
≤

n−1∑
k=0

(uk+1 − uk) ≤
n−1∑
k=0

(
1 +

e

uk

)
Par linéarité de la somme et en reconnaissant une somme télescopique :

n−1∑
k=0

1 +
1

2

n−1∑
k=0

1

uk
≤ un − u0 ≤

n−1∑
k=0

1 + e

n−1∑
k=0

1

uk

On reconnaît deux sommes constantes et comme u0 = 1 :

n+
1

2

n−1∑
k=0

1

uk
≤ un − 1 ≤ n+ e

n−1∑
k=0

1

uk

Puis en utilisant la question 10,

1 +
1

2
ln(un) ≤ un − n ≤ 1 + e ln(un)

12. D'après la question 4, un −−−−−→
n→+∞

+∞. De plus, par croissance comparée,
lnX

X
−−−−−→
X→+∞

0.

Ainsi, par composition,
ln(un)

un
−−−−−→
n→+∞

0

13. Pour tout n ∈ N, on divise par un > 0 dans l'inégalité de la question 11.b,

1

un
+

1

2

ln(un)

un
≤ 1− n

un
≤ 1

un
+ e

ln(un)

un

12
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c'est-à-dire

1−
(

1

un
+

1

2

ln(un)

un

)
≥ n

un
≥ 1−

(
1

un
+ e

ln(un)

un

)
Comme un −−−−−→

n→+∞
+∞, on a

1

un
−−−−−→
n→+∞

0. De plus, d'après la question précédente,
ln(un)

un
−−−−−→
n→+∞

0.

On en déduit :

1−
(

1

un
+

1

2

ln(un)

un

)
−−−−−→
n→+∞

1 et 1−
(

1

un
+ e

ln(un)

un

)
−−−−−→
n→+∞

1

D'après le théorème des gendarmes,

lim
n→+∞

n

un
= 1
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