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I. Notion de fonction dérivable

1. Pente, taux d'accroissement

Dé�nition 1. Soient a et b deux réels. Considérons la droite d non verticale d'équation cartésienne
y = ax+ b. On dit que a est la pente, ou le coe�cient directeur de d.

Remarque. La pente d'une droite non verticale représente la variation d'ordonnée obtenue en se
déplaçant de 1 en abscisse. Pour cette raison, on dit généralement qu'une droite verticale (donc,
d'équation x = c) admet une pente de +∞.

Proposition 2. Soient C et D deux points distincts d'une droite non verticale, d'équation y = ax+b.
Alors, la pente a de cette droite est :

a =
yD − yC
xD − xC

où C = (xC , yC) et D = (xD, yD).

Cette proposition est une conséquence du théorème de Thalès.

Ceci explique la dé�nition suivante.
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Dé�nition 3. Soit I un intervalle et f : I → R une fonction réelle. Soient a et b deux éléments
distincts de I. On appelle taux d'accroissement de f entre a et b le réel :

f(b)− f(a)

b− a
.

Remarque. Le taux d'accroissement de f entre a et b est la pente de la droite passant par les points
du graphe de f d'abscisses a et b.

Remarque. L'ordre de a et b ne compte pas dans la dé�nition ci-dessus, car :

f(b)− f(a)

b− a
=

f(a)− f(b)

a− b
.

Autrement dit, le taux d'accroissement de f entre a et b est aussi le taux d'accroissement de f entre
b et a.

2. Nombre dérivé

Considérons le taux d'accroissement
f(b)− f(a)

b− a
d'une fonction f entre deux points a et b. Plus b est

proche de a, plus la droite envisagée par ce taux d'accroissement se rapproche de ce qu'on veut appeler
la tangente de la courbe de f au point a.

Dé�nition 4. Soit I un intervalle et f une fonction réelle dé�nie sur un I. Soit a ∈ I. On dit que

f est dérivable en a si le taux d'accroissement
f(b)− f(a)

b− a
admet une limite �nie quand b tend

vers a.
Dans ce cas, on appelle nombre dérivé de f en a le réel noté f ′(a) donné par :

f ′(a) = lim
b→a

f(b)− f(a)

b− a
.

Remarque. Sous réserve d'existence, le nombre dérivé de f en a est donc la pente de la tangente à
la courbe de f au point (a, f(a)).

Remarque. Au lieu de considérer la limite de
f(b)− f(a)

b− a
lorsque b tend vers a, on considère générale-

ment la limite de
f(a+ h)− f(a)

h
lorsque h tend vers 0. Cela donne une caractérisation équivalente

de la dérivabilité, car pour tout réel h ̸= 0,

f(a+ h)− f(a)

h
=

f(a+ h)− f(a)

(a+ h)− a

On procède alors au changement de variable h = b− a dans un sens, et b = a+ h dans l'autre.
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Proposition 5. Dans le contexte de la dé�nition ci-dessus, il est équivalent de dire:

(i) f est dérivable en a,

(ii) la limite lim
h→0

f(a+ h)− f(a)

h
existe et est �nie.

Dans ce cas,

f ′(a) = lim
b→a

f(b)− f(a)

b− a
= lim

h→0

f(a+ h)− f(a)

h
.

Démonstration. Voir remarque ci-dessus.

Exemple 6. (i) Soit n ∈ N et x ∈ R. Alors, le monôme fn : t 7→ tn est dérivable en x, et

f ′
n(x) =

{
nxn−1 si n ≥ 1

0 si n = 0
.

(ii) Considérons la fonction racine carrée donnée par r(x) =
√
x.

Si x ∈ R∗
+, alors r est dérivable en x, et

r′(x) =
1

2
√
x
.

La fonction r n'est pas dérivable en 0, et

lim
b→0

√
b−

√
0

b− 0
= +∞.

Proposition 7. La valeur des limites suivantes est admise :

lim
h→0

eh − 1

h
= 1

lim
h→0

ln(1 + h)

h
= 1

Remarque. Ces limites donnent directement :

(i) La dérivabilité de l'exponentielle en 0, et la valeur de son nombre dérivé en 0 : exp′(0) = 1.

(ii) La dérivabilité du logarithme en 1, et ln′(1) = 1.

Exemple 8. Dans cet exemple, on utilise les propriétés de morphisme de l'exponentielle et du loga-
rithme pour démontrer leur dérivabilité à partir des limites admises ci-dessus.

(i) La fonction exponentielle f : x 7→ ex est dérivable en tout réel x, et

∀x ∈ R, f ′(x) = ex

(ii) La fonction logarithme g : x 7→ ln(x) est dérivable en tout réel x ∈ R∗
+, et

∀x ∈ R∗
+, g

′(x) =
1

x
.

Page 4



Cours de mathématiques, ECG1 A, Lycée Hoche. 2025-2026

3. Dérivabilité à gauche, à droite

Dé�nition 9. Soit I un intervalle, f une fonction réelle dé�nie sur I et a ∈ I. On suppose dans
(i) que f est dé�nie sur un voisinage à droite de a, et dans (ii) que f est dé�nie sur un voisinage à
gauche de a.

(i) On dit que f est dérivable à droite en a si la limite lim
h→0+

f(a+ h)− f(a)

h
existe et est �nie.

Dans ce cas, on appelle nombre dérivé à droite de f en a le réel

f ′
d(a) = lim

h→0+

f(a+ h)− f(a)

h
.

(ii) On dit que f est dérivable à gauche en a si la limite lim
h→0−

f(a+ h)− f(a)

h
existe et est

�nie. Dans ce cas, on appelle nombre dérivé à gauche de f en a le réel

f ′
g(a) = lim

h→0−

f(a+ h)− f(a)

h
.

Remarque. La dérivabilité à droite (resp. à gauche) d'une fonction dé�nie uniquement à gauche
(resp. à droite) de a n'est pas envisageable. Par exemple, étudier la dérivabilité à gauche de la racine
carrée en 0 n'a pas de sens.

D'après les propositions correspondantes sur les limites :

Proposition 10. Soit f une fonction réelle dé�nie sur un intervalle I, et a ∈ I. On suppose que f
est dé�nie sur un voisinage de a. Alors, il est équivalent de dire :

(i) f est dérivable en a

(ii) f est dérivable à droite et à gauche en a, et f ′
d(a) = f ′

g(a).

Dans ce cas, f ′(a) = f ′
d(a) = f ′

g(a).

Démonstration. Résulte immédiatement de la proposition caractérisant les limites de fonctions à l'aide
des limites à droite et à gauche (voir chapitre "limites de fonctions").

Proposition 11. Soient I un intervalle, f : I → R une fonction réelle et a ∈ I.

(i) On suppose que f n'est dé�nie que sur un voisinage à droite de a (a est donc la borne inférieure
de I). Alors, f est dérivable en a si et seulement si f est dérivable à droite en a, et dans ce
cas :

f ′(a) = f ′
d(a).

(ii) On suppose que f n'est dé�nie que sur un voisinage à gauche de a (a est donc la borne
supérieure de I). Alors, f est dérivable en a si et seulement si f est dérivable à gauche en a,
et dans ce cas :

f ′(a) = f ′
g(a).

Démonstration. Similaire à la proposition précédente (d'après une propriété correspondante sur les
limites).

Exemple 12. La fonction f dé�nie sur [0,+∞[ par f(x) =

{
xe−1/x si x > 0

0 si x = 0
est dérivable en 0 si

et seulement si elle est dérivable à droite en 0.
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Remarque. (Et dé�nition :) On dit que la courbe de f : I → R admet un point anguleux en a ∈ I
si f est dérivable à droite et à gauche en a, mais f ′

d(a) ̸= f ′
g(a). Dans ce cas, f n'est pas dérivable

en a.

Exemple 13. f : x 7→ |x| est dérivable à droite et à gauche en 0, mais n'est pas dérivable en 0 : 0
est un point anguleux car f ′

d(0) = 1 et f ′
g(0) = −1.

Remarque. À partir de maintenant et pour toute la suite du chapitre, les intervalles con-
sidérés seront non vide et non réduit à un point.

4. Tangente en un point

Dé�nition 14. Soit I un intervalle. Soient f : I → R et a ∈ I. Si f est dérivable en a, on appelle
tangente à la courbe de f en a la droite d'équation :

y = f ′(a)(x− a) + f(a).

Remarque. Sous réserve d'existence, la tangente de la courbe de f en a est l'unique droite de pente
f ′(a) passant par le point de coordonnées (a, f(a)). C'est comme ça qu'on retient bien cette formule :
la pente de la droite donnée est clairement f ′(a), et cette droite passe clairement par (a, f(a)).

Exemple 15. (i) La tangente à la courbe de la fonction exponentielle en 0 est la droite d'équation :

y = x+ 1

(ii) La tangente à la courbe de la fonction logarithme en 1 est la droite d'équation :

y = x− 1

Dé�nition 16. Soit I un intervalle. Soit f : I → R une fonction et a ∈ I. On dit que la courbe de
f admet une tangente verticale en a si :

f(a+ h)− f(a)

h
−−−→
h→0

±∞.
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Exemple 17. La fonction x 7→
√
x admet une tangente verticale en 0.

5. Lien avec la continuité

Proposition 18. Soit f une fonction dé�nie sur un intervalle I et soit a ∈ I. Si f est dérivable
en a , alors f est continue en a.

Démonstration. A noter.

Remarque. Cela permet, après avoir justi�é la dérivabilité des fonctions rencontrées, d'obtenir
d'emblée leur continuité.

Remarque. La fonction partie entière n'est pas continue en 0, donc n'est pas dérivable en 0 par
contraposée.

6. Développement limité à l'ordre 1

La notion de développement limité à l'ordre 1 en un point a d'une fonction dérivable formalise
l'approximation de cette fonction par la fonction a�ne donnant sa tangente.

Dé�nition 19. Soit I un intervalle, soit a ∈ I. Soit f : I → R une fonction réelle.
On appelle développement limité de f à l'ordre 1 en a la donnée de réels α, β et d'une fonction
ϵ : I → R tels que :

(i) ∀x ∈ I, f(x) = α+ β(x− a) + (x− a)ϵ(x)

(ii) ϵ(x) −−−→
x→a

0.

Un résultat particulièrement important est le suivant.

Proposition 20. Soit I un intervalle et a ∈ I. Soit f : I → R une fonction réelle.
Il est équivalent de dire :

(i) f est dérivable en a, et

(ii) f admet un développement limité à l'ordre 1 en a.

Dans ce cas, f admet un unique développement limité à l'ordre 1 en a, donné par :

∀x ∈ I, f(x) = f(a) + f ′(a)(x− a) + (x− a)ϵ(x)

où ϵ : I → R véri�e ϵ(x) −−−→
x→a

0.

Démonstration. À noter.

Remarque. Si f est dérivable en a, on peut donc légitimement invoquer "le développement limite à
l'ordre 1 de f en a".
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Remarque. L'énoncé ne dit pas "qui est ϵ", mais que si f est dérivable en a, alors la fonction ϵ de
ce développement limité existe et est unique. Elle est explicitée dans la démonstration.

Remarque. Dans l'égalité f(x) = f(a) + f ′(a)(x− a) + (x− a)ϵ(x), on reconnait :

(i) la formule de la tangente x 7→ f(a) + f ′(a)(x− a), additionnée à

(ii) la fonction x 7→ (x−a)ϵ(x) qui est le produit de x 7→ (x−a)1 par une fonction qui tend vers 0 en
a (c'est donc une fonction qui tend vers 0 "plus vite" que x 7→ (x−a)1 en a, d'où la terminologie
de développement limité "à l'ordre 1").

7. Fonction dérivée

Dé�nition 21. Soit f une fonction réelle dé�nie sur une partie D de R. On dit que f est dérivable
sur D si f est dérivable en tout point x de D.
Dans ce cas, on appelle fonction dérivée de f sur D la fonction

f ′ :
D −→ R
x 7−→ f ′(x)

.

Remarque. Pour véri�er qu'une fonction est dérivable sur une partie D de R, nous utiliserons
généralement les propositions de la partie suivante. Dans les autres cas, on reviendra à la dé�ni-
tion (en considérant le taux d'accroissement), et on ne considèrera que les dérivabilité à gauche ou a
droite pour les bornes du domaine d'étude.

Remarque. La considération d'une partie D dans la dé�nition précédente permet de dé�nir ces
notions pour, par exemple, des réunions d'intervalles.

Exemple 22. Montrons que f : x 7→ 1

x
est dérivable sur R∗, et que :

∀x ∈ R∗, f ′(x) =
−1

x2
.

Exemple 23. Si n ∈ Z<0, la fonction fn : x 7→ xn est dérivable sur R∗ et

∀x ∈ R∗, f ′
n(x) = nxn−1.

Démonstration : partie suivante, comme composée de la fonction inverse et d'un monôme.

Exemple 24. Si α ∈ R, la fonction fα : x 7→ xα est dérivable sur R∗
+ et

∀x ∈ R∗
+, f

′
α(x) = αxα−1.

Démonstration : partie suivante, comme composée.

Exemple 25. Toute fonction constante est dérivable sur son domaine de dé�nition, de dérivée la
fonction nulle.

Proposition 26. Soient f et g deux fonctions qui coïncident sur un intervalle ouvert I.
Alors, f est dérivable sur I si, et seulement si, g est dérivable sur I.
Dans ce cas, les fonctions dérivées de f et g sont coïncident sur I.
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Voici un Tableau récapitulatif des dérivées déjà rencontrées.

Fonction Dérivée Domaine

xn, n ∈ N

xn, n ∈ Z≤0

xα, α ∈ R \ Z

√
x

ex

ln(x)

Remarque. ∀x ∈ R∗
+,

√
x = x

1
2 : la 4e ligne est un cas particulier de la 3e.

II. Opérations sur les fonctions dérivables

1. Combinaisons linéaires, produit et quotient

Proposition 27. Soient f et g deux fonctions dérivables sur une partie D de R. Alors :

(i) Pour tout (λ, µ) ∈ R2, la fonction λf + µg est dérivable sur D, et

∀x ∈ D, (λf + µg)′(x) = λf ′(x) + µg′(x).

On dit que la dérivation est linéaire (elle est compatible avec les combinaisons linéaires).

(ii) La fonction fg est dérivable sur D, et

∀x ∈ D, (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

(iii) Si de plus g ne s'annule pas sur D, alors
f

g
est dérivable sur D, et

∀x ∈ D,

(
f

g

)′

(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

Démonstration. Combinaison linéaire et produit à noter. Le quotient sera traité plus tard, à l'aide de
l'inverse (de manière indépendante).

En pratique, on utilise donc la proposition suivante :

Proposition 28. Toute combinaison linéaire, tout produit ou tout quotient de fonctions dérivables
sur leurs domaines de dé�nitions est dérivable sur son domaine de dé�nition.

Exemple 29. Tout polynôme est dérivable sur R, et la fonction dérivée d'un polynôme est donnée
par le polynôme dérivé.

2. Composition

Proposition 30. Soit f : I → R et g : J → R deux fonctions réelles telles que f(I) ⊂ J . Si f est
dérivable en a ∈ I et si g est dérivable en f(a), alors g ◦ f est dérivable en a et

(g ◦ f)′(a) = g′(f(a))× f ′(a).
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Démonstration. A noter.

En pratique, on utilise :

Proposition 31. Toute composée (bien dé�nie) de fonctions dérivables sur leur domaine de dé�-
nition est dérivable sur son domaine de dé�nition.

Exemple 32. Étudions la dérivabilité des fonctions :

(i) f1 : x 7→ ln(1 + x2),

(ii) f2 : x 7→ (x3 − 1)n.

Remarque. Attention, la fonction racine carrée est une fonction courante, qui est dé�nie sur R+

et non dérivable en 0. Ainsi, les propositions ci-dessus permettent de justi�er la dérivabilité d'une
fonction de la forme x 7→

√
f(x) uniquement en les points x tels que f(x) ̸= 0.

Exemple 33. Étudions la dérivabilités de la fonction f : x 7→
√
1− x2.

Exemple 34. Soit f : I → R une fonction dérivable sur I. Alors, pour tout n ∈ N∗, g : x 7→ f(x)n

est dérivable sur I et :
∀x ∈ I, g′(x) = nf(x)n−1 × f ′(x).

Cette formule est aussi valable pour n ∈ Z∗
− si f ne s'annule pas, et pour n = 0, g est la fonction

constante égale à 1 donc est dérivable de dérivée nulle.

Exemple 35. Si une fonction f est dérivable et non nulle sur I, alors
1

f
est dérivable sur I et :

∀x ∈ I,

(
1

f

)′

(x) =
−f ′(x)

f2(x)

Démonstration. Terminons la démonstration de la proposition 26 : démontrons la formule donnant la
dérivée d'un quotient.

3. Dérivation de la réciproque d'une fonction bijective (HP)

Proposition 36. Soit f : I → J une fonction réelle bijective. Soit x ∈ I tel que f est dérivable en
x et f ′(x) ̸= 0. Alors, f−1 : J → I est dérivable en y = f(x), et

(f−1)′(y) =
1

f ′(f−1(y))
.

Démonstration. La dérivabilité de f−1 est admise (mais accessible, à condition d'admettre sa continuité,
comme pour le théorème de la bijection). La méthode utilisée pour trouver la formule est très instructive.

Démonstration de la formule : à noter.

Remarque. La méthode vue dans la démonstration est à connaitre, mais ce résultat est hors pro-
gramme.

Une conséquence simple :

Proposition 37. Si une fonction bijective est dérivable sur son domaine de dé�nition, et si sa
dérivée ne s'annule pas, alors sa fonction réciproque est dérivable sur son domaine de dé�nition.
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4. Tableau récapitulatif

Dans ce tableau, u et v sont des fonctions dérivables.

Opération Nombre dérivé en x Conditions supplémentaires de dérivabilité

αu+ βv, (α, β) ∈ R2

uv

un, n ∈ Z

uα, α ∈ R \ Z

u

v

√
u

eu

ln(u)

u ◦ v

u−1

Exercice 38. Déterminer le domaine de dérivabilité et les dérivées des fonctions données par :

(i) f(x) = ax, où a ∈ R∗
+, (ii) g(x) = ln(e3x + 4x2) (iii) h(x) =

1√
1 + x3

.

5. Dérivées successives, fonctions de classe Cn, de classe C∞.

Dé�nition 39. Soit f : I → R une fonction réelle et n un entier.

(i) On dit que f est n fois dérivable sur I si l'on peut dériver n fois successivement la fonction f
sur l'intervalle I. Dans ce cas, on note f (n) : I → R la fonction dérivée n-ième de f sur I. Par
convention, on note f (0) = f , et f ′′ = f (2).

(ii) On dit que la fonction f est de classe Cn sur I si f est n fois dérivable sur l'intervalle I, et si
de plus f (n) est continue sur I. On note Cn(I,R) l'ensemble des fonctions de classe Cn sur I.

(iii) On dit que f est de classe C∞ sur I si f est de classe Cn pour tout entier n. L'ensemble des
fonctions de classe C∞ sur I est noté C∞(I,R).

Remarque. Ainsi, une fonction f est C2 sur un intervalle I si et seulement si f et f ′ sont dérivables
sur I, et si de plus f ′′ est continue sur I.
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Remarque. Attention à ne pas oublier la condition de continuité de f (n) sur I pour montrer qu'une
fonction f est de classe Cn sur I. Toute fonction dérivable sur I y étant continue, si f ∈ Cn(I,R), alors
les fonctions f, f ′, f ′′, . . . , f (n−1) sont continues et dérivables sur I, et la fonction f (n) est continue sur
I.

Remarque. Ainsi, si f ∈ C∞(I,R), alors pour tout entier n, f (n) est bien dé�nie et continue sur I.
Et c'est une équivalence.

Remarque. Pour une dé�nition plus formelle, la suite de fonctions (f (n))n∈N est dé�nie par f (0) = f
et ∀n ∈ N, f (n+1) = (f (n))′, sous réserve de dérivabilité.

Exemple 40. La fonction exponentielle, notée ici f , est dérivable sur R, et f ′ = f . Une récurrence
immédiate montre alors que l'exponentielle est de classe C∞ sur R, et :

∀n ∈ N, f (n) = f.

Proposition 41. (i) Les fonctions polynomiales, les fractions rationnelles, l'exponentielle et le
logarithme sont de classe C∞ sur leur domaine de dé�nition.

(ii) La fonctions x 7→ xα est de classe C∞ sur R∗
+, pour tout α ∈ R\Z (cet énoncé inclus la racine

carrée).

(iii) Sous réserve de bonne dé�nition, toute combinaison linéaire, tout produit, tout quotient et
toute composée de fonctions de classe Cn(resp. C∞) sur leur domaine de dé�nition est de
classe Cn (resp. C∞) sur son domaine de dé�nition.

Remarque. Les démonstrations se font par récurrence, et sont sans surprise.

Remarque. On peut donc utiliser le même schéma de rédaction pour le caractère Cn d'une fonction
que pour la continuité et la dérivabilité.

Exemple 42. Déterminer le domaine de dé�nition de la fonction donnée par f(x) = ln(
√
x2 − 1) et

montrer que cette fonction est C∞ sur son domaine de dé�nition.

Remarque. Une fonction de classe C0 est simplement une fonction continue.

Passons aux formules permettant de calculer des dérivées n-ièmes :

Proposition 43. Soit n un entier naturel. Soient f et g deux fonctions n fois dérivables sur un
intervalle I. Alors,

(i) Pour tout (λ, µ) ∈ R2, la fonction λf + µg est n fois dérivable sur I et :

∀x ∈ I, (λf + µg)(n)(x) = λf (n)(x) + µg(n)(x).

(ii) La fonction fg est n fois dérivable sur I et :

∀x ∈ I, (fg)(n)(x) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x).

Démonstration. À noter.

Une conséquence directe :

Proposition 44. Le produit et la somme de deux fonctions de classe Cn sur un intervalle I sont
de classe Cn sur I.
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Démonstration. Il su�t de remarquer que si f et g sont de classe Cn, alors les fonctions f (k) sont toutes
continues et les formules précédentes montrent donc que les fonctions (f +g)(n) et (fg)(n) sont continues,
par opérations.

Exemple 44. Voici quelques méthodes classiques liées aux dérivées n-ièmes.

(i) Soit f : x 7→ xex, soit n ∈ N. Montrer que f est n fois dérivable et déterminer f (n).

(ii) Soit g : x 7→ 1

1− x
. Montrer que g est de classe C∞ sur son domaine Dg, et que :

∀n ∈ N,∀x ∈ Dg, g
(n)(x) =

n!

(1− x)n+1
.

(iii) Soit h : x 7→ x2e2x. Pour tout n ∈ N, justi�er que h est n fois dérivable et déterminer h(n).

III. Le théorème des accroissements �nis, causes et conséquences

Chaque théorème de cette partie est un des grands théorèmes de l'analyse réelle.

1. Extrema locaux et dérivation

Dé�nition 45. Soit D une partie (non vide) de R. Soient f : D → R une fonction réelle et a ∈ D.

(i) On dit que f admet un maximum local en a si :

∃δ > 0,∀x ∈ D∩]a− δ, a+ δ[, f(x) ≤ f(a).

(ii) On dit que f admet un minimum local en a si :

∃δ > 0,∀x ∈ D∩]a− δ, a+ δ[, f(x) ≥ f(a).

(iii) On dit que f admet un extremum local en a si f admet un minimum local ou un maximum
local en a.

Remarque. Si f admet un maximum (resp. minimum) en a sur D, alors a fortiori f admet un
maximum local (resp. un minimum local) en a.
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Proposition 46. (Condition nécessaire d'extremum local à l'ordre 1.) Soit I un intervalle.
Soient f une fonction réelle dé�nie sur I et a ∈ I qui n'est pas une extrémité de I. On suppose f
dérivable en a.
Si f admet un extremum local en a, alors f ′(a) = 0.

Remarque. La condition �a n'est pas une extrémité de I� est nécessaire. Par exemple, f : x 7→ x
admet un minimum en 0 sur l'intervalle [0, 1], mais f ′(0) = 1. Dessin à noter.

Démonstration. À noter.

Remarque. L'interprétation graphique est importante : en un maximum local "intérieur" à I, la
courbe de f admet une tangente horizontale (sa pente est nulle).

Remarque. Cette proposition donne une condition nécessaire mais pas su�sante pour avoir un
extremum local. Exemple : x 7→ x3 a une dérivée nulle en 0, mais 0 n'est pas un extremum local de
cette fonction sur R.

Remarque. Une condition su�sante sera donnée, à l'aide du théorème des accroissements �nis.

2. Le lemme de Rolle (HP)

Cet énoncé est légèrement hors programme et vous ne devriez pas être interrogé dessus, mais il est essentiel
pour comprendre le cours dans sa continuité.

Proposition 47. (Lemme de Rolle.) Soit I un intervalle. Soit f : I → R une fonction réelle
et a, b deux éléments de I tels que a < b. On suppose que f est continue sur [a, b] et dérivable sur
]a, b[, et que f(a) = f(b). Alors :

∃c ∈]a, b[, f ′(c) = 0.

Démonstration. À noter
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3. Le théorème des accroissements �nis (HP)

Voici le théorème des accroissements �nis.

Théorème 48. Soit f une fonction réelle dé�nie sur un intervalle I et a, b deux éléments de I tels
que a < b. On suppose que f est continue sur [a, b] et dérivable sur ]a, b[. Alors :

∃c ∈]a, b[, f ′(c) =
f(b)− f(a)

b− a
.

Démonstration. À noter

Remarque. C'est une version �penchée� du lemme de Rolle, et c'est exactement ce que traduit la
démonstration.

Remarque. Ce théorème remarquable dit que, sous les hypothèses de continuité et de dérivabilité
données, tout taux d'accroissement est une valeur prise par la fonction dérivée.

4. L'inégalité des accroissements �nis

Ce théorème et son corollaire au programme formalisent le fait suivant : si la fonction dérivée de f est
majorée par M et minorée par m sur un intervalle, alors tous les taux d'accroissements de f sur cet
intervalle sont majorés par M et minorés par m.
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Proposition 49. (Inégalité des accroissements �nis, version "HP")
Soient a et b deux réels tels que a < b et f une fonction dé�nie sur [a, b]. On suppose f continue
sur [a, b] et dérivable sur ]a, b[. Supposons donnés deux réels m et M tels que

∀x ∈]a, b[,m ≤ f ′(x) ≤ M,

alors :

m ≤ f(b)− f(a)

b− a
≤ M.

Remarque. Si on ne sait que majorer ou que minorer la dérivée, on peut tout de même conclure à
une inégalité. Plus précisément, si m est un minorant de f ′ sur ]a, b[, alors

m ≤ f(b)− f(a)

b− a

(avec les notations de l'énoncé).

Démonstration. À noter.

Voici la version explicitement au programme, aux hypothèses simpli�ées :

Proposition 50. (Inégalité des accroissements �nis)
Soit f une fonction dé�nie et dérivable sur un intervalle I. Supposons donné un réel k tel que :

∀x ∈ I, |f ′(x)| ≤ k.

Alors :
∀(a, b) ∈ I2, |f(b)− f(a)| ≤ k|b− a|.

Démonstration. À noter.

L'inégalité des accroissements �nis est un outil remarquable pour démontrer des inégalités. Pour cela, il
faut apprendre à "reconnaitre des taux d'accroissement".

Exemple 51. Montrer que ∀n ∈ N∗,
√
n+ 1−

√
n ≤ 1

2
√
n
.

Exemple 52. Montrer que si a et b sont des réels tels que a ≤ b ≤ −1, alors

eb − ea ≤ b− a

e

5. Applications de l'IAF à la monotonie.

Le lien entre la monotonie et la dérivée d'une fonction se démontre à l'aide de l'inégalité des accroissements
�nis.

Proposition 53. Soit f une fonction dé�nie et dérivable sur un intervalle I. Alors :

(i) La fonction f est croissante sur I si et seulement si : ∀x ∈ I, f ′(x) ≥ 0.

(ii) La fonction f est décroissante sur I si et seulement si : ∀x ∈ I, f ′(x) ≤ 0.

(iii) La fonction f est constante sur I si et seulement si : ∀x ∈ I, f ′(x) = 0.

Démonstration. À noter.

Remarque. Attention : la proposition devient complètement fausse si on ne se place pas sur un

intervalle. Penser à x 7→ 1

x
.
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Pour la monotonie stricte, la �vraie� condition équivalente est plus subtile et n'est pas donnée. On se
contente de cet énoncé.

Proposition 54. Soit f une fonction dé�nie et dérivable sur un intervalle I telle que :
∀x ∈ I, f ′(x) ≥ 0 (resp. ∀x ∈ I, f ′(x) ≤ 0).
Si f ′ ne s'annule qu'en un nombre �ni de points sur I, alors f est strictement croissante sur I
(resp. strictement décroissante sur I).

Démonstration. À noter.

Remarque. Ainsi, on pourra justi�er que f est strictement croissante sur I en véri�ant que l'inégalité
f ′(x) > 0 est vraie pour tout x ∈ I sauf en un nombre �ni de points (où la dérivée s'annulera dans ce
cas - admis et non trivial dans le cas général). Et idem pour la stricte décroissante (avec f ′(x) < 0).

Exemple 55. La fonction x 7→ x3 est strictement croissante sur R et sa dérivée x 7→ 3x2 est stricte-
ment positive sur R \ {0}.

6. Une condition su�sante d'extremum local

Proposition 56. Soit f : I → R une fonction dérivable sur l'intervalle I, et soit a ∈ I.
Si f ′ s'annule en a en changeant de signe, alors f admet un extremum local en a.
Autrement dit, s'il existe un réel δ > 0 tel que

(i) f ′(a) = 0,

(ii) ∀x ∈ I∩]a− δ, a], f ′(x) ≥ 0 (resp. f ′(x) ≤ 0),

(iii) ∀x ∈ I ∩ [a, a+ δ[, f ′(x) ≤ 0 (resp. f ′(x) ≥ 0),

alors f admet un extremum local en a.

Remarque. Cette proposition justi�e que le tableau de variation fait bien apparaitre les extrema
locaux de f .

Remarque. Dans le contexte de la proposition, si f ′ passe de négative à positive en a, alors f admet
un minimum local en a, et dans l'autre cas c'est un maximum local en a. Le tableau de variation rend
cela très clair.

Démonstration. À noter.

Exemple 57. Déterminons les extrema locaux de x 7→ x3 − x.
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7. Accroissements �nis et étude de suites

Voici des démarches très classiques où l'on utilise l'inégalité des accroissements �nis pour démontrer des
résultats de convergence sur des suites.

Exemple 58. Soit f :
R+ −→ R+

x 7−→
√
x+ 1

et (un)n∈N une suite positive telle que

∀n ∈ N, un+1 = f(un)

(i) Montrer que ∀x ∈ R+, |f ′(x)| ≤ 1

2
. (Préparation à l'utilisation de l'IAF)

(ii) Montrer qu'il existe un unique réel positif ϕ tel que f(ϕ) = ϕ. (On introduit un point �xe de f)

(iii) Montrer que : ∀n ∈ N, |un+1 − ϕ| ≤ |un − ϕ|
2

. (On utilise l'IAF)

(iv) En déduire : ∀n ∈ N, |un−ϕ| ≤ |u0 − ϕ|
2n

. (On itère la relation précédente, avec une récurrence)

(v) Montrer que : un −−−−−→
n→+∞

ϕ. (Et on conclut !)

(vi) On prend u0 = 1. Écrire un code Python fournissant une approximation à 10−6 près de ϕ.

Voici une autre version classique suivant une démarche proche, version "séries".

Exemple 59. Soit f :
R+ −→ R+

x 7−→
√
x+ 1

et (un)n∈N une suite positive telle que

∀n ∈ N, un+1 = f(un)

(i) Montrer que ∀x ∈ R+, |f ′(x)| ≤ 1

2
. (Idem)

(ii) En déduire ∀n ∈ N∗, |un+1 − un| ≤
|un − un−1|

2
(On utilise l'IAF et la question précédente)

(iii) En déduire ∀n ∈ N, |un+1 − un| ≤
|u1 − u0|

2n
(Encore une fois, on itère la relation précédente)

(iv) En déduire que la série
∑
n≥0

(un+1 − un) converge (On passe par la convergence absolue pour

utiliser la question précédente)

(v) En déduire que u converge. (Routinier, série télescopique)

(vi) Déterminer la limite de u. (Ici, on doit trouver les (le) points �xes de f , avec l'argument
d'unicité de la limite)
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