TRAVAUX DIRIGÉS: ESTIMATION

Exercice 1. Soit X une variable aléatoire qui suit la loi $\mathcal{N}(m, \sigma^2)$, et soit $(X_1, ..., X_n)$ un n-échantillon de la loi de X. On désigne par $\overline{X_n}$ la moyenne empirique de $(X_1,...,X_n)$, et l'on pose :

$$V_n = \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X_n})^2.$$

- (1) Déterminer la loi de la variable aléatoire $\overline{X_n}$.
- (2) Montrer que $\overline{X_n}$ est un estimateur sans biais et convergent de m.
- (3) Etablir la formule suivante : $E(V_n) = \frac{1}{n} \sum_{k=1}^n V(X_k \overline{X_n})$. (4) Montrer que $\lim_{n \to +\infty} E(V_n) = \sigma^2$.
- (5) En déduire un réel a_n tel que $T_n = a_n V_n$ soit un estimateur sans biais de σ^2 .

Exercice 2. On se propose d'estimer le paramètre θ de la loi uniforme sur $[0,\theta]$ à l'aide d'un échantillon $(X_1,...,X_n)$ de variables aléatoires indépendantes et qui suivent cette loi. Pour ce faire, on pose :

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^{n} X_k \text{ et } M_n = \sup\{X_1, ..., X_n\}.$$

- (1) Déterminer en fonction de $\overline{X_n}$ un estimateur sans biais T_n de θ .
- (2) Justifier que la variable aléatoire M_n est à densité et en donner une densité.
- (3) Déterminer en fonction de M_n un estimateur sans biais U_n de θ .
- (4) Les estimateurs T_n et U_n de θ sont-ils convergents? Justifier.
- (5) Qui, de T_n ou de U_n , est le meilleur estimateur de θ ? Justifier.

Exercice 3. On dit qu'une variable aléatoire X définie sur un espace probabilisé (Ω, \mathcal{A}, P) suit la loi de Pascal de paramètres $n \in \mathbb{N}^*$ et $p \in]0,1[$ si $X(\Omega) = [n,+\infty[$, et si pour tout $k \geq n$, on a :

$$P([X=k]) = \binom{k-1}{n-1} p^n q^{k-n} \quad \text{où} \quad q = 1-p.$$

Soient $T_1,...,T_n$ des variables aléatoires indépendantes suivant toutes la loi géométrique de paramètre p. Pour tout $k \in \{1,...,n\}$, on pose $S_k = T_1 + ... + T_k$. Par la suite, on admet que, pour tout $m \in \mathbb{N}$:

$$\sum_{i=m}^{+\infty} \binom{i}{m} q^{i-m} = \frac{1}{(1-q)^{m+1}}.$$

- (1) Montrer par récurrence sur k que S_k suit la loi de Pascal de paramètres k, p.
- (2) On suppose p inconnu. Montrer que $P_n = \frac{n-1}{S_n 1}$ est un estimateur sans biais de p.
- (3) Calculer l'espérance de la variable aléatoire $X_n = \frac{(n-1)^2}{(S_n-1)(S_n-2)}$ pour tout $n \ge 3$.
- (4) Montrer que $E(X_n) \geq E(P_n^2)$ et en déduire une majoration de $V(P_n)$ en fonction de p et n.
- (5) En déduire que P_n est un estimateur convergent de p.

Exercice 4. (ESCP 2016) Soit X une variable aléatoire qui suit la loi de Poisson de paramètre inconnu $\theta > 0$. Pour $n \geq 1$, on considère un n-échantillon $(X_1, ..., X_n)$ de la loi de X et l'on pose :

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- (1) Montrer que, pour tout c > 0, la variable aléatoire e^{-cM_n} admet une espérance et la calculer.
- (2) Pour tout $n \ge 2$, on pose $c_n = n \ln \left(\frac{n}{n-1} \right)$. On choisit $T_n = e^{-c_n M_n}$ comme estimateur de $e^{-\theta}$.
 - (a) Montrer que T_n est un estimateur sans biais de $e^{-\theta}$.
 - (b) Calculer la variance de T_n .
 - (c) En déduire que T_n est un estimateur convergent de $e^{-\theta}$.

Exercice 5. Soit m un réel > 0. On admet que la mesure d'une grandeur physique, dont la valeur exacte est égale à m, suit la loi normale d'espérance m et de variance $\frac{m^2}{100}$. On effectue une série de n mesures indépendantes notées $X_1,...,X_n$, et on désigne par Y_n la moyenne des résultats obtenus. Enfin, on définit *l'erreur relative* $commise \ sur \ m \ par :$

$$Z_n = \frac{Y_n - m}{m}.$$

- (1) Justifier que Y_n est un estimateur sans biais et convergent de m, puis donner la loi de Y_n .
- (2) A l'aide de l'inégalité de Bienaymé-Tchebychev, déterminer combien de mesures il faut effectuer pour que l'erreur relative commise sur m soit inférieure à 1% avec une probabilité supérieure à 0,9.
- (3) Répondre à la question précédente à l'aide de la loi de Y_n (note : $\Phi^{-1}(0,95) \simeq 1,645$). Que constate-t-on?

Exercice 6. Afin d'étudier le pourcentage p de consommateurs satisfaits par un produit A, on réalise un sondage auprès de 100 consommateurs, au cours duquel 56 d'entre eux se sont déclarés satisfaits par A.

- (1) A l'aide de l'inégalité de Bienaymé-Tchebychev, calculer un intervalle de confiance de p à 95%.
- (2) Calculer un intervalle de confiance asymptotique de $p \ge 95\%$ (note: $\Phi^{-1}(0,975) \simeq 1,96$).

Exercice 7. (ESCP 2016) Soit $\theta \in \mathbb{R}_+^*$ et soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi ayant pour densité la fonction f définie par :

$$f(t) = \left\{ \begin{array}{ll} \frac{2t}{\theta^2} & \mathrm{si} & t \in [0, \theta] \\ 0 & \mathrm{si} & t \not\in [0, \theta] \end{array} \right..$$

- (1) Pour tout $n \in \mathbb{N}^*$, on pose : $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$.
 - (a) Calculer $E(X_1)$ et en déduire que, pour tout $n \in \mathbb{N}^*$, $T_n = \frac{3}{2}\overline{X}_n$ est un estimateur sans biais de θ .
 - (b) Etudier la convergence en probabilités de $(T_n)_{n>1}$.
- (2) A l'aide du théorème limite central, déterminer un intervalle de confiance au niveau de confiance 95% pour θ basé sur l'estimateur \overline{X}_n (on rappelle que, si Φ est la fonction de répartition de la loi $\mathcal{N}(0,1)$, alors $2\Phi(t) - 1 = 0,95$ pour t = 1,96).
- (3) Pour tout $n \ge 1$, on pose : $M_n = \sup\{X_1, ..., X_n\}$.
 - (a) Calculer la fonction de répartition G_n de M_n .

 - (b) Soit $\delta > 0$. Etudier la convergence de la série $\sum_{n \geq 1} P(|M_n \theta| > \delta)$. (c) Calculer $E(M_n)$ et étudier les propriétés de $M'_n = \frac{2n+1}{2n} M_n$ en tant qu'estimateur de θ .
 - (d) Quel est, de T_n et de M'_n , le meilleur estimateur de θ ? Justifier.

Exercice 8. (ESCP 2017) Soit $\sigma \in \mathbb{R}_+^*$ et soit X une variable aléatoire qui suit la loi $\mathcal{N}(0, \sigma^2)$.

(1) Montrer que $U = \frac{X^2}{2\sigma^2}$ suit une loi γ dont on précisera le paramètre.

Soit $(X_n)_{n>1}$ une suite de variables aléatoires indépendantes de même loi que X.

- (2) (a) Pour tout $n \in \mathbb{N}^*$, déterminer la loi de $S_n = \frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$.
 - (b) Pour tout $n \in \mathbb{N}^*$, montrer que $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ est un estimateur sans biais de σ^2 .
- (3) Pour tout $n \ge 1$, on pose : $T_n = \frac{\Gamma(n/2)}{\Gamma((n+1)/2)} \sqrt{\frac{nY_n}{2}}$.
 - (a) Montrer que $\sqrt{Y_n}$ admet une espérance et la calculer en fonction de n et σ .
 - (b) En déduire que T_n est un estimateur sans biais de σ .
 - (c) Montrer que T_n admet une variance et la calculer en fonction de n et σ .
 - (d) Montrer que T_n est un estimateur convergent de σ . (On admetta que, pour tout x > 0, on $a : \Gamma(n+x) \sim n^x(n-1)!$).

1. Exercices supplémentaires

Exercice 9. Soit T une variable aléatoire qui suit la loi de Poisson de paramètre λ , et soient $T_1,...,T_n$ des variables aléatoires indépendantes de même loi que T. On pose :

$$M_n = \frac{1}{n} \sum_{k=1}^n T_k$$
 et $V_n = \frac{1}{n} \sum_{k=1}^n (T_k - M_n)^2$.

- (1) Calculer les moments d'ordre 1, 2, 3 de T.
- (2) Montrer que M_n est un estimateur sans biais de λ .
- (3) Calculer $E(T_k^2)$ $E(M_n^2)$ et $E(T_k M_n)$ pour tout $k \in \{1, ..., n\}$.
- (4) Est-ce que V_n est un estimateur sans biais de λ ? Justifier.
- (5) Proposer un estimateur W_n sans biais de λ construit à partir de V_n . (6) On admet que $V(W_n) = \frac{n\lambda(1+2\lambda)}{(n-1)^2}$. Quel est, entre M_n et W_n , le meilleur estimateur de λ ?

Exercice 10. Soit α un paramètre inconnu réel > 0. On considère une variable aléatoire à densité X, dont une densité f est définie par $f(x) = \frac{\alpha}{x^{\alpha+1}}$ si $x \ge 1$ et f(x) = 0 sinon. De plus, on considère un n-échantillon $(X_1,...,X_n)$ de la loi de X, et l'on pose $Y_n = \ln(X_1) + ... + \ln(X_n)$.

- (1) Déterminer la loi de la variable aléatoire ln(X).
- (2) Calculer l'espérance de Y_n , et en déduire un estimateur sans biais de $\frac{1}{\alpha}$.
- (3) Quelle est la variance de cet estimateur? Conclusion?

Exercice 11. Soit a un réel > 0. Soit X une variable aléatoire telle que Y = X - a suit la loi exponentielle de paramètre 1, et soit $(X_1,...,X_n)$ un *n*-échantillon de la loi de X. On pose :

$$Z_n = \frac{1}{n} \sum_{k=1}^n X_k$$
 et $T_n = \inf\{X_1, ..., X_n\}.$

- (1) Etablir que la variable aléatoire $W_n = T_n a$ suit la loi exponentielle de paramètre n.
- (2) Montrer que $Z'_n = Z_n 1$ est un estimateur sans biais et convergent de a.
- (3) Montrer que $T'_n = T_n \frac{1}{n}$ est un estimateur sans biais et convergent de a.
- (4) Quel est, entre les estimateurs Z'_n et T'_n de a, le meilleur des deux? Justifier.

Exercice 12. On considère un *n*-échantillon $(X_1,...,X_n)$ de la loi de Poisson de paramètre $\lambda > 0$. On suppose que λ est inconnu et on cherche à l'estimer par un intervalle de confiance. On pose :

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 et $T_n = \sqrt{n} \frac{\overline{X}_n - \lambda}{\sqrt{\lambda}}$.

- (1) Donner une approximation de la loi de T_n .
- (2) Soit $\alpha \in]0,1[$ et posons $t_{\alpha} = \Phi^{-1}(1-\frac{\alpha}{2})$. Résoudre l'inéquation $(\lambda \overline{X}_n)^2 \leq \frac{\lambda}{n}t_{\alpha}^2$ d'inconnue λ .
- (3) Déterminer en fonction de $\overline{X_n}$ un intervalle de confiance asymptotique de λ au niveau de confiance $1-\alpha$.

Exercice 13. (ESCP 2009) Soit $\theta \in \mathbb{R}_+^*$, soit X une variable aléatoire qui suit la loi $\mathcal{U}([0,\theta])$ et soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi que X. Pour tout $n \geq 1$, on pose :

$$Y_n = \sup(X_1, ..., X_n), \quad Z_n = \inf(X_1, ..., X_n), \quad T_n = \frac{2}{n}(X_1 + ... + X_n), \quad T_n' = \frac{n+1}{n}Y_n, \quad T_n'' = Y_n + Z_n.$$

- (a) Déterminer une densité, la fonction de répartition, l'espérance et la variance de X.
 - (b) Montrer que (T_n) est une suite convergente d'estimateurs sans biais de θ .
- (a) Montrer que Y_n est une variable à densité, puis déterminer son espérance et sa variance.
 - (b) Montrer que (T'_n) est une suite convergente d'estimateurs sans biais de θ .
 - (c) Comparer $V(T_n)$ et $V(T'_n)$. Quel est, de T_n et de T'_n , le meilleur estimateur de θ ?
- (3) (a) Montrer que Z_n est une variable à densité, puis déterminer son espérance et sa variance.
 - (b) Retrouver l'égalité $V(Y_n) = V(Z_n)$ sans calcul.
 - (c) Montrer que $V(T_n'') \leq 4V(Y_n)$.
 - (d) Montrer que (T''_n) est une suite convergente d'estimateurs sans biais de θ .

 - (e) Comparer $V(T''_n)$ et $V(T_n)$ lorsque n tend vers $+\infty$. (f) Quel est, de T_n et de T''_n , le meilleur estimateur de θ ?

Exercice 14. (Méthode de capture-recapture - ESCP 2012) On cherche à évaluer le nombre N de lions d'Asie, espèce en voie de disparition, encore en vie dans la forêt de Gir. Pour cela, on capture d'abord en une seule fois m lions (avec $m \in \mathbb{N}^*$) que l'on tatoue avant de les relâcher dans la nature. On admet que, pendant toute la durée de l'étude, il n'y a ni décès ni naissance, puis on utilise l'une des deux méthodes suivantes.

(1) Première méthode.

On capture successivement, au hasard (donc avec équiprobabilité) et avec remise en liberté après observation du sujet, n lions. Soit Y_n le nombre de lions tatoués parmi eux.

- (a) Déterminer la loi de Y_n . En déduire que $\frac{1}{nm}Y_n$ est un estimateur sans biais et convergent de $\frac{1}{N}$.
- (b) Pourquoi ne peut-on pas prendre $\frac{nm}{Y_n}$ comme estimateur de N? Justifier.
- (c) On pose $B_n = \frac{m(n+1)}{Y_n+1}$. Calculer l'espérance de B_n et montrer que $\lim_{n \to +\infty} B_n = N$.

(2) Deuxième méthode.

On se donne $n \in \mathbb{N}^*$. On capture également, un à un, des lions de Gir au hasard et avec remise en liberté après l'observation du sujet. Pour tout $i \in [\![1,n]\!]$, on désigne par X_i le nombre de lions qu'il a été juste nécessaire de capturer pour en obtenir i tatoués. On pose $D_1 = X_1$ et pour tout $i \in [\![2,n]\!]$, $D_i = X_i - X_{i-1}$. On admet que les variables aléatoires $D_1, ..., D_n$ sont indépendantes.

- (a) Pour tout $i \in [2, n]$, que représente concrètement D_i ?
- (b) Pour tout $i \in [2, n]$, déterminer la loi de D_i , son espérance et sa variance. En déduire l'espérance et la variance de X_n .
- (c) On pose $A_n = \frac{m}{n} X_n$. Montrer que A_n est un estimateur sans biais et convergent de N et déterminer son risque quadratique.
- (d) Pour n assez grand, par quelle loi peut-on approcher la loi de $\widetilde{X}_n = \frac{1}{n} X_n$?
- (e) On a tatoué m=200 lions, puis capturé 450 lions, pour obtenir n=50 lions marqués. On désigne par σ l'écart-type de A_{50} , et on a pu prouver que $\sigma \leq 100$. Déterminer un intervalle de confiance pour N au niveau de confiance 0,9 (on rappelle que $\Phi(1,64) \simeq 0,95$).

Exercice 15. (HEC 2018) Soit (X_n) une suite de variables aléatoires indépendantes et suivant toutes la loi uniforme sur $[-\theta, \theta]$, où θ est un paramètre inconnu. Pour tout $n \in \mathbb{N}^*$, on pose :

$$U_n = \inf\{X_1, ..., X_n\}$$
 et $V_n = \sup\{X_1, ..., X_n\}$.

- (1) Montrer que V_n est un estimateur convergent de θ .
- (2) Pour tout $n \in \mathbb{N}^*$, on pose : $T_n = \frac{1}{2} \sup \{X_i X_j, (i, j) \in [1, n]\}$.
 - (a) Exprimer T_n en fonction de U_n et V_n .
 - (b) En déduire que T_n est un estimateur convergent de θ .

Exercice 16. (ESCP 2021) Soit
$$n$$
 un entier ≥ 2 , soit $\theta \in \left[-\frac{1}{2}, \frac{1}{2} \right]$ et posons : $f_{\theta}(t) = \begin{cases} \frac{1-\theta}{2} & \text{si } t \in [-1, 0[\\ \frac{1+\theta}{2} & \text{si } t \in [0, 1]\\ 0 & \text{sinon} \end{cases}$.

Par la suite, on désigne par X une variable aléatoire admettant f_{θ} comme densité et par $(X_1, ..., X_n)$ un n-échantillon de la loi de X.

- (1) On pose : $F_n = \frac{1}{n} \sum_{k=1}^n X_k$.
 - (a) Déterminer un réel c tel que $\widehat{F_n}=cF_n$ soit un estimateur sans biais de θ .
 - (b) Montrer que $\widehat{F_n}$ est un estimateur convergent de θ .
- (2) Pour tout $k \in [1, n]$, on désigne par Y_n le nombre de variables parmi les variables X_k qui ont pris une valeur positive ou nulle.
 - (a) Montrer que Y_n suit une loi binomiale dont on donnera les paramètres.
 - (b) Montrer que $\widehat{\theta_n} = \frac{2}{n}Y_n 1$ est un estimateur sans biais de θ .
 - (c) Montrer que $\widehat{\theta_n}$ est un estimateur convergent de θ .
- (3) (a) Déterminer un réel $\lambda > 0$ tel que : $\left| \sqrt{1 \widehat{\theta_n}^2} \sqrt{1 \theta^2} \right| \le \lambda \left| \widehat{\theta_n} \theta \right|$.
 - (b) Montrer que $\sqrt{1-\widehat{\theta_n}^2}$ est un estimateur convergent de $\sqrt{1-\theta^2}$.
 - (c) Montrer que la suite $\left(\sqrt{n}\frac{\widehat{\theta_n}-\theta}{\sqrt{1-\theta^2}}\right)$ converge en loi vers une variable normale centrée réduite.