Chapitre 16 : Dérivation

ECG1 A 2025-2026, Lycée Hoche

Table des matiéres

[[.  Notion de fonction dérivablel 2
IL. Pente, taux d’accroissement| . . . . . . . . .. L. e e e e e e 2

2. Nombre dérivél . . . . . . .. e e e e e 3

8. Dérivabilité & gauche, a droite|. . . . . . . .. L Lo 5

4. Tangente en un point|. . . . . . . ... 6
. lien avec la continuitél . . . . . . . ..o 7

[6.  Développement limité a 'ordre 1) . . . . . ... ... ... ... L oo 7
CTIVEEl . . . . e e e e e e e 8

II.  Opérations sur les fonctions dérivables| 9
I Combinaisons linéaires, produit et quotient| . . . . . ... . ... . ... ... ... . ... 9

2. Composition]. . . . . ... e e e e e 9

3. Deérivation de la réciproque d’une fonction bijective (HP)| . . . . . ... ... . ... ... 10

4. Tableau récapitulatit| . . . . . . .. oo 11

o. Deérivées successives, tonctions de classe C", de classe C*f . . . . ... . ... ... ... 11
|I11. Le théoreme des accroissements finis, causes et conséquences 13
[ Extrema locaux et dérivationl . . . . . . . . . . . . Lo e 13

2. LelemmedeRolle (HP)| . . . . .. .. .. 14

3. Le théoréme des accroissements finis (HP)| . . . . . .. ... ... ... ... ... . ... 15

4. L’inégalité des accroissements finis| . . . . . . . ..o oL Lo 15

5. Applications de I'lAF a la monotonie.| . . . . . ... ... 0000000 16
6. Une condition suffisante d’extremum locall . . . . . . ... ... ... o000 17
[(._Accroissements finis et étude de suites| . . . . . . . . ..o oo 18



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

I. Notion de fonction dérivable

1. Pente, taux d’accroissement

Définition 1. Soient a et b deux réels. Considérons la droite d non verticale d’équation cartésienne
y = azx + b. On dit que a est la pente, ou le coefficient directeur de d.

Remarque. La pente d’une droite non verticale représente la variation d’ordonnée obtenue en se
déplacant de 1 en abscisse. Pour cette raison, on dit généralement qu’une droite verticale (donc,
d’équation x = ¢) admet une pente de +oo.

CZ(EC=$’0)
D= (zp,yn) zn=zc+1
yp=alzc+1)+b=azc+bt+a=yct+a

0 1 2 3 4 5

Proposition 2. Soient C et D deux points distincts d’une droite non verticale, d’équation y = ax+b.
Alors, la pente a de cette droite est :

__ Yp —Yc

- rp — TC

a

ot C = (zc,yc) et D = (xp,yp)-

Cette proposition est une conséquence du théoréme de Thalés.

14 g -
Tp—®
/ 3o C o 1\-a:yD_yC
nalcs - :.GD—?C'

E ; : ; p ;

Ceci explique la définition suivante.
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L

2.

Considérons le taux d’accroissement

Définition 3. Soit I un intervalle et f : I — R une fonction réelle. Soient a et b deux éléments
distincts de 1. On appelle taux d’accroissement de f entre a et b le réel :

f() — f(a)
b—a

Remarque. Le taux d’accroissement de f entre a et b est la pente de la droite passant par les points
du graphe de f d’abscisses a et b.

Remarque. L’ordre de a et b ne compte pas dans la définition ci-dessus, car :

f6) = fla) _ fla) — f(b)

b—a a—2>b

Autrement dit, le taux d’accroissement de f entre a et b est aussi le taux d’accroissement de f entre
b et a.

Nombre dérivé

f(b) — f(a)
b—a

d’une fonction f entre deux points a et b. Plus b est

proche de a, plus la droite envisagée par ce taux d’accroissement se rapproche de ce qu’on veut appeler
la tangente de la courbe de f au point a.

Définition 4. Soit I un intervalle et f une fonction réelle définie sur un I. Soit a € I. On dit que
. . . b) — . .
f est dérivable en a si le taux d’accroissement w admet une limite finie quand b tend
Vers a. —a
Dans ce cas, on appelle nombre dérivé de f en a le réel noté f’(a) donné par :
b) —
) — i F0 = S(0)
b—a —a

Remarque. Sous réserve d’existence, le nombre dérivé de f en a est donc la pente de la tangente &
la courbe de f au point (a, f(a)).

f(b) — f(a)
b—a

lorsque h tend vers 0. Cela donne une caractérisation équivalente

Remarque. Au lieu de considérer la limite de lorsque b tend vers a, on considére générale-

fla+h) — f(a)
de la dérivabilité, car pour tout réel h # 0,

fla+h) = fla) _ flat+h)—fla)

h (a+h)—a

ment la limite de

On procéde alors au changement de variable h = b — a dans un sens, et b = a + h dans ’autre.

Page 3



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

Proposition 5. Dans le contexte de la définition ci-dessus, il est équivalent de dire:
(i) | est dérivable en a,

flath) = fla)
h

(ii) la limite lim existe et est finie.
h—0

Dans ce cas,
o fath) = f()
b—a b—a h—0 h

Démonstration. Voir remarque ci-dessus. [

Exemple 6. (i) Soit n € N et z € R. Alors, le monome f, : t — t" est dérivable en z, et

n—1 43 >1
) — nx sin >
C {Osin:O

(#4) Considérons la fonction racine carrée donnée par r(z) = v/z.
Si z € R, alors 7 est dérivable en z, et

La fonction r n’est pas dérivable en 0, et

. Vb—+0
lim ————— = 4+
b—0 b—20

Proposition 7. La valeur des limites suivantes est admise :
h
e —1
li =1
im0 h
In(1+nh
lim 20ED)
h—0 h

Remarque. Ces limites donnent directement :

(¢) La deérivabilité de ’exponentielle en 0, et la valeur de son nombre dérivé en 0 : exp’(0) = 1.
(ii) La dérivabilité du logarithme en 1, et In’(1) = 1.

Exemple 8. Dans cet exemple, on utilise les propriétés de morphisme de I’exponentielle et du loga-
rithme pour démontrer leur dérivabilité & partir des limites admises ci-dessus.

(i) La fonction exponentielle f : x — e® est dérivable en tout réel x, et
Vz €R, f'(x) =€"

27 a Ionctrtion logaritnme = In(x) es érivable en tout réel x € €
i) La fonction logarithme g 1 t dérivable en tout réel z € R, et

1
Ve e RY, ¢ (z) = =
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3. Dérivabilité a gauche, a droite

Définition 9. Soit I un intervalle, f une fonction réelle définie sur I et @ € I. On suppose dans
(1) que f est définie sur un voisinage a droite de a, et dans (i7) que f est définie sur un voisinage a
gauche de a.

B) —
(7) On dit que f est dérivable a droite en a sila limite lim flath) = fla) existe et est finie.

h—0+ h
Dans ce cas, on appelle nombre dérivé a droite de f en a le réel

o fla+h) - fa)
Jala) = fim = ——

fla+h) - fa)

(#¢) On dit que f est dérivable G gauche en a si la limite lim existe et est

h—0—
finie. Dans ce cas, on appelle nombre dérivé a gauche de f en a le réel

f/(a): lim f(a+h)_f(a)

h—0— h

Remarque. La dérivabilité & droite (resp. & gauche) d’une fonction définie uniquement & gauche
(resp. & droite) de a n’est pas envisageable. Par exemple, étudier la dérivabilité a gauche de la racine
carrée en 0 n’a pas de sens.

D’aprés les propositions correspondantes sur les limites :

Proposition 10. Soit f une fonction réelle définie sur un intervalle I, et a € I. On suppose que f
est définie sur un voisinage de a. Alors, il est équivalent de dire :

(i) f est dérivable en a
(ii) f est dérivable a droite et a gauche en a, et fi(a) = f;(a).
Dans ce cas, f'(a) = fi(a) = f;(a).

Démonstration. Résulte immédiatement de la proposition caractérisant les limites de fonctions a l'aide
des limites a droite et a gauche (voir chapitre "limites de fonctions"). O

Proposition 11. Soient I un intervalle, f : I — R une fonction réelle et a € I.

(i) On suppose que f n’est définie que sur un voisinage & droite de a (a est donc la borne inférieure
de I). Alors, [ est dérivable en a si et seulement si f est dérivable o droite en a, et dans ce
cas :

f'(a) = fa(a).
(ii) On suppose que [ n’est définie que sur un voisinage & gauche de a (a est donc la borne

supérieure de I). Alors, f est dérivable en a si et seulement si f est dérivable a gauche en a,
et dans ce cas :

Démonstration. Similaire & la proposition précédente (d’aprés une propriété correspondante sur les
limites). O

—1/z & >0
Exemple 12. La fonction f définie sur [0, +oo[ par f(z) = {fge, 510x est dérivable en 0 si
six=

et seulement si elle est dérivable a droite en 0.
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4.

Remarque. (Et définition :) On dit que la courbe de f : I — R admet un point anguleux en a € I
si f est dérivable & droite et & gauche en a, mais fj(a) # f;(a). Dans ce cas, f n’est pas dérivable
en a.

q---p

Exemple 13. f : z — |z| est dérivable & droite et & gauche en 0, mais n’est pas dérivable en 0 : 0
est un point anguleux car f(0) =1 et f;(O) = —1.

Remarque. A partir de maintenant et pour toute la suite du chapitre, les intervalles con-
sidérés seront non vide et non réduit & un point.

Tangente en un point

Définition 14. Soit I un intervalle. Soient f: I — R et a € I. Si f est dérivable en a, on appelle
tangente a la courbe de f en a la droite d’équation :

y=f(a)(x—a)+ f(a)

Remarque. Sous réserve d’existence, la tangente de la courbe de f en a est 'unique droite de pente

f/(a) passant par le point de coordonnées (a, f(a)). C’est comme ¢a qu’on retient bien cette formule :

la pente de la droite donnée est clairement f’(a), et cette droite passe clairement par (a, f(a)).

Exemple 15. (i) La tangente a la courbe de la fonction exponentielle en 0 est la droite d’équation :
y=x+1

(it) La tangente a la courbe de la fonction logarithme en 1 est la droite d’équation :

y=z—1

7

Définition 16. Soit I un intervalle. Soit f : I — R une fonction et @ € I. On dit que la courbe de
f admet une tangente verticale en a si :

fla+h) - f(a)
h

+o0.
h—0
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LExemple 17. La fonction x — /= admet une tangente verticale en 0.

5. Lien avec la continuité

Proposition 18. Soit f une fonction définie sur un intervalle I et soit a € I. Si f est dérivable
en a , alors f est continue en a.

Démonstration. A noter. [

Remarque. Cela permet, aprés avoir justifié la dérivabilité des fonctions rencontrées, d’obtenir
d’emblée leur continuité.

Remarque. La fonction partie entiére n’est pas continue en 0, donc n’est pas dérivable en 0 par
contraposée.

memmmm--

6. Développement limité a ordre 1

La notion de développement limité & l'ordre 1 en un point ¢ d’une fonction dérivable formalise
I’approximation de cette fonction par la fonction affine donnant sa tangente.

Définition 19. Soit I un intervalle, soit a € I. Soit f : I — R une fonction réelle.
On appelle développement limité de f a ’ordre 1 en a la donnée de réels «, 5 et d’une fonction
€: I — R tels que :
(i) Ve el, f(z) =a+ Bz —a)+ (x—a)e(z)
(1) e(x) — 0.
Tr—ra

Un résultat particuliérement important est le suivant.

Proposition 20. Soit I un intervalle et a € I. Soit f : I — R une fonction réelle.
1l est équivalent de dire :

(i) [ est dérivable en a, et
(i) f admet un développement limité a lordre 1 en a.

Dans ce cas, f admet un unique développement limité a l’ordre 1 en a, donné par :

Ve €I, f(z) = f(a) + f'(a)(z — a) + (z — a)e(x)

ot €: I — R vérifie e(x) —— 0.
Tr—ra

Démonstration. A noter. [

Remarque. Si f est dérivable en a, on peut donc légitimement invoquer "le développement limite &
l'ordre 1 de f en a".

memmmm--
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Remarque. L’énoncé ne dit pas "qui est €", mais que si f est dérivable en a, alors la fonction € de
ce développement limité existe et est unique. Elle est explicitée dans la démonstration.

memmmm--

Remarque. Dans 'égalité f(z) = f(a) + f'(a)(x — a) + (x — a)e(z), on reconnait :
(¢) la formule de la tangente z — f(a) + f'(a)(z — a), additionnée a

(ii) la fonction z — (z —a)e(x) qui est le produit de x — (z —a)! par une fonction qui tend vers 0 en
a (c’est donc une fonction qui tend vers 0 "plus vite" que z — (z —a)! en a, d’ott la terminologie
de développement limité "a Pordre 1").

fremmmmmssemem————

7. Fonction dérivée

Définition 21. Soit f une fonction réelle définie sur une partie D de R. On dit que f est dérivable
sur D si f est dérivable en tout point z de D.
Dans ce cas, on appelle fonction dérivée de f sur D la fonction

;| D — R
e — p@-

Remarque. Pour vérifier qu’une fonction est dérivable sur une partie D de R, nous utiliserons
généralement les propositions de la partie suivante. Dans les autres cas, on reviendra & la défini-
tion (en considérant le taux d’accroissement), et on ne considérera que les dérivabilité & gauche ou a
droite pour les bornes du domaine d’étude.

reemmmmmm—--

Remarque. La considération d’une partie D dans la définition précédente permet de définir ces
notions pour, par exemple, des réunions d’intervalles.

memmmm--

1
Exemple 22. Montrons que f : x — — est dérivable sur R*, et que :
x

-1
Ve e R f(@) = -

Exemple 23. Sin € Z_, la fonction f, : z — z" est dérivable sur R* et
Vo € R*, f/(x) = na" "t

Démonstration : partie suivante, comme composée de la fonction inverse et d’un monome.

Exemple 24. Si a € R, la fonction f, : x — x¢ est dérivable sur R et
Vo € R, fi(z) = az® .

Démonstration : partie suivante, comme composée.

Exemple 25. Toute fonction constante est dérivable sur son domaine de définition, de dérivée la
fonction nulle.

Proposition 26. Soient f et g deux fonctions qui coincident sur un intervalle ouvert I.
Alors, [ est dérivable sur I si, et seulement si, g est dérivable sur I.
Dans ce cas, les fonctions dérivées de [ et g sont coincident sur I.
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Voici un Tableau récapitulatif des dérivées déja rencontrées.

Fonction Dérivée Domaine

" neN

x",n € Z<o

¥, a e R\Z

Remarque. Vz € R, \/z = z? : la de ligne est un cas particulier de la 3e.
L.

II. Opérations sur les fonctions dérivables

1. Combinaisons linéaires, produit et quotient

Proposition 27. Soient f et g deux fonctions dérivables sur une partie D de R. Alors :
(i) Pour tout (\, i) € R?, la fonction \f + ug est dérivable sur D, et

Vo € D, (\f + pg)'(x) = \f'(z) + pg'(z).

(i) La fonction fg est dérivable sur D, et
Vz € D,(fg9) (z) = f'(z)9(z) + f(z)g'(z).

(iii) Si de plus g ne s’annule pas sur D, alors i est dérivable sur D, et
g

Ve eD, (;’) @) = [@g@) ~ f@)g (@)

On dit que la dérivation est linéaire (elle est compatible avec les combinaisons linéaires).

Démonstration. Combinaison linéaire et produit & noter. Le quotient sera traité plus tard, & I'aide de

linverse (de maniére indépendante). [

En pratique, on utilise donc la proposition suivante :

sur leurs domaines de définitions est dérivable sur son domaine de définition.

Proposition 28. Toute combinaison linéaire, tout produit ou tout quotient de fonctions dérivables

LExemple 29. Tout polynoéme est dérivable sur R, et la fonction dérivée d’un polynéme est donnée

par le polynoéme dérivé.

2. Composition

dérivable en a € I et si g est dérivable en f(a), alors go f est dérivable en a et

(g0 f)(a) =g'(f(a)) x f(a).

Proposition 30. Soit f: I — R et g : J — R deux fonctions réelles telles que f(I) C J. Si f est
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Démonstration. A noter. [

En pratique, on utilise :

Proposition 31. Toute composée (bien définie) de fonctions dérivables sur leur domaine de défi-
nition est dérivable sur son domaine de définition.

Exemple 32. Etudions la dérivabilité des fonctions :
(i) f1:2— In(1+ 2?),
(i1) fo:x— (23 —1)".

Remarque. Attention, la fonction racine carrée est une fonction courante, qui est définie sur R,
et non dérivable en 0. Ainsi, les propositions ci-dessus permettent de justifier la dérivabilité d’une
fonction de la forme z +— 4/ f(z) uniquement en les points x tels que f(z) # 0.

Exemple 33. Etudions la dérivabilités de la fonction f : z — /1 — 22.

Exemple 34. Soit f : I — R une fonction dérivable sur I. Alors, pour tout n € N*, g : & — f(a)"
est dérivable sur [ et :
Va € 1,g/(z) = nf(@)"~ x f'(x).

Cette formule est aussi valable pour n € Z* si f ne s’annule pas, et pour n = 0, g est la fonction
constante égale a 1 donc est dérivable de dérivée nulle.

1
Exemple 35. Si une fonction f est dérivable et non nulle sur I, alors ? est dérivable sur I et :

Vr eI, (ch) (2) = =L@

Démonstration. Terminons la démonstration de la proposition 26 : démontrons la formule donnant la
dérivée d’un quotient. O

3. Dérivation de la réciproque d’une fonction bijective (HP)

Proposition 36. Soit f : I — J une fonction réelle bijective. Soit x € I tel que f est dérivable en
x et f'(x) #0. Alors, f~1:J — I est dérivable en y = f(x), et

Démonstration. La dérivabilité de f~! est admise (mais accessible, a condition d’admettre sa continuité,
comme pour le théoréme de la bijection). La méthode utilisée pour trouver la formule est trés instructive.

Démonstration de la formule : & noter. [

Remarque. La méthode vue dans la démonstration est & connaitre, mais ce résultat est hors pro-
gramme.

Frmmm—-

Une conséquence simple :

Proposition 37. Si une fonction bijective est dérivable sur son domaine de définition, et si sa
dérivée ne s’annule pas, alors sa fonction réciproque est dérivable sur son domaine de définition.
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4. Tableau récapitulatif

Dans ce tableau, u et v sont des fonctions dérivables.

Opération Nombre dérivé en x Conditions supplémentaires de dérivabilité

au+ Bv, (o, B) € R?

uv

u,nez

u*, a € R\ Z

SHES

Exercice 38. Déterminer le domaine de dérivabilité et les dérivées des fonctions données par :

(i) f(z)=a", onacR, (i) g(x) = In(e” + 4a2) (i) h(z) = %

5. Dérivées successives, fonctions de classe C", de classe C™.

Définition 39. Soit f : I — R une fonction réelle et n un entier.

(7) On dit que f est n fois dérivable sur I si I'on peut dériver n fois successivement la fonction f
sur lintervalle I. Dans ce cas, on note f(™ : I — R la fonction dérivée n-iéme de f sur I. Par
convention, on note f(O) = f et f/ = f(2),

(#4) On dit que la fonction f est de classe C™ sur I si f est n fois dérivable sur l'intervalle I, et si
de plus f(™ est continue sur I. On note C"(I,R) 'ensemble des fonctions de classe C" sur 1.

(797) On dit que f est de classe C* sur I si f est de classe C™ pour tout entier n. L’ensemble des
fonctions de classe C* sur I est noté C*°(I,R).

Remarque. Ainsi, une fonction f est C? sur un intervalle I si et seulement si f et f’ sont dérivables
sur I, et si de plus f” est continue sur I.
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Remarque. Attention & ne pas oublier la condition de continuité de f() sur I pour montrer qu’une
fonction f est de classe C" sur I. Toute fonction dérivable sur I y étant continue, si f € C"(I,R), alors
les fonctions f, £/, f”, ..., f 1 sont continues et dérivables sur I, et la fonction f(") est continue sur
1.

P L L

Remarque. Ainsi, si f € C*°(I,R), alors pour tout entier n, f() est bien définie et continue sur 1.
Et c’est une équivalence.

Remarque. Pour une définition plus formelle, la suite de fonctions (f(™), ey est définie par f(©) = f
et Vn € N, f(r+D) — (") sous réserve de dérivabilité.

Exemple 40. La fonction exponentielle, notée ici f, est dérivable sur R, et f' = f. Une récurrence
immédiate montre alors que 'exponentielle est de classe C* sur R, et :

VneN, f™ = .

Proposition 41. (i) Les fonctions polynomiales, les fractions rationnelles, ’exponentielle et le
logarithme sont de classe C*° sur leur domaine de définition.

(ii) La fonctions x — x* est de classe C* sur R, pour tout o € R\Z (cet énoncé inclus la racine
carrée).

(iii) Sous réserve de bonne définition, toute combinaison linéaire, tout produit, tout quotient et
toute composée de fonctions de classe C™ (resp. C*°) sur leur domaine de définition est de
classe C™ (resp. C*°) sur son domaine de définition.

Remarque. Les démonstrations se font par récurrence, et sont sans surprise.

e

Remarque. On peut donc utiliser le méme schéma de rédaction pour le caractére C™ d’une fonction
que pour la continuité et la dérivabilité.

Frmmm—-

Exemple 42. Déterminer le domaine de définition de la fonction donnée par f(z) = In(v/a? — 1) et
montrer que cette fonction est C*° sur son domaine de définition.

Remarque. Une fonction de classe C° est simplement une fonction continue.

Passons aux formules permettant de calculer des dérivées n-iémes :

Proposition 43. Soit n un entier naturel. Soient f et g deux fonctions n fois dérivables sur un
intervalle I. Alors,

(i) Pour tout (\, 1) € R?, la fonction \f + ug est n fois dérivable sur I et :

Vo e I,(Af + pg)™ (x) = Af™ (2) + pg™ (2).

(i) La fonction fg est n fois dérivable sur I et :

Vi € I fg (n) zn: ( )f(k) (n—k)(x).

k=0

Démonstration. A noter. [

Une conséquence directe :

Proposition 44. Le produit et la somme de deux fonctions de classe C" sur un intervalle I sont
de classe C™ sur I.
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Démonstration. I suffit de remarquer que si f et g sont de classe C", alors les fonctions f*) sont toutes
continues et les formules précédentes montrent donc que les fonctions (f + g)(”) et (f g)(") sont continues,
par opérations. O

Exemple 44. Voici quelques méthodes classiques liées aux dérivées n-iémes.

(i) Soit f:z — ze®, soit n € N. Montrer que f est n fois dérivable et déterminer f(™).

1
(i) Soit g:x — T2 Montrer que g est de classe C* sur son domaine D, et que :
—x

n!

vn € N,Va € Dy, g™ (@) = 7 e

(iii) Soit h : z +— x2e?*. Pour tout n € N, justifier que h est n fois dérivable et déterminer h(™).

III. Le théoréme des accroissements finis, causes et conséquences

Chaque théoréme de cette partie est un des grands théorémes de 'analyse réelle.

1. Extrema locaux et dérivation

Définition 45. Soit D une partie (non vide) de R. Soient f : D — R une fonction réelle et a € D.

(¢) On dit que f admet un maximum local en a si :

36 > 0,Vz € DNla — d,a + 9], f(z) < f(a).
(44) On dit que f admet un minimum local en a si :

36 > 0,Vz € DNJa —§,a+ 9], f(x) > f(a).

(#i7) On dit que f admet un extremum local en a si f admet un minimum local ou un maximum
local en a.

.
¢ Remarque. Si f admet un maximum (resp. minimum) en a sur D, alors a fortiori f admet un
: maximum local (resp. un minimum local) en a.

Maximum. dong maximum local en 0

05 Maximum local en =~ 4,5

—0.5) 0 05 1 15 2 25 3 35 4 45 5 55

Minimum local en = 1,6

-1
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Proposition 46. (Condition nécessaire d’extremum local & 'ordre 1.) Soit I un intervalle.
Soient f une fonction réelle définie sur I et a € I qui n’est pas une extrémité de I. On suppose f
dérivable en a.

Si f admet un extremum local en a, alors f'(a) = 0.

Remarque. La condition “a n’est pas une extrémité de I” est nécessaire. Par exemple, f : z — x
admet un minimum en 0 sur lintervalle [0, 1], mais f/(0) = 1. Dessin & noter.

Démonstration. A noter. [0

Remarque. L’interprétation graphique est importante : en un maximum local "intérieur" & I, la
courbe de f admet une tangente horizontale (sa pente est nulle).

Remarque. Cette proposition donne une condition nécessaire mais pas suffisante pour avoir un
extremum local. Exemple : 2 — 23 a une dérivée nulle en 0, mais 0 n’est pas un extremum local de
cette fonction sur R.

Remarque. Une condition suffisante sera donnée, & ’aide du théoréme des accroissements finis.

e

2. Le lemme de Rolle (HP)

Cet énoncé est légérement hors programme et vous ne devriez pas étre interrogé dessus, mais il est essentiel
pour comprendre le cours dans sa continuité.

Proposition 47. (Lemme de Rolle.) Soit I un intervalle. Soit f : I — R une fonction réelle
et a,b deuzx éléments de I tels que a < b. On suppose que [ est continue sur [a,b] et dérivable sur

la,b[, et que f(a) = f(b). Alors :

Je €a, b], f'(c) = 0.

Démonstration. A noter O
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3. Le théoréme des accroissements finis (HP)

Voici le théoréme des accroissements finis.

Théoréme 48. Soit f une fonction réelle définie sur un intervalle I et a,b deux éléments de I tels
que a < b. On suppose que f est continue sur [a,b] et dérivable sur |a,b[. Alors :

e ea bl £/(e) = O

Démonstration. A noter O

Remarque. C’est une version “penchée”’” du lemme de Rolle, et c’est exactement ce que traduit la
démonstration.

Remarque. Ce théoréme remarquable dit que, sous les hypothéses de continuité et de dérivabilité
données, tout taux d’accroissement est une valeur prise par la fonction dérivée.

memmmm--

4. L’inégalité des accroissements finis

Ce théoréme et son corollaire au programme formalisent le fait suivant : si la fonction dérivée de f est
majorée par M et minorée par m sur un intervalle, alors tous les taux d’accroissements de f sur cet
intervalle sont majorés par M et minorés par m.

(b £(5))

Dérivée maximale - M

La pente de cette droite est entre "t et M

Dérivée minimale : 77
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Proposition 49. (Inégalité des accroissements finis, version "HP")
Soient a et b deux réels tels que a < b et f une fonction définie sur [a,b]. On suppose f continue
sur [a,b] et dérivable sur ]a,b[. Supposons donnés deux réels m et M tels que

Vz €la,b[,m < f'(z) < M,

alors :

Remarque. Si on ne sait que majorer ou que minorer la dérivée, on peut tout de méme conclure &
une inégalité. Plus précisément, si m est un minorant de f’ sur ]a, b, alors

(avec les notations de I’énonceé).

Démonstration. A noter. [0

Voici la version explicitement au programme, aux hypothéses simplifiées :

Proposition 50. (Inégalité des accroissements finis)
Soit f une fonction définie et dérivable sur un intervalle I. Supposons donné un réel k tel que :

Vo e 1, |f'(z)| < k.

Alors :
V(a,b) € I, | f(b) = f(a)| < k[b— al.

Démonstration. A noter. [

L’inégalité des accroissements finis est un outil remarquable pour démontrer des inégalités. Pour cela, il
faut apprendre & "reconnaitre des taux d’accroissement".

1
Exemple 51. Montrer que Vn € N* y/n+1—/n < N
n

Exemple 52. Montrer que si a et b sont des réels tels que a < b < —1, alors

5. Applications de I'TAF a la monotonie.

Le lien entre la monotonie et la dérivée d’une fonction se démontre a 1’aide de 'inégalité des accroissements
finis.

Proposition 53. Soit f une fonction définie et dérivable sur un intervalle I. Alors :
(i) La fonction [ est croissante sur I si et seulement si : Vo € I, f'(x) > 0.

(ii) La fonction f est décroissante sur I si et seulement si : Vo € I, f'(x) <O0.

(iii) La fonction f est constante sur I si et seulement si : Vx € I, f'(x) = 0.

Démonstration. A noter. [0

Remarque. Attention : la proposition devient complétement fausse si on ne se place pas sur un
1

intervalle. Penser & x — —.
T
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Pour la monotonie stricte, la “vraie” condition équivalente est plus subtile et n’est pas donnée. On se
’
contente de cet énoncé.

Proposition 54. Soit f wune fonction définie et dérivable sur un intervalle I telle que :
Vee I,f'(x) >0 (resp. Ve € I, f'(x) <0).

Si f' ne s’annule qu’en un nombre fini de points sur I, alors [ est strictement croissante sur I
(resp. strictement décroissante sur I).

Démonstration. A noter. [

Remarque. Ainsi, on pourra justifier que f est strictement croissante sur I en vérifiant que I'inégalité
f/(x) > 0 est vraie pour tout x € I sauf en un nombre fini de points (ou la dérivée s’annulera dans ce
cas - admis et non trivial dans le cas général). Et idem pour la stricte décroissante (avec f'(z) < 0).

Exemple 55. La fonction = — 23 est strictement croissante sur R et sa dérivée x — 322 est stricte-
ment positive sur R\ {0}.

6. Une condition suffisante d’extremum local

Proposition 56. Soit f : I — R une fonction dérivable sur Uintervalle I, et soit a € I.
Si [’ s’annule en a en changeant de signe, alors f admet un extremum local en a.
Autrement dit, s’il existe un réel § > 0 tel que

(i) f'(a) =0,
(ii) Yz € INja — 6,a], f'(x) > 0 (resp. f'(x) <0),
(iti) Yz € IN[a,a+ 8], f'(x) <0 (resp. f'(z) >0),

alors f admet un extremum local en a.

Remarque. Cette proposition justifie que le tableau de variation fait bien apparaitre les extrema
locaux de f.

Frmmm—-

Remarque. Dans le contexte de la proposition, si f passe de négative & positive en a, alors f admet
un minimum local en a, et dans ’autre cas c’est un maximum local en a. Le tableau de variation rend
cela tres clair.

Démonstration. A noter. O

LExemple 57. Déterminons les extrema locaux de z — 23 — .
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7. Accroissements finis et étude de suites

Voici des démarches trés classiques ou 1’on utilise 'inégalité des accroissements finis pour démontrer des
résultats de convergence sur des suites.

R, — R,

Exemple 58. Soit f : N o1

et (u,)nen une suite positive telle que
VTL S N,Un,+1 = f(un)

1
(i) Montrer que Vx € Ry, |f/(z)| < 3 (Préparation & lutilisation de I'IAF)

(#¢) Montrer qu’il existe un unique réel positif ¢ tel que f(¢) = ¢. (On introduit un point fize de f)

(#4t) Montrer que : Vn € N, |uy11 — @] < |un27—¢\ (On utilise 'TAF)

(iv) En déduire : Vn € N, |u, —¢| < w. (On itére la relation précédente, avec une récurrence)

(v) Montrer que : u, — ¢. (Et on conclut !)
n—-+oo

(vi) On prend ug = 1. Ecrire un code Python fournissant une approximation a 10~% prés de ¢.

Voici une autre version classique suivant une démarche proche, version "séries".

R, — R,

Exemple 59. Soit f : N |

et (un)nen une suite positive telle que

Vn € Nupgr = f(up)

1
(¢7) Montrer que Yz € Ry, |f'(z)] < 7 (Idem)
(#) En déduire Vn € N* | |upy1 — ty| < L;n_ﬂ (On utilise UIAF et la question précédente)
(791) En déduire Vn € N, |upt1 — up| < w (Encore une fois, on itére la relation précédente)
(iv) En déduire que la série Z(unﬂ — uy,) converge (On passe par la convergence absolue pour

n>0
utiliser la question précédente)

(v) En déduire que u converge. (Routinier, série télescopique)

(vi) Déterminer la limite de u.  (Ici, on doit trowver les (le) points fizes de f, avec l’argument
d’unicité de la limite)
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