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L'idée est de formaliser la notion de somme in�nie. On utilise la notion de limite pour donner un sens à
des égalités (HP) comme :

1

12
+

1

22
+

1

32
+

1

42
+ . . . =

π2

6

ou montrer que certaines sommes in�nies ne sont pas bien dé�nies. Par exemple, la fameuse série har-

monique
∑
n≥1

1

n
tend vers +∞, et la somme

1 + (−1) + 1 + (−1) + 1 + . . .

n'a pas de limite du tout (à chaque ajout d'un terme, la valeur de la somme échange sa valeur entre 0 et
1, et la somme ne se stabilise donc pas vers une valeur �nie).

I. Généralités sur les séries numériques

1. Série numérique

Dé�nition 1. Soit n0 un entier naturel et (uk)k≥n0
une suite réelle.

On appelle série de terme général uk, et on note
∑
k≥n0

uk, la suite (Sn)n≥n0
dé�nie par :

∀n ≥ n0, Sn =

n∑
k=n0

uk.

Pour tout entier n ≥ n0, le réel Sn =

n∑
k=n0

uk est appelé la somme partielle d'indice n de la série∑
k≥n0

uk.

Remarque. (i) La série
∑
k≥n0

uk est donc une suite, la suite de ses sommes partielles. Par exemple,

la série
∑
k≥1

1

k
, appelée la série harmonique, est la suite (Sn)n≥1 où pour tout entier n ≥ 1,

Sn est le réel :

Sn =

n∑
k=1

1

k
.

Par exemple, S2 =
1

1
+

1

2
=

3

2
, et S100 =

1

1
+

1

2
+ . . .+

1

100
vaut environ 5, 18.

(ii) Dans la notation
∑
k≥n0

uk introduite ci-dessus, k est une variable muette (ou locale). Cette

notation est donc bien dé�nie si et seulement si k n'est pas déjà �xé, et dans ce cas elle a le
même sens que

∑
l≥n0

ul (si l n'est pas non plus déjà �xé).

(iii) On trouve parfois la notation
∑
k

uk ou
∑

uk pour désigner
∑
k≥n0

uk, à condition que le rang du

premier terme de la suite u soit clair.

Exemple 2. À noter.

2. Nature d'une série

Étudier la nature d'une série, c'est déterminer si c'est une série convergente ou divergente, selon la
dé�nition ci-dessous.
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Dé�nition 3. Soit n0 un entier naturel et (uk)k≥n0 une suite réelle. Notons Sn la somme partielle

d'indice n de
∑
k≥n0

uk, pour tout entier n ≥ n0.

(i) On dit que la série
∑
k≥n0

uk converge si la suite (Sn)n≥n0
converge. Autrement dit,

∑
k≥n0

uk

converge si et seulement si la limite limn→+∞

n∑
k=n0

uk existe et est �nie.

Dans ce cas, on appelle somme de la série
∑
k≥n0

uk le réel noté
+∞∑
k=n0

uk donné par :

+∞∑
k=n0

uk = lim
n→+∞

n∑
k=n0

uk.

(ii) On dit que la série
∑
k≥n0

uk diverge si elle ne converge pas.

Remarque. La dé�nition de "
∑
k≥n0

uk converge" n'en est pas vraiment une (c'est une suite !).

Exemple 4. À noter.

Exercice 5. (i) Démontrer que ∀k ∈ N∗, ln(
k + 1

k
) ≤ 1

k
.

(ii) En déduire que ∀n ≥ 1, ln(n+ 1) ≤
n∑

k=1

1

k
.

(iii) En déduire que la série harmonique
∑
n≥1

1

n
diverge.

Remarque. La technique employée ici (utiliser une comparaison pour étudier la nature d'une série)
est très commune, et fait l'objet d'un théorème en partie III.

Remarque. Soit (un)n≥n0
une suite réelle (où n0 ∈ N). Vous devez faire particulièrement attention

à la terminologie, et à ne pas confondre les di�érents objets intervenants dans ce chapitre.
�

∑
n≥n0

un désigne la série de terme général un. C'est une suite.

� Pour tout n ≥ n0,
n∑

k=n0

uk est un réel (dé�ni avant ce chapitre), appelé la n-ième somme partielle

de la série de terme général uk. Notons cette n-ième somme partielle :

Sn =

n∑
k=n0

uk = un0 + un0+1 + . . .+ un.

En tant que suite,
∑
k≥n0

uk est la suite (Sn)n≥n0 .

�

+∞∑
n=n0

un n'est pas toujours dé�ni. Cette notation est dé�nie si et seulement si la série de

terme général un converge. Dans ce cas,
+∞∑
n=n0

un est un réel, appelé somme de la série de terme

général un, qui est la limite de la suite (Sn)n≥n0
.
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Remarque. En particulier, envisager l'objet
+∞∑
n=n0

un avant d'avoir démontré que la série de terme

général un converge est une faute.

La convergence d'une série ne dépend pas de ses premiers termes, et on dispose d'une relation de Chasles.

Proposition 6. Soit n0 un entier naturel, (uk)k≥n0 une suite réelle et n1 > n0 un entier.

Alors, la série
∑
k≥n0

uk converge si et seulement si la série
∑
k≥n1

uk converge, et dans ce cas :

+∞∑
k=n0

uk =

n1−1∑
k=n0

uk +

+∞∑
k=n1

uk.

Démonstration. À noter.

3. Liens entre suites et séries

Remarque. Formellement, une série est une suite donc le lien est immédiat. Mais on dispose de
passage intéressants d'une notion à l'autre. Commençons par une remarque.

Proposition 7. Soit (uk)k≥n0 une suite réelle (où n0 est un entier naturel).

Notons, pour tout entier n, Sn la somme partielle d'indice n de la série
∑
k≥n0

uk.

Alors :
∀n ≥ n0 + 1, un = Sn − Sn−1.

Démonstration. À noter.

Exemple 8. Dessin à noter.

Remarque. Voici une conséquence pratique, fournissant une manière de démontrer qu'une série
diverge dans des cas simples.

Proposition 9. (et dé�nition.) Soit n0 un entier naturel et (uk)k≥n0 une suite réelle.

Si
∑
k≥n0

uk converge, alors uk −−−−−→
k→+∞

0.

Par contraposition, si (uk) ne tend pas vers 0, alors la série de terme général uk diverge. Dans ce
cas, on dit que la série de terme général uk diverge grossièrement.

Démonstration. À noter.

Remarque. Attention, la réciproque de cette proposition est fausse et c'est une erreur très

courante. Par exemple, la série harmonique
∑
n≥1

1

n
diverge alors que son terme général

1

n
tend vers 0.

Il est faux de dire qu'une série
∑
k≥n0

uk série converge "car uk −−−−−→
k→+∞

0".

Exemple 10. La suite (n)n≥0 ne tend pas vers 0. Ainsi, la série
∑
n≥0

n diverge grossièrement.

Exemple 11. Que dire des séries
∑
k≥0

(−1)k et
∑
k≥1

1− 1

k
?
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D'un autre point de vue, si l'on étudie la convergence d'une suite (un)n, on peut considérer la série de
terme général un+1 − un.

Dé�nition 12. Soit n0 un entier naturel et (uk)k≥n0
une suite réelle.

On dit que la série
∑
k≥n0

uk est télescopique s'il existe une suite réelle (ak)k≥n0
telle que pour tout

k ≥ n0, uk = ak+1 − ak. Autrement dit,∑
k≥n0

uk =
∑
k≥n0

ak+1 − ak.

Proposition 13. Soient n0 un entier et (ak)k≥n0
une suite réelle.

Alors, la série télescopique
∑
k≥n0

ak+1 − ak converge si et seulement si la suite (ak)k≥n0
converge.

Exemple 14. Dessin à noter.

Démonstration. À noter.

Remarque. On devra systématiquement reprendre ce raisonnement qui permet, au passage, d'avoir
une égalité reliant la somme de la série

∑
k

ak+1 − ak et la limite de la suite (ak).

Exemple 15. Démontrer que
∑
k≥2

1

k(k − 1)
converge.

4. Combinaison linéaire de séries convergentes

Proposition 16. Soit n0 un entier, et (uk)k≥n0 et (vk)k≥n0 deux suites réelles.

Si
∑
k≥n0

uk et
∑
k≥n0

vk convergent, alors :

(i) Pour tous réels λ et µ, la série
∑
k≥n0

λuk + µvk converge, et

(ii)

+∞∑
k=n0

(λuk + µvk) = λ

+∞∑
k=n0

uk + µ

+∞∑
k=n0

vk.

Démonstration. À noter.

Remarque. En particulier, cet énoncé montre que :

(i) Si la série
∑
k≥n0

uk converge, alors la série
∑
k≥n0

λuk converge pour tout réelλ, et

+∞∑
k=n0

λuk = λ

+∞∑
k=n0

uk

(ii) Si les séries
∑
k≥n0

uk et
∑
k≥n0

vk convergent, alors la série
∑
k≥n0

uk + vk converge, et

+∞∑
k=n0

uk + vk =

+∞∑
k=n0

uk +
∑
k≥n0

vk
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Remarque. Quand on utilise ce résultat, on dit qu'on utilise la propriété de linéarité de la sommation
(on dit que la série

∑
k≥n0

λuk + µvk est une combinaison linéaire des séries
∑
k≥n0

uk et
∑
k≥n0

vk).

Exemple 17. Montrons que
∑
n≥1

2−n − 4 · 3−n converge, et calculons sa somme.

Remarque. Attention à ne pas utiliser la linéarité quand vous n'avez pas le droit. Par exemple,

(i) On a démontré dans un exercice précédent que
∑
k≥2

1

k(k − 1)
converge.

(ii) On a ∀k ≥ 2,
1

k(k − 1)
=

1

k − 1
− 1

k
, mais

(iii) On ne peut pas écrire
+∞∑
k=2

1

k(k − 1)
=

+∞∑
k=2

1

k − 1
−

+∞∑
k=2

1

k
car

+∞∑
k=2

1

k − 1
et

+∞∑
k=2

1

k
ne sont pas dé�nis

(les séries concernées divergent).

Remarque. Des réciproques partielles de ce résultat existent mais présentent certaines subtilités. Il
faudra refaire le raisonnement de l'exercice suivant pour s'en servir.

Exercice 18. Soient u et v deux suites réelles dé�nies à partir d'un rang n0.

(i) Montrer que si
∑
k≥n0

uk converge et
∑
k≥n0

vk diverge, alors
∑
k≥n0

λuk + µvk diverge pour tous réels λ

et µ tels que µ ̸= 0. Que dire si µ = 0?

(ii) Montrer que si
∑
k≥n0

uk converge et
∑
k≥n0

λuk +µvk diverge pour certains réels λ et µ tels que µ ̸= 0,

alors
∑
k≥n0

vk diverge. Que dire si µ = 0?

(iii) Si les séries
∑
k≥n0

uk et
∑
k≥n0

vk divergent, que dire de la série
∑
k≥n0

λuk + µvk ?

5. Changement de variable

Proposition 19. Soit n0 un entier naturel et (uk)k≥n0 une suite réelle.
Pour tout entier relatif l tel que l ≤ n0, il est équivalent de dire :

(i)
∑
k≥n0

uk converge, et

(ii)
∑

k≥n0−l

uk+l converge

De plus, dans ce cas :

+∞∑
k=n0

uk =

+∞∑
k=n0−l

uk+l.

Démonstration. À noter.

Remarque. Dans la démonstration, on a utilisé la proposition suivante : pour toute suite réelle
(Sn)n≥n0 , pour tout entier relatif l, les suites (Sn)n≥n0 et (Sn+l)n≥n0−l ont la même nature, et même
limite si elles admettent une limite. On utilise souvent cette proposition lorsqu'on étudie des suites
récurrentes, pour a�rmer que " lim

n→+∞
un = lim

n→+∞
un+1" (avec l = 1).
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Remarque. Cette proposition est la formule de changement de variable pour les séries. La contrainte
l ≤ n0 ne sert qu'à garantir que les sommes partielles considérées par ces séries sont indexées par des
entiers naturels, et pourrait être retirée.

Exemple 20. Que dire de
∑
k≥2

1

k − 1
? De

∑
k≥1

1

2k−1
?

II. Séries classiques

On dispose de quelques séries de référence, dont on connait bien la nature et la valeur de l'éventuelle
somme, qui nous servent à traiter les séries rencontrées dans nos problèmes.

1. Série géométrique

Proposition 21. (et dé�nition.) Soit q un réel. Alors :

(i) Si q ∈]− 1, 1[, alors
∑
k≥0

qk converge et

+∞∑
k=0

qk =
1

1− q
.

(ii) Sinon,
∑
k≥0

qk diverge.

La série
∑
k≥0

qk est appelée la série géométrique de raison q.

Démonstration. À noter.

Remarque. La convergence d'une série ne dépendant pas de ses premiers termes, on peut invoquer
ce résultat pour caractériser la convergence d'une série de la forme

∑
k≥n0

qk où q ∈ R et n0 ∈ N.

Proposition 22. Soit q ∈]−1, 1[ et soit n0 ∈ N. Alors, la série
∑
k≥n0

qk converge et

+∞∑
k=n0

qk =
qn0

1− q

Démonstration. À noter.

Exemple 23. Déterminons la nature et la valeur de l'éventuelle somme des séries suivantes.

(i)
∑
k≥0

2× 5−k (ii)
∑
k≥0

3× 2k (iii)
∑
k≥1

1

3k
.

Exercice 24. Déterminer la nature et la valeur de l'éventuelle somme de
∑
n≥0

e−αn en fonction du réel α.

2. Série géométrique dérivée d'ordre 1 ou 2

Proposition 25. (et dé�nition.) Soit q un réel. Alors :

(i) Si q ∈]− 1, 1[, alors
∑
k≥1

kqk−1 converge et

+∞∑
k=1

kqk−1 =
1

(1− q)2
.

(ii) Sinon,
∑
k≥1

kqk−1 diverge.

On dit que
∑
k≥1

kqk−1 est la série géométrique dérivée d'ordre 1 de raison q.
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Proposition 26. (et dé�nition.) Soit q un réel. Alors :

(i) Si q ∈]− 1, 1[, alors
∑
k≥2

k(k − 1)qk−2 converge et

+∞∑
k=2

k(k − 1)qk−2 =
2

(1− q)3
.

(ii) Sinon,
∑
k≥2

k(k − 1)qk−2 diverge.

On dit que
∑
k≥2

k(k − 1)qk−2 est la série géométrique dérivée d'ordre 2 de raison q.

Démonstration. À noter.

Exemple 27. Déterminons la nature et la valeur de l'éventuelle somme des séries suivantes.

(i)
∑
k≥0

k × 51−k (ii)
∑
k≥0

k × 2k (iii)
∑
k≥1

k(k − 1)
1

3k
.

Exercice 28. Soit p ∈]− 1, 1[. Déterminer la nature et l'éventuelle somme de
∑
k≥0

k2pk. On utilisera que

pour tout entier k, k2 = k + k(k − 1).

3. Série de Riemann

Voici le critère de convergence des séries de Riemann.

Proposition 29. (et dé�nition.) Soit α un réel. Alors, la série
∑
k≥1

1

kα
converge si et seulement

si α > 1.

La série
∑
k≥1

1

kα
est appelée la série de Riemann de paramètre α.

Démonstration. Cas α ≤ 1 à noter. Cas α > 1 admis, nous verrons une démonstration très intéressante
dans le chapitre sur les intégrales.

Exemple 30. La séries harmonique
∑
n≥1

1

n
diverge en tant que série de Riemann de paramètre 1 ≤ 1.

La série
∑
n≥1

1

n2
converge comme série de Riemann de paramètre 2 > 1.

Remarque. Cet énoncé ne dit rien sur la valeur de la somme des séries de Riemann convergentes !
Et elles sont compliquées. Comme dit dans l'introduction, un résultat bien hors programme est :

+∞∑
k=1

1

k2
=

π2

6
.

Exemple 31. Que dire de la nature...

(i) de
∑
n≥1

1√
n
? (ii) de

∑
n≥1

2n +
1

n
√
n
? (iii) de

∑
n≥1

n− 1

n2
?
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4. Série exponentielle

Voici le résultat relatif aux séries dites "exponentielles".

Proposition 32. (et dé�nition.) Pour tout réel x, la série
∑
k≥0

xk

k!
converge et :

+∞∑
k=0

xk

k!
= ex.

La série
∑
k≥0

xk

k!
est appelée la série exponentielle de paramètre x.

Démonstration. Admis.

Exemple 33. Que dire de
∑
n≥0

3n + n2n

n!
?

Exercice 34. Déterminer la nature et l'éventuel somme de
∑
k≥1

xk+1

(k − 1)!
.

5. Une technique classique pour les séries alternées (HP en théorie, pas en
pratique)

Remarque. On dit qu'une série
∑
n≥n0

un est alternée si (un)n change de signe à chaque nouveau

terme : ∀n ∈ N, unun+1 ≤ 0.
Dans ce cas, on peut démontrer (HP) que si |un| −−−−−→

n→+∞
0 et si (|un|)n est décroissante, alors la série∑

n≥n0

un converge.

Par exemple, c'est le cas de
∑
k≥1

(−1)k

k
, car | (−1)k

k
| = 1

k
−−−−−→
k→+∞

0, (
1

k
)k est décroissante , et (

(−1)k

k
)k

change bien de signe à chaque terme.

Autres exemples :
∑
k≥0

(−1)k+1

k + 2
,
∑
k≥2

(−1)k√
k

.

En pratique, on suivra la méthode ci-dessous en présence de séries de la forme
∑
k≥n0

(−1)kuk où (uk)k est

une suite décroissante qui tend vers 0.

Exemple 35. Méthode : Pour redémontrer qu'une série alternée converge, selon les conditions
ci-dessus, on utilise le théorème des suites adjacentes selon les étapes suivantes.

� Soit (un)n une suite telle que
∑
k≥n0

uk est alternée, et telle que (|un|)n converge vers 0 en étant

décroissante. Notons, pour tout entier n, Sn la somme partielle d'indice n de cette série.
� On montre que (S2n)n et (S2n+1) sont monotones, de monotonie opposée.
� ∀n ∈ N, S2n+1 − S2n = u2n+1 −−−−−→

n→+∞
0 donc ces suites sont adjacentes.

� Par le théorème des suites adjacentes, (S2n)n et (S2n+1)n convergent vers la même limite.
� Par le théorème relatif aux sous suites de rangs pairs et impairs, (Sn)n converge vers cette limite
commune.

� Par dé�nition, la série
∑
k≥n0

uk converge.
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Exemple 36. Montrons que
∑
n≥1

(−1)n

n
converge.

III. Séries à termes positifs et convergence absolue

Si un est positif pour tout entier n, alors l'étude de la série de terme général un s'en retrouve simpli�ée,
et on dispose de théorèmes propres à cette situation.

1. Propriétés des séries à terme positif

Dé�nition 37. Soit (uk)k≥n0
une suite réelle (où n0 ∈ N).

On dit que la série
∑
k≥n0

uk est à termes positifs si uk est positif pour tout entier k ≥ n0.

Proposition 38. Soit
∑
k≥n0

uk une série à termes positifs. Notons, pour tout entier n ≥ n0, Sn sa

somme partielle d'indice n. Alors, il est équivalent de dire :

(i)
∑
k≥n0

uk converge, et

(ii) la suite (Sn)n≥n0
est majorée

Dans ce cas :

∀n ≥ n0,

n∑
k=n0

uk ≤
+∞∑
k=n0

uk.

Remarque. L'idée est très simple : la suite (Sn)n est croissante, donc on peut appliquer le théorème
de la limite monotone.

Démonstration. À noter.

2. Théorème de comparaison pour les séries à termes positifs

Voici le théorème de comparaison pour les séries à termes positifs.

Théorème 39. Soit n0 un entier naturel.
Soient (un)n≥n0 et (vn)n≥n0 deux suites réelles telles que :

∀n ≥ n0, 0 ≤ un ≤ vn.

Alors :

(i) Si
∑
k≥n0

vk converge, alors
∑
k≥n0

uk converge et

+∞∑
k=n0

uk ≤
+∞∑
k=n0

vk.

(ii) Si
∑
k≥n0

uk diverge, alors
∑
k≥n0

vk diverge.

Démonstration. À noter.

Exemple 40. (i) Montrer que ∀k ≥ 2,
1

k2
≤ 1

k(k − 1)
.

(ii) Sans utiliser le critère de convergence des séries de Riemann, montrer que
∑
n≥1

1

n2
converge.
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Exercice 41. (i) Montrons que ∀k ≥ 0,
1

ek + e−k
≤ e−k.

(ii) En déduire la nature de
∑
k≥0

1

ek + e−k
.

Exemple 42. Montrons que
∑
n≥2

1

n2 ln(n)
converge.

Exemple 43. Montrons que
∑
n≥1

ln(n)

n
diverge.

3. Convergence absolue de séries

Dé�nition 44. On dit que la série
∑
k≥n0

uk converge absolument si la série
∑
k≥n0

|uk| converge.

Proposition 45. Si une série converge absolument, alors elle converge.

Démonstration. À noter.

Remarque. � La réciproque est fausse. Par exemple, si on pose un =
(−1)n

n
pour tout entier

n ≥ 1, la série
∑
n≥1

un converge (c'est une série alternée pour laquelle la méthode précédente

s'applique), mais
∑
n≥1

|un| =
∑
n≥1

1

n
est divergente (série de Riemann de paramètre 1 ≤ 1), donc∑

n≥1

un converge mais ne converge pas absolument.

� Ainsi, pour démontrer qu'une série
∑
k≥n0

uk converge, on peut essayer de démontrer que
∑
k≥n0

|uk|

converge et utiliser les théorèmes relatifs aux séries à termes positifs.

Exemple 46. Que dire de
∑
n≥1

(−1)n

n
√
n

?
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