Lycée Clemenceau ECG 2

TP 1: TESTS, BOUCLES ET FONCTIONS (RÉVISIONS)

Exercice 1. Compléter la fonction en Python suivante pour qu'elle calcule et affiche la somme $S = \sum_{k=1}^{n} k^{k}$.

def somme(n):
s=0
---- return s

Exercice 2. A l'aide d'une boucle for, écrire une fonction en Python qui, étant donné un entier $n \ge 1$, calcule la valeur de $S = \sum_{k=1}^{n} \frac{1}{k}$.

Exercice 3. A l'aide d'une boucle for, écrire une fonction en Python qui, étant donné un entier $n \ge 1$, calcule la valeur de $\prod_{k=1}^{n} \left(1 + \frac{2}{k^2}\right)$.

Exercice 4. Soit f la fonction de \mathbb{R} dans \mathbb{R} définie par :

$$f(x) = \begin{cases} \sin(\pi x) & \text{si} & x \le -1\\ x^2 + x & \text{si} & -1 < x \le 0\\ e^x - 1 & \text{si} & x > 0 \end{cases}.$$

Ecrire une fonction en Python qui, étant donné un réel x, calcule f(x).

Exercice 5. Pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, on pose $f(n,x) = \sum_{k=0}^{n} \frac{x^k}{k!}$.

- (1) Ecrire une fonction en Python qui, étant donné un entier $n \geq 0$, calcule n!.
- (2) En déduire une fonction en Python qui, étant donnés un entier $n \ge 0$ et un réel x, calcule f(n,x).

Exercice 6. On considère la série $\sum_{n\geq 2} \frac{(-1)^n}{n\ln(n)}$. On admet que cette série converge et que, si S en est la somme, alors on a pour tout $n\geq 2$:

$$\left| S - \sum_{k=2}^{n} \frac{(-1)^k}{k \ln(k)} \right| \le \frac{1}{(n+1) \ln(n+1)}.$$

Ecrire une fonction en Python qui, étant donnée une précision $\varepsilon > 0$, calcule et affiche une valeur approchée de S à ε près.

Exercice 7. On considère la suite $(u_n)_{n\geq 0}$ définie par les conditions $u_0=1,\ u_1=2$ et par la relation de récurrence : $\forall n\in\mathbb{N},\ u_{n+2}=\frac{1}{2}u_{n+1}+\frac{1}{4}u_n$.

- (1) Ecrire une fonction récursive en Python qui, étant donné un entier $n \geq 0$, calcule la valeur de u_n .
- (2) Déterminer l'expression de u_n en fonction de n, puis vérifier que la suite (u_n) tend vers 0.
- (3) En déduire une fonction en Python qui, étant donné un réel $\varepsilon > 0$, détermine le plus petit entier $n \geq 0$ tel que $|u_n| \leq \varepsilon$.

Exercice 8. On considère la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = x^3 - x - 1$.

- (1) Justifier qu'il existe un unique réel $x_0 \in [1, 2]$ tel que $f(x_0) = 0$.
- (2) A l'aide d'une dichotomie, écrire une fonction en Python qui, étant donné un réel $\varepsilon > 0$, calcule une valeur approchée de x_0 à ε près.

1

Exercice 9. Soit $(a,b) \in \mathbb{R}^2$. On considère la suite $(u_n)_{n\geq 0}$ définie par les conditions $u_0 = a$, $u_1 = b$ et par la relation de récurrence : $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + nu_n$.

- (1) Ecrire une fonction récursive en Python qui, étant donnés des réels a, b et un entier $n \ge 0$, calcule la valeur de u_n .
- (2) En déduire une fonction en Python qui, étant donnés des réels a, b et un entier $n \ge 0$, calcule la valeur de $\sum_{k=0}^{n} u_k$.

Exercice 10. (Moyenne arithmético-géométrique) Pour tous réels a,b>0, on considère les suites $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ définies par $a_0=a,\ b_0=b$ et par : $\forall n\in\mathbb{N},\ a_{n+1}=\frac{1}{2}(a_n+b_n),\ b_{n+1}=\sqrt{a_nb_n}$.

- (1) (a) Montrer que, pour tout $n \ge 1$, on a : $b_n \le a_n$.
 - (b) En déduire que $(a_n)_{n\geq 1}$ est décroissante et $(b_n)_{n\geq 1}$ est croissante.
 - (c) En déduire que $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ convergent vers une même limite l. Cette limite commune est appelée la moyenne arithmético-géométrique de a et b.
 - (d) Justifier que le réel l est toujours compris entre a_n et b_n pour tout $n \in \mathbb{N}^*$.
- (2) (a) Compléter la fonction en Python suivante pour qu'elle calcule les valeurs de a_n et b_n si n > 0:

(b) Ecrire une fonction en Python qui, étant donnés trois réels $a,b,\varepsilon>0$, calcule une valeur approchée de la moyenne arithmético-géométrique l de a et b à ε près.