Lycée Hoche 2025-2026
ECG1 A . Mathématiques
TP de Python numéro 9 : Graphes

Semaine du jeudi 12 février.

Dans ce TP, on étudie les deux représentations classiques des graphes en informatique (par matrice d’adjacence
ou par liste des adjacences) et on programme les fonctions de conversion d’une représentation vers ’autre.
Ensuite, on utilise les résultats du programme de mathématiques liés aux chaines, aux chemins et & la connexité
pour écrire des algorithmes classiques sur ces notions.

Dans tout ce TP, les graphes seront orientés ou non, et auront pour ensemble de sommets un ensemble de
la forme [0,n — 1] (ou n € N* est 'ordre du graphe) de sorte que ces sommets sont naturellement numérotés,
numérotation qu’on utilisera pour parler de la matrice d’adjacence d’un graphe considéré.

Cette numérotation a partir de 0 est plus simplement compatible avec la numérotation de Python.

Remarque : tout ce qui est expliqué dans ce TP est autant valide pour les graphes orientés que pour les graphes
non orientés, mais pour utiliser ces résultats, il faut tout de méme préciser le cadre (orienté ou non) dans lequel
on se place.

I. Représentations informatiques des graphes

1l existe deux moyens classiques de représenter un graphe en informatique : en utilisant la matrice d’adjacence,
ou en utilisant la liste des adjacences.

1. Représentation par la matrice d’adjacence

On peut tout d’abord représenter un graphe en donnant sa matrice d’adjacence. Par exemple, Considérons les
graphes G et ‘H représentés ci-dessous :

g H

@ O)

Notons Mg et My leurs matrices d’adjacence respectives. Alors :

0110 0110
100 1 0000
Mg=11 o 0 1|*M=|g o0 0 1
01 10 0000

et on peut reconstruire ces graphes a partir de ces matrices. On peut donc représenter G et H en Python en
donnant leurs matrices d’adjacences MG et MH données par :

Mé¢=([0,1,1,0],[1,0,0,1],[1,0,0,1],[0,1,1,01]
MG=np.array (MG)
ME=[([0,1,1,0],[0,0,0,0],[0,0,0,1],[0,0,0,0]]
MH=np.array (MH)

Exercice 1. 1. Représenter le graphe (non orienté) complet K5 d’ordre 5. Donner sa matrice d’adjacence.
Définir cette matrice K5 en Python, sans saisir ses coefficients & la main.

2. Ecrire le code d’une fonction Python d’entéte def MatriceK(n): prenant en entrée un entier naturel non
nul n et renvoyant en sortie la matrice d’adjacence du graphe complet d’ordre n.




Exercice 2. 1. Ecrire une fonction Python d’entéte def DegSortants(M): prenant en entrée la matrice
d’adjacence M d’un graphe orienté G et renvoyant en sortie la liste (dans 'ordre de ces sommets) des
degrés sortants des sommets de G.

2. Coder de méme une fonction d’entéte def DegEntrant(M): prenant en entrée la matrice d’adjacence M
d’un graphe orienté G et renvoyant la liste des degrés entrants des sommets de G.

3. Tester ces deux fonctions sur le graphe H de ’exemple ci-dessus.

2. Représentation par la liste des adjacences

Plutot que d’utiliser leur matrice d’adjacence, on peut représenter des graphes en donnant leur liste des adja-
cences.

Soit s un sommet d’un graphe G. La liste des adjacences du sommet s est la liste, qu’on notera V (s), formée
par les sommets

e adjacents & s si G est non orienté,
e qui sont le but d’une aréte d’origine s si G est orienté.

Pour représenter un graphe G d’ordre n, on donne alors la liste

de ces liste d’adjacence.

Cette liste V est appelée la liste d’adjacence du graphe G (c’est une liste de listes). Il est clair qu’on peut
retrouver un graphe G a partir de sa liste des adjacences (on peut reconstituer son ordre et toutes ses arétes).

Par exemple, reprenons les exemples précédents.

g H

@
@ O)

e Dans le graphe G non orienté, les listes d’adjacence VO,V1 des sommets 0 et 1 sont données par

1 |V0=[1,2] # le sommet O est adjacent aux
2 |V1=[0,3] # le

sommet 1 est adjacent aux

et la liste d’adjacence de G est la liste V donnée par :

v=[[1,2],[0,3],[0,3],[1,2]]

Dans le graphe H orienté, les listes d’adjacence VO,V1 des sommets 0 et 1 sont données par

VO=[1,2] # Les arétes de source 0 ont pour but 1 et 2
Vi=[] # Aucune aré

e n’a pour source le sommet 1

et la liste des adjacences de G est la liste V donnée par :

v=[[1,21,[1,[3]1,[1]

Exercice 3. 1. Déterminer & la main la liste d’adjacence du graphe complet (non orienté) K, d’ordre 4.
2. A Taide d’une boucle, définir en Python la liste d’adjacence du sommet, 0.

3. Sans la renter a la main, définir en python la liste des adjacences de Kjy.



4. Ecrire le code d’une fonction python d’entéte def ListeAdjacenceK(n): prenant en entrée un entier
naturel non nul n et renvoyant en sortie la liste des adjacences du graphe complet d’ordre n.

Exercice 4. 1. Ecrire une fonction Python d’entéte def estArete(V,i,j): prenant en entrée la liste des
adjacences d’un graphe (orienté ou non), ainsi que deux sommets i et j de ce graphe, et renvoyant en
sortie True si ce graphe comporte une aréte de i vers j, et False sinon.

2. Ecrire une fonction Python d’entéte def AfficheDescriptionNO(V): prenant en entrée la liste des ad-
jacences d’un graphe G non orienté, et affichant (sans sortie) de maniére lisible 'ordre de G et la liste des

degrés des sommets de G.

3. Ecrire une fonction Python d’entéte def AfficheDescription0(V): prenant en entrée la liste des adja-
cences d’un graphe G orienté, et affichant (sans sortie) de maniére lisible l'ordre de G, la liste des degrés
sortants des sommets de G, et la liste des degrés entrants des sommets de G.

3. Fonctions de conversion

On dispose de deux maniéres de représenter un graphe : par sa matrice d’adjacence, ou par sa liste des adjacences.
Dans tous les cas, 'information retenue permet de reconstruire le graphe.

On peut alors avoir besoin de passer d’une représentation & ’autre.

Remarque. Méme s’il existe des différences entre le cas des graphes orientés et celui des graphes non
orientés, les fonctions demandées dans les deux exercices suivants doivent fonctionner indifféremment dans

ces deux cas.

Exercice 5. 1. Ecrire la matrice d’adjacence du graphe orienté ayant pour liste des adjacences :
(r1,2,31,f[0,21,[0,4]1,[2,4]1,[0,1,2,3]]

2. Ecrire une fonction python d’entéte def conversion_Liste_vers_Matrice(V): prenant en entrée une
liste V qui est la liste des adjacences d’'un graphe (orienté ou non), et renvoyant en sortie la matrice
d’adjacence de ce graphe.

3. Tester votre fonction a ’aide des fonctions ListeAdjacenceK et MatriceK des exercices précédents.

Pour la 2., on pourra partir du code incomplet suivant :

def conversion_Liste_vers_Matrice(V):
ordre =... #ordre du graphe considére
M=np.zeros ((ordre ,ordre)) #matrice d’adjacence a remplir
for i in range (ordre): f#pour chaque sommet i
#remplissage de la i iéme ligne de M,
#en utilisant la liste V[i]
C...)

return (M)

Exercice 6. 1. Ecrire la liste d’adjacence du graphe non orienté ayant la matrice d’adjacence :
1 010
0 011
1 1 0 1
01 10

2. Ecrire une fonction Python d’entéte def conversion_Matrice_vers_Liste(M): prenant en entrée une
matrice M qui est la matrice d’adjacence d’un graphe (orienté ou non), et renvoyant en sortie la liste
d’adjacence de ce graphe.

3. Tester votre fonction & ’aide des fonctions ListeAdjacenceK et MatriceK des exercices précédents.




II. Matrice d’adjacence, chaines et chemins, connexité

1. Distance entre deux sommets dans un graphe non orienté

Définition 7. Soit G un graphe non orienté.
Pour tous sommets s et s’ de G, on appelle distance (combinatoire) de s a s’ et on note d(s,s’)
lélément de Ry U {+oo} donné par :
e d(s,s’) est la longueur de la plus courte chaine de s vers s’ si s et s’ sont reliés par une chaine,
e d(s,s’) =+oo si s et s’ ne sont par reliés par une chaine.
On définit ainsi une application d : $? — R4 U {+o0}.

Remarque. Dans certains cas, il existe d’autres notions de distance sur les sommets d’un graphe : dans ce
1 cas, celle vue ici est désignée comme étant la distance combinatoire.

Remarque. La distance d’'un sommet s & lui méme est donc 0, car il existe une chaine de longueur 0 de s
i vers s : la chaine (s) € S*.

Exemple 8. Dans le graphe G ci-dessous...

Pour travailler avec +o0o, on adopte les conventions "naturelles" suivantes :

(+00) + (+00) = 00

a + (+00) = 400 pour tout réel a,
e a < +oo pour tout réel a,

o {00 < H00.

Proposition 9. Soit G = (S, A) un graphe non orienté. Soient s et s’ deux sommets de G. Alors :
1. d(s,s") > 0 (positivité)
2. d(s,s') =0 < s=" (propriété dite de séparation,).
3. d(s,s") =d(s',s) (propriété dite de symétrie).
4. Pour tout autre sommet s”, d(s,s”) < d(s,s')+d(s,s"”) (on dit que d vérifie l'inégalité triangulaire).

Exercice 10. Démontrer ces propriétés.

Remarque. Si le graphe G considéré est connexe, on dit alors que d définit une distance sur ’ensemble des
i sommets de G (la notion générale de distance considére une application & valeurs dans R, donc non infinie).

L’infini de numpy

Supposant numpy importé avec 1’alias np, la commande np. inf sert & représenter +oo en accord avec les
conventions ci-dessus pour la somme et la comparaison.

Exemple 11. Exécuter et observer, dans l'invite de commande, les lignes suivantes.




>>>import numpy as np
>>>print (np.inf)
>>>np.inf+3
>>>np.inf+np.inf
>>>np.inf -1
>>>np.inf <2

>>>2 <= np.inf

2. Informatique

Pour cette partie, on représentera un graphe & I'aide de sa matrice d’adjacence. On utilisera les commandes
Python au programme sur les matrices, vues lors du TP précédent.

Exercice 12. Les fonctions demandées dans cet exercice doivent fonctionner indifféremment pour un graphe
orienté ou non orienté.

1. Ecrire le code d’une fonction Python d’entéte def NombreChemins(M,i,j,k): prenant en entrée :
e la matrice d’adjacence M d’un graphe G
e les numéros i et j de deux de ses sommets,
e et un entier k,

et renvoyant en sortie le nombre de chaines de longueur k (ou chemins si G est orienté) du sommet i vers
le sommet j.

2. Ecrire le code d’une fonction Python d’entéte def distance(M,i,j): prenant en entrée la matrice
d’adjacence M d’un graphe G et les numéros i et j de deux de ses sommets, et renvoyant en sortie :

¢ la longueur du plus court chemin (ou de la plus courte chaine dans le cas non orienté) du sommet i
vers le sommet j si un tel chemin (ou une telle chaine) existe,

e np.inf §'il n’existe pas de chemin (ou de chaine) de i vers j

On pensera au lemme utilisé dans la démonstration du théoréme liant la connexité d’'un graphe a sa
matrice d’adjacence : dans un graphe d’ordre n, s’il existe un chemin (ou une chaine) d’un sommet ¢ vers
un sommet j, alors il existe un chemin de ¢ vers j de longueur au plus n — 1.

3. Tester vos fonctions sur la matrice d’adjacence du graphe de ’exemple 8 avec quelques sommets.

Conseil : saisissez a la main la liste des adjacences de ce graphe, et convertissez celle-ci a l’aide de votre
fonction de exercice 5.

Remarque : le code précédent ne donne pas le plus court chemin (s’il existe) entre deux sommets, juste sa
longueur. Ce probléme sera abordé a nouveau dans un TP ultérieur, ot on abordera ’algorithme de Dijkstra.

3. Connexité, classe de connexité d’un sommet
Tout d’abord, un certain théoréme du cours permet de facilement résoudre I’exercice suivant.

Exercice 13. Ecrire le code d’une fonction Python d’entéte def estConnexe (M) : prenant en entrée la matrice
d’adjacence M d’un graphe G (orienté ou non) et renvoyant en sortie True si G est connexe ("fortement" dans le
cas orienté), et False sinon.

Voyons une autre notion, liée & la notion de composante connexe d’un graphe.

Définition 14. Soit G un graphe non orienté, et s un sommet de G.
On appelle classe de connexité de s dans G ’ensemble, noté C(s) dans ce TP, des sommets de G reliés
4 s par une chaine.

Remarque. Autrement dit, si G = (S, A) est un graphe non orienté, alors pour tout s € S :

C(s)={s" € S|d(s,s) e R}

P

Remarque. La classe de connexité d’un sommet s (dans un graphe G fixé) est donc ’ensemble des sommets
de G intervenant dans la composante connexe de G contenant s.




Exemple 15. Dans le graphe G ci-dessous (de ’exemple 8)...
G

ONENO

® ®

On observe les classes de connexité suivantes :
C(1) ={0,1,3,4,6}

et
C(2) = {2,5}.

Exercice 16. 1. A Plaide de la fonction de I’exercice 12, écrire une fonction d’entéte def ClasseConnexite(M,s):
prenant en entrée la matrice d’adjacence M d’un graphe non orienté G et un sommet s de G, et renvoyant
en sortie la classe de connexité C(s) du sommet s, sous forme d’une liste.

2. Testez votre fonction sur le graphe de ’exemple 8.

On dispose d’un algorithme plus intéressant pour établir cette liste des adjacences, pour les raisons suivantes
e il est plus économe en calcul, donc plus approprié dans le cas d’énormes graphes,
e il se généralise & des situations plus compliquées, ot I’on ne peut avoir recours a la matrice d’adjacence.

Pour établir la classe de connexité C(s) d’un sommet s donné d’un graphe (non orienté) G, on suit 1’algorithme
suivant :

Algorithme

1. Initialisation des variables : On définit deux listes T ("sommets a traiter") et C ("classe de
connexité"). Initialement, T=[s] et C=[].
2. Itérations : Tant que T n’est pas la liste vide, on "traite" son premier élément :
e On considére le premier élément t de T.
e On détermine la liste V des sommets adjacents & t qui ne sont ni dans T ni dans C.
e On ajoute les sommets de la liste V & la liste T.
e On supprime t de la liste T et on ajoute t a la liste C.
3. A la fin de cette boucle (qui s’arréte : pourquoi ?), C contient la liste de sommets dans la classe de
connexité de s (sans répétitions).

Exercice 17. Appliquer cet algorithme & la main sur le graphe de 'exemple 8 pour déterminer la classe de
connexité du sommet 6.

Exercice 18. Ecrire le code d’une fonction Python ClasseConnexite2(L,s): prenant en entrée la liste des
adjacences L d’un graphe (non orienté) G et un sommet s de G, et renvoyant en sortie la classe de connexité de
s (dans G) sous forme de liste. On pourra s’inspirer du code a trou en début de page suivante. Puis, vérifier
cette fonction sur le graphe de l’exercice 8.



@

def ClasseConnexite2(L,s):
# Initialisation des variables
T=[s]
c=I[1
# Itérations
while len(T)!=0:
# Traitement du premier élément de T
t=T[0]
# Détermination des voisins de t ni dans T ni dans C
V=[ v for v in ... if mnot (... ... o) ]
# Ajout des éléments de V a la fin de T
T=...
# Fin du traitement de t
# suppression de t dans T
# ajout de t dans C
return(C)
ITII. Un exercice sur les graphes bipartis

Exercice 19. Pour simplifier, dans cet exercice, les sommets des graphes K, ,, considérés sont les entiers de 1
an 4+ m. On prendra garde, pour les questions informatiques, au décalage de 1 occasionné par ’habitude des
informaticiens de commencer leurs décomptes a 0...

1.

10.
11.

12.

Rappeler la définition d’un graphe biparti.

Pour tout (n,m) € (N*)2, on pose S, = [L,n+m], Gom = [L,n], Dpm = [n+ 1,n+ m], et
An,m - {{Z,]},Z € Gn,maj € Dn,m}

On pose enfin K,, ,, = (Sn,m; An.m)- On dit que K, ,, est un graphe biparti complet.

. Représenter Ks 4 et K31. Donner la matrice d’adjacence et la liste des adjacences de ces graphes (avec la

numeérotation induite par les sommets).
Justifier la terminologie de "graphe biparti complet".

Définir en Python, et sans rentrer ces données a la main, la matrice d’adjacence et la liste des adjacences
de K273.

. Ecrire une fonction Python d’entéte def MatriceBiparti(n,m): prenant en entrée des entier n,m (non

nuls) et renvoyant en sortie la matrice d’adjacence de K, .

Ecrire une fonction Python d’entéte def ListeBiparti(n,m): prenant en entrée des entier n,m (non nuls)
et renvoyant en sortie la liste des adjacences de K, .

¢ i n et m.
Donner le nombre d’arétes de K, ,, en fonction de n et

Afficher, pour quelques valeurs de n et m et de maniére lisible, les 6 premiéres puissances de la matrice
d’adjacence de K, p,.

Conjecturer un résultat portant sur la longueur des chaines fermées de K, ,,.
Démontrer cette conjecture.

Conjecturer un résultat portant sur le nombre de chaines de longueur impaire de K, ,, entre deux sommets
donnés de ce graphe.

Démontrer cette conjecture.




	Représentations informatiques des graphes
	Représentation par la matrice d'adjacence
	Représentation par la liste des adjacences
	Fonctions de conversion

	Matrice d'adjacence, chaînes et chemins, connexité
	Distance entre deux sommets dans un graphe non orienté
	Informatique
	Connexité, classe de connexité d'un sommet

	Un exercice sur les graphes bipartis

