Chapitre 15 : Séries numériques

ECG1 A 2025-2026, Lycée Hoche
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L’idée est de formaliser la notion de somme infinie. On utilise la notion de limite pour donner un sens a
des égalités (HP) comme :
1 n 1 n 1 n 1 T 2
12722 732 42 "7 6
ou montrer que certaines sommes infinies ne sont pas bien définies. Par exemple, la fameuse série har-
1
monique Z — tend vers +00, et la somme
n
n>1
I+(-)+14+(-1)+1+...

n’a pas de limite du tout (& chaque ajout d’un terme, la valeur de la somme échange sa valeur entre 0 et
1, et la somme ne se stabilise donc pas vers une valeur finie).

I. Généralités sur les séries numériques

1. Série numérique

Définition 1. Soit ng un entier naturel et (uy)r>n, une suite réelle.

On appelle série de terme général uy, et on note Z ug, la suite (Sy)p>n, définie par :
]{)Z’I’LO

n
Vn > ng, S, = Z U,

k=ng

n

Pour tout entier n > ng, le réel S,, = Z uy, est appelé la somme partielle d’indice n de la série

3w

k)Z’no

k):’I’LU

Remarque. (i) La série g uy, est donc une suite, la suite de ses sommes partielles. Par exemple,
ano

1 . . . .
la série Z 7 appelée la série harmonique, est la suite (S,),>1 ol pour tout entier n > 1,
E>1
S, est le réel :

"1
k=1

1 1 3 1 1 1
Par exemple, Sy = 1 + 5= 73 et Si00 = 1 + 3 +...+ 100 vaut environ 5, 18.
(i¢) Dans la notation Z uy, introduite ci-dessus, k est une variable muette (ou locale). Cette
kzno

notation est donc bien définie si et seulement si k n’est pas déja fixé, et dans ce cas elle a le
méme sens que Z w; (si ! n’est pas non plus déja fixé).
lZno
(7i7) Om trouve parfois la notation Z Uy ou Z uy, pour désigner Z ug, & condition que le rang du

k k>no
premier terme de la suite u soit clair.

LExemple 2. A noter.

2. Nature d’une série

Etudier la nature d’une série, c’est déterminer si c’est une série convergente ou divergente, selon la
définition ci-dessous.
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Définition 3. Soit n¢ un entier naturel et (uy)r>n, une suite réelle. Notons S,, la somme partielle

d’indice n de E ug, pour tout entier n > ng.
ang

(i) On dit que la série Z uy, converge si la suite (S,)p>n, converge. Autrement dit, Z uy,

ano ano
n

converge si et seulement si la limite lim,, 1 o E uy, existe et est finie.

k=ng
+oo
Dans ce cas, on appelle somme de la série E uy le réel noté E uy, donné par :
k>ngo k=ng
“+oo n
E up = lim E U
n—-+4o0o
k=ng k=ng

(#¢) On dit que la série Z uy diverge si elle ne converge pas.
ano

Remarque. La définition de " E ug converge" n’en est pas vraiment une (c’est une suite !).
k>ngo

PEEELEEE

LExemple 4. A noter.

Exercice 5. (i) Démontrer que Vk € N* In(——) <

(74) En déduire que ¥n > 1,In(n 4+ 1) < Z
k=1

1
(7i7) En déduire que la série harmonique E — diverge.
n
n>1

Remarque. La technique employée ici (utiliser une comparaison pour étudier la nature d’une série)
est trés commune, et fait 1’objet d’un théoréme en partie III.

Remarque. Soit (uy)n>n, une suite réelle (ot ng € N). Vous devez faire particuliérement attention
a la terminologie, et & ne pas confondre les différents objets intervenants dans ce chapitre.
. Z u, désigne la série de terme général u,. C’est une suite.

n>ngo
n

e Pour tout n > ny, Z ug, est un réel (défini avant ce chapitre), appelé la n-iéme somme partielle

k:no
de la série de terme général ug. Notons cette n-iéme somme partielle :

n
S, = Z Uk = Ung + Ung+1 + - - - + Un.

k:no

En tant que suite, Z uy, est la suite (Sp)n>n,-

ano
—+oo
. Z u, n’est pas toujours défini. Cette notation est définie si et seulement si la série de
n=no

—+oo

terme général wu,, converge. Dans ce cas, E u, est un réel, appelé somme de la série de terme
n=no

général u,, qui est la limite de la suite (S,)n>n,-
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+oo
Remarque. En particulier, envisager ’objet E uy, avant d’avoir démontré que la série de terme

n=ngo

général u,, converge est une faute.

La convergence d’une série ne dépend pas de ses premiers termes, et on dispose d’une relation de Chasles.

Proposition 6. Soit ng un entier naturel, (u)r>n, une suite réelle et ny > ng un entier.
Alors, la série g uy converge si et seulement si la série E u converge, et dans ce cas :

k>ng k>nq
“+o0 ni—1 “+o0

E U = E U + E U -
k::no k::no k::nl

Démonstration. A noter. [

3. Liens entre suites et séries

Remarque. Formellement, une série est une suite donc le lien est immédiat. Mais on dispose de
passage intéressants d’une notion a 'autre. Commencons par une remarque.

memmmm--

Proposition 7. Soit (ug)k>n, une suite réelle (ot ng est un entier naturel).

Notons, pour tout entier n, S, la somme partielle d’indice n de la série Z U .
k>ng
Alors :
vn > ng + Lu, = Sn - Snfl-

Démonstration. A noter. [

LExemple 8. Dessin a noter.

Remarque. Voici une conséquence pratique, fournissant une maniére de démontrer qu’une série
diverge dans des cas simples.

memmmm--

Proposition 9. (et définition.) Soit ng un entier naturel et (uy)k>n, une suite réelle.

Si E ug converge, alors up — 0.
k—+oo
k>ngo

Par contraposition, si (uy) ne tend pas vers 0, alors la série de terme général uy, diverge. Dans ce
cas, on dit que la série de terme général u, diverge grossiérement.

Démonstration. A noter. [

Remarque. Attention, la réciproque de cette proposition est fausse et c’est une erreur trés
. . . 1
courante. Par exemple, la série harmonique E — diverge alors que son terme général — tend vers 0.
n
n>1

Il est faux de dire qu’une série g uy série converge "car up —— 0".
k— o0
k>ngo

Exemple 10. La suite (n),>o ne tend pas vers 0. Ainsi, la série Z n diverge grossiérement.
n>0

1
Exemple 11. Que dire des séries Z(—l)k et Z 1- Z ?
k>0 k>1
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D’un autre point de vue, si 'on étudie la convergence d’une suite (uy,)n, on peut considérer la série de
terme général u, 1 — up,.

Définition 12. Soit ny un entier naturel et (ux)r>n, une suite réelle.

On dit que la série Z uy, est télescopique s’il existe une suite réelle (ay)k>n, telle que pour tout

k>ng
k > ng, up = ag4+1 — ag. Autrement dit,

E Uk = E ag+1 — Ak

k>ngo k>ngo

Proposition 13. Soient ng un entier et (ax)k>n, une suite réelle.

Alors, la série télescopique g ax+1 — ai converge si et seulement si la suite (ag)k>n, converge.

k‘an

L

Exemple 14. Dessin & noter.

Démonstration. A noter. [

4.

Remarque. On devra systématiquement reprendre ce raisonnement qui permet, au passage, d’avoir

une égalité reliant la somme de la série Z ax+1 — ay, et la limite de la suite (ag).
k

1
Exemple 15. Démontrer que Z 2 converge.

s (k—1)

Combinaison linéaire de séries convergentes

Proposition 16. Soit ng un entier, et (ug)k>n, €t (Vk)k>n, deus suites réelles.

Si Z up et Z vy, convergent, alors :

kzno kz’ﬂ/g

(i) Pour tous réels \ et p, la série Z Aug + poy, converge, et

kZ’rLo
+oo +oo +oo
(i1) Z (Aug + pog) = A Z U + [ Z V.
k=ngo k=no k=ngo

Démonstration. A noter. [0

Remarque. En particulier, cet énoncé montre que :

(7) Si la série Z uy converge, alors la série Z Auy, converge pour tout réel), et

k>ngo k>ng
+oo “+o0
E )\uk = E Uk
k:n() k:’no

(ii) Si les séries E uy et E vy, convergent, alors la série E uy, + v converge, et

k>ng k>ng k>ngo
—+oo +oo
E Ug + v = E ur + E Vg
/C:TLO ]i):no ano
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Remarque. Quand on utilise ce résultat, on dit qu’on utilise la propriété de linéarité de la sommation
(on dit que la série E Auy + pvg est une combinaison linéaire des séries g uy, et E VE).
ano kzno ano

Exemple 17. Montrons que Z 27" —4-37" converge, et calculons sa somme.
n>1

Remarque. Attention & ne pas utiliser la linéarité quand vous n’avez pas le droit. Par exemple,

(les séries concernées dlvergent).

5 1

(1) On a démontré dans un exercice précédent que ’;2 oD converge.

: 1 11 )

(i) OnaVk22’k(k—1):k—l_g’mais

H 400 400 1 400 1

(#i7) On ne peut pas écrire Z Rk Z . ];2 A car ; . et Z — ne sont pas définis

Remarque. Des réciproques partielles de ce résultat existent mais présentent certaines subtilités. I1
faudra refaire le raisonnement de ’exercice suivant pour s’en servir.

Frmmm—-

Exercice 18. Soient u et v deux suites réelles définies & partir d’un rang nyg.

(i) Montrer que si Z uy, converge et Z vy, diverge, alors Z Aug + pvy diverge pour tous réels A
k>ng k>ngo k>ng
et u tels que p # 0. Que dire si u =07

(#i) Montrer que si Z U, converge et Z Auy, + pvy diverge pour certains réels A et u tels que pu # 0,
k>ng kZno

alors Z v diverge. Que dire si y = 07

k>ngo

(#i1) Si les séries Z ug et Z vy, divergent, que dire de la série Z Aug + pog ?

k>ng k>ng k>ng

5. Changement de variable

Proposition 19. Soit ng un entier naturel et (uy)k>n, une suite réelle.
Pour tout entier relatif | tel que | < nyg, il est équivalent de dire :

(i) Z ug converge, et

k>ngo
(i) Z Ugt] CONverge
kE>ng—1
+oo —+oo
De plus, dans ce cas : Z up = Z U1
k=nq k=no—I

Démonstration. A noter. O

Remarque. Dans la démonstration, on a utilisé la proposition suivante : pour toute suite réelle
(Sn)n>ne, pour tout entier relatif I, les suites (Sp)n>ng €t (Snt1)n>ne—t Ont la méme nature, et méme
limite si elles admettent une limite. On utilise souvent cette proposition lorsqu’on étudie des suites

récurrentes, pour affirmer que " lim wu, = lim wu, 1" (avec I =1).
n——+o0o n——+oo
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Remarque. Cette proposition est la formule de changement de variable pour les séries. La contrainte
I < np ne sert qu’a garantir que les sommes partielles considérées par ces séries sont indexées par des
entiers naturels, et pourrait étre retirée.

Fremmm——-

, 1 1
Exemple 20. Que dire de Z P ? De Z T ?
k>2 k>1

II. Séries classiques

On dispose de quelques séries de référence, dont on connait bien la nature et la valeur de 1’éventuelle
somme, qui nous servent a traiter les séries rencontrées dans nos problémes.

1. Série géométrique

Proposition 21. (et définition.) Soit ¢ un réel. Alors :

“+oo
1
i) Siqel—1,1], al k t b
(i) Siq €] , [,aors];)q converge e ];)q -

(ii) Sinon, qu diverge.
k>0

La série Z g est appelée la série géométrique de raison q.
k>0

Démonstration. A noter. [

Remarque. La convergence d’une série ne dépendant pas de ses premiers termes, on peut invoquer

ce résultat pour caractériser la convergence d’une série de la forme E ¢" ot ge R et ngeN.
k>ngo

q'no
1—g¢

+oo
Proposition 22. Soit ¢ €]—1, 1] et soit ng € N. Alors, la série Z q* converge et Z ¢ =
k>no k=ng

Démonstration. A noter. O

Exemple 23. Déterminons la nature et la valeur de I’éventuelle somme des séries suivantes.

(i) S2x5* (i) Y 3 x 2k (i) 3 1

3k
k>0 k>0 k>1

Exercice 24. Déterminer la nature et la valeur de I’éventuelle somme de g e~ " en fonction du réel a.
n>0

2. Série géométrique dérivée d’ordre 1 ou 2

Proposition 25. (et définition.) Soit ¢ un réel. Alors :

—+oo
X i 1
(i) Siqe]—1,1], alors Zkzqk_l converge et quk_l =
k>1 k=1 (1-a)
(ii) Sinon, qukfl diverge.
k>1

On dit que Z kq"~! est la série géométrique dérivée d’ordre 1 de raison q.
k>1
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Proposition 26. (et définition.) Soit ¢ un réel. Alors :

+oo
(i) Siqe€]—1,1], alors Z k(k —1)¢" =2 converge et Z k(k—1)¢"2 = %
k>2 k=2 (1-q)
(ii) Sinon, Zk(k —1)¢"2 diverge.
k>2

On dit que Z k(k — 1)qk*2 est la série géométrique dérivée d’ordre 2 de raison q.
k>2

Démonstration. A noter. [0

Exemple 27. Déterminons la nature et la valeur de I’éventuelle somme des séries suivantes.

(i) Y kx5F (i) > kx2* (i) Sk~ 1)3%.

k>0 k>0 k>1

Exercice 28. Soit p €] — 1, 1[. Déterminer la nature et I’éventuelle somme de Z k?p*. On utilisera que
k>0

pour tout entier k, k? =k + k(k — 1).

3. Série de Riemann

Voici le critére de convergence des séries de Riemann.

. . , L 1 .
Proposition 29. (et définition.) Soit o un réel. Alors, la série Z Ta comverge si et seulement
k>1
st o> 1.
La série Z — est appelée la série de Riemann de parameétre o.
k>1

Démonstration. Cas o < 1 a noter. Cas « > 1 admis, nous verrons une démonstration trés intéressante
dans le chapitre sur les intégrales. [

1
Exemple 30. La séries harmonique E — diverge en tant que série de Riemann de paramétre 1 < 1.
n
n>1

. 1 . .
La série g — converge comme série de Riemann de parametre 2 > 1.
n
n>1

Remarque. Cet énoncé ne dit rien sur la valeur de la somme des séries de Riemann convergentes !
Et elles sont compliquées. Comme dit dans ’introduction, un résultat bien hors programme est :

k2 6
k=1

Exemple 31. Que dire de la nature...

() de 2. % ’ (i) de ) 2"+ % ? (i) de 30" L,

n>1 n>1 n>1
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4. Série exponentielle

Voici le résultat relatif aux séries dites "exponentielles".

k
x

Proposition 32. (et définition.) Pour tout réel x, la série E o converge et :
k>0

k
La série E T est appelée la série exponentielle de paramétre x.
k>0

Démonstration. Admis. O

3" + n2" 5

Exemple 33. Que dire de Z '
n!

n>0

mIc-‘,—l

Exercice 34. Déterminer la nature et ’éventuel somme de —_—
2 )

E>1

5. Une technique classique pour les séries alternées (HP en théorie, pas en
pratique)

Remarque. On dit qu’une série Z u, est alternée si (u,), change de signe a chaque nouveau
n>ngo

terme : Vn € N, u,up1 < 0.

Dans ce cas, on peut démontrer (HP) que si |uy,| P 0 et si (|un|)n est décroissante, alors la série

E uy, converge.
n>ngo

(=D*

1
0, (E)k est décroissante , et ( i )k

(=D*
k

)Ic

, car |

: (=1

Par exemple, c’est le cas de g A
k>1

change bien de signe & chaque terme.

(_1)k+1 (—l)k
Autres exemples : Z , .
k>0 kt2 k>2 vk

1
k k——+oo

En pratique, on suivra la méthode ci-dessous en présence de séries de la forme Z (—1)’f

k>ng

U ol (uk)k est
une suite décroissante qui tend vers 0.

Exemple 35. Méthode : Pour redémontrer qu'une série alternée converge, selon les conditions
ci-dessus, on utilise le théoréme des suites adjacentes selon les étapes suivantes.
e Soit (uy ), une suite telle que Z uy, est alternée, et telle que (Jup|), converge vers 0 en étant
k>ngo
décroissante. Notons, pour tout entier n, S, la somme partielle d’indice n de cette série.
e On montre que (S2,)n et (Sa,+1) sont monotones, de monotonie opposée.
o Vn €N, Sout1 — Son = Uspnt1 m 0 donc ces suites sont adjacentes.

e Par le théoréme des suites adjacentes, (S2,)n et (S2nt1)n convergent vers la méme limite.
e Par le théoréme relatif aux sous suites de rangs pairs et impairs, (S,,),, converge vers cette limite
commune.
e Par définition, la série Z uj converge.
k>ng
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(=D"

n

Exemple 36. Montrons que Z
n>1

converge.

III. Séries a termes positifs et convergence absolue

Si u, est positif pour tout entier n, alors ’étude de la série de terme général wu,, s’en retrouve simplifiée,
et on dispose de théorémes propres & cette situation.

1.

Propriétés des séries 4 terme positif

Définition 37. Soit (ug)r>n, une suite réelle (ot ng € N).

On dit que la série Z uy est & termes positifs si uy est positif pour tout entier k£ > ng.
k>ngo

Proposition 38. Soit Z uy une série 4 termes positifs. Notons, pour tout entier n > ng, S, sa
ano
somme partielle d’indice n. Alors, il est équivalent de dire :

(i) Z ug converge, et
ang
(ii) la suite (Sy)n>n, €st majorée
Dans ce cas :

n +oo
Vn > no, Z up < Z Uk

k:’ﬂo k:’ﬂo

Remarque. L’idée est trés simple : la suite (S,,), est croissante, donc on peut appliquer le théoréme
de la limite monotone.

Démonstration. A noter. [

2.

Théoréme de comparaison pour les séries a termes positifs

Voici le théoréme de comparaison pour les séries a termes positifs.

Théoréme 39. Soit ng un entier naturel.
Soient (Un)n>n €t (Vn)n>n, deuts suites réelles telles que :

vn Z Tlo,O S Unp, S Un.

Alors :
—+o0 —+oo
(i) Si Z v converge, alors Z u converge et Z up < Z V.
ang ano k:’n() k:’n()
(ii) Si Z uy diverge, alors Z vy diverge.
’CZTLQ ano

Démonstration. A noter. O

1 1
Exemple 40. (i) Montrer que Vk > 2, 72 < m

(74) Sans utiliser le critére de convergence des séries de Riemann, montrer que E — converge.
n
n>1
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1
Exercice 41. (i) Montrons que Vk > 0, -——— < e "
e’ +e”
(7¢) En déduire la nature de Z o
ek ek’
E>0
1
Exemple 42. Montrons que Z ———— converge.
n?1n(n)
n>2
In(n) ..
Exemple 43. Montrons que Z ——= diverge.
n>1 n

3. Convergence absolue de séries

Définition 44. On dit que la série E uy converge absolument si la série g |ug| converge.
ano anO

Proposition 45. Si une série converge absolument, alors elle converge.

Démonstration. A noter. [0

(=D

Remarque. e La réciproque est fausse. Par exemple, si on pose u, = pour tout entier
n

n > 1, la série Zun converge (c’est une série alternée pour laquelle la méthode précédente
n>1
s’applique), mais Z |un| = Z % est divergente (série de Riemann de paramétre 1 < 1), donc
n>1 n>1
Z U, converge mais ne converge pas absolument.
n>1
e Ainsi, pour démontrer qu’une série Z ug converge, on peut essayer de démontrer que Z |ug]

ano ano
converge et utiliser les théorémes relatifs aux séries a termes positifs.

FeEeEemmssssssssssssssssssssssEE==————

: (="
Exemple 46. Que dire de ?
T; ny/n
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