TRAVAUX DIRIGÉS : VARIABLES ALÉATOIRES À DENSITÉ -LOIS CONTINUES CLASSIQUES

1. Variables aléatoires à densité

Exercice 1. Soit f la fonction définie pour tout $x \in \mathbb{R}$ par $f(x) = \frac{1}{x^2}$ si x > 1 et par f(x) = 0 sinon.

- (1) Montrer que f est une densité d'une variable aléatoire X, et donner la fonction de répartition de X.
- (2) Soit n un entier ≥ 2 , et soient $X_1, ..., X_n$ des variables aléatoires indépendantes de densité f.
 - (a) Déterminer (si elles existent) l'espérance et la variance de X_i .
 - (b) On pose $Y = \min\{X_1, ..., X_n\}$. Déterminer la loi de Y.
 - (c) La variable aléatoire Y admet-elle une espérance?
 - (d) On pose $Z = \max\{X_1, ..., X_n\}$. Déterminer la loi de Z.
 - (e) La variable aléatoire Z admet-elle une espérance?

Exercice 2. Soit X une variable aléatoire à valeurs positives et admettant une densité f continue sur $[0, +\infty[$. On suppose de plus que X admet une espérance.

- (1) A l'aide d'une intégration par parties, montrer que $\int_0^x tf(t)dt = -xP([X \ge x]) + \int_0^x P([X \ge t])dt$. (2) Montrer que, pour tout $x \in \mathbb{R}_+^*$, on a : $0 \le xP([X \ge x]) \le \int_x^{+\infty} tf(t)dt = E(X) \int_0^x tf(t)dt$. (3) En déduire que $\lim_{x \to +\infty} xP([X \ge x]) = 0$.

- (4) Montrer que $\int_0^{+\infty} P([X \ge t]) dt$ converge et est égale à E(X).

Exercice 3. Pour tout $x \in \mathbb{R}$, on pose $F(x) = \frac{1}{1 + e^{-x}}$.

- (1) Montrer que F est la fonction de répartition d'une variable à densité X, et donner une densité de X.
- (2) Montrer que X admet des moments de tous ordres, puis calculer l'espérance de X.
- (3) Déterminer la fonction de répartition de $Y = \frac{e^X 1}{e^X + 1}$.
- (4) En déduire que Y est une variable à densité, et donner une densité de Y.
- (5) Montrer que Y admet une espérance que l'on calculera.

Exercice 4. (Loi exponentielle bilatérale) Soit $\alpha \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$, on pose $f(x) = \alpha e^{-|x|}$.

- (a) Trouver α pour que f soit une densité d'une variable aléatoire Z, puis calculer F_Z .
 - (b) Soient Z_1, Z_2 deux variables aléatoires indépendantes de densité f. Calculer une densité de $Z_1 + Z_2$.
- (2) Dans cette question, on considère deux variables aléatoires X,Y indépendantes à densité, de même densité g nulle sur \mathbb{R}_- et telle que $g(x) = e^{-x}$ pour tout x > 0, et l'on pose Z = X - Y et T = |Z|.
 - (a) Déterminer la fonction de répartition et une densité de -Y.
 - (b) Calculer une densité de Z, ainsi que son espérance. Que remarque-t-on?
 - (c) Montrer que T et X suivent la même loi, et en déduire l'espérance et la variance de T.

Exercice 5. (Loi de Rayleigh) Soit f la fonction définie par f(t) = 0 si t < 0 et $f(t) = te^{-\frac{t^2}{2}}$ si $t \ge 0$.

- (1) Montrer que f est une densité d'une variable aléatoire X.
- (2) Déterminer la fonction de répartition de X.
- (3) Justifier que X admet des moments de tous ordres.
- (4) Calculer l'espérance et la variance de X.
- (5) Déterminer la loi de $Y = X^2$.

Exercice 6. Soit F la fonction de répartition d'une variable aléatoire à densité. Montrer que la fonction gdéfinie pour tout $x \in \mathbb{R}$ par g(x) = F(x+1) - F(x) est une densité de probabilité.

Exercice 7. (Loi de Cauchy - HEC 2010) Soit $a \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$, on pose $f(x) = \frac{a}{x^2 + 1}$.

- (1) Déterminer a pour que f soit une densité d'une variable aléatoire X.
- (2) La variable aléatoire X admet-elle une espérance? Justifier.
- (3) Montrer que X et $\frac{1}{X}$ ont même loi (indication : calculer leurs fonctions de répartition).

Exercice 8. (Loi d'Euler - ESCP 2012) Pour tout $x \in \mathbb{R}$, on pose : $g(x) = \frac{2}{\pi(e^x + e^{-x})}$.

- (1) Montrer que g est une densité d'une variable aléatoire X.
- (2) Déterminer la fonction de répartition F_X de X.
- (3) Montrer que X admet des moments de tous ordres et calculer son espérance.
- (4) (a) Montrer que $Y = e^X$ est une variable à densité et déterminer une densité de Y.
 - (b) La variable aléatoire Y admet-elle une espérance? Justifier.
- (5) Soit $(Y_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et suivant la même loi que Y. Pour tout $n\in\mathbb{N}^*$, on pose $M_n=\sup(Y_1,Y_2,...,Y_n)$ et $Z_n=\frac{n}{M_n}$.
 - (a) Déterminer la fonction de répartition de M_n .
 - (b) Calculer $\lim_{n\to+\infty} F_{Z_n}(x)$ pour tout $x\in\mathbb{R}_+^*$ (indication: calculer $\arctan(x)+\arctan(\frac{1}{x})$ si x>0).

2. Lois continues classiques

Exercice 9. Soient U et V deux variables aléatoires indépendantes de même loi uniforme sur [0,1].

- (1) Déterminer la loi de X = 2U + 3.
- (2) Calculer la loi de $Y = \ln(U)$, puis celle de $Z = \ln\left(\frac{1}{V}\right)$.
- (3) On pose $T = \frac{U}{V}$. Déterminer la loi de $\ln(T)$, puis celle de T.

Exercice 10. Soient $U_1, ..., U_n$ des variables aléatoires (mutuellement) indépendantes, définies sur le même espace probabilisé et suivant toutes la loi uniforme sur [0,1]. On pose $X = \min\{U_1, ..., U_n\}$ et $Y = \max\{U_1, ..., U_n\}$.

- (1) Déterminer une densité de X, son espérance et sa variance.
- (2) Déterminer une densité de Y, son espérance et sa variance.

Exercice 11. Soit X une variable aléatoire suivant la loi uniforme sur $]-\frac{\pi}{2},\frac{\pi}{2}[$. Déterminer la loi de $Y=\tan(X)$. La variable aléatoire Y admet une espérance? une variance? Justifier.

Exercice 12. Soient X, Y, Z des variables aléatoires indépendantes à densité, qui suivent toutes la loi $\mathcal{U}([0,1])$.

- (1) Justifier que $-\ln(X)$ est une variable aléatoire à densité, et en donner une densité.
- (2) Calculer une densité de ln(X) + ln(Y) + ln(Z).
- (3) En déduire une densité de XYZ.

Exercice 13. Soit X une variable aléatoire suivant la loi exponentielle de paramètre 1. On pose $Y = -\sqrt{X}$. Que vaut $Y(\Omega)$? Déterminer la loi, l'espérance et la variance de Y.

Exercice 14. Soient $X_1, ..., X_n$ des variables aléatoires indépendantes suivant toutes la même loi exponentielle de paramètre $\lambda > 0$. Déterminer la loi de $Y_n = \min\{X_1, ..., X_n\}$, et en déduire l'espérance et la variance de Y_n .

Exercice 15. Soient X, Y des variables aléatoires indépendantes telles que $X \hookrightarrow \mathcal{E}(1)$ et $Y \hookrightarrow \mathcal{E}(2)$. Calculer une densité de X + Y. Même question si $X \hookrightarrow \mathcal{U}([0,1])$ et $Y \hookrightarrow \mathcal{E}(1)$.

Exercice 16. Soit X une variable aléatoire qui suit la loi gamma de paramètre $\frac{1}{2}$.

- (1) A l'aide de la loi normale centrée réduite, donner sans calcul la valeur de $\int_0^{+\infty} e^{-\frac{t^2}{2}} dt$.
- (2) A l'aide d'un changement de variable $u = \frac{t^2}{2}$, montrer que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- (3) Déterminer le moment $m_k(X)$ d'ordre k de X.

Exercice 17. Soient X et Y deux variables aléatoires indépendantes qui suivent la loi normale $\mathcal{N}(m, \sigma^2)$. Déterminer la loi de 4X - 3Y + 1.

Exercice 18. Soit X une variable aléatoire suivant la loi normale centrée réduite.

- (1) Justifier que X admet des moments de tous ordres.
- (2) Pour tout $n \in \mathbb{N}$, exprimer $E(X^{n+2})$ en fonction de $E(X^n)$ et de n.
- (3) En déduire que, pour tout $n \in \mathbb{N}$, on a :

$$E(X^n) = \begin{cases} \frac{(2p)!}{2^p p!} & \text{si } n = 2p \text{ est pair} \\ 0 & \text{si } n \text{ est impair} \end{cases}.$$

Exercice 19. Soit $n \in \mathbb{N}^*$, soit X une variable exponentielle de paramètre 1 et soit Y une variable binomiale de paramètres $n, \frac{1}{2}$. On suppose que X et Y sont indépendantes. Montrer que $Z = \frac{X}{Y+1}$ est une variable à densité et calculer une densité de Z.

Exercice 20. Soit U une variable uniforme sur]0,1], et soit $q \in]0,1[$. Trouver la loi de $X=1+\left|\frac{\ln(U)}{\ln(q)}\right|$.

Exercice 21. (HEC 2010) Soit n un entier ≥ 2 , et soient $X_1, ..., X_n$ des variables aléatoires indépendantes qui suivent la loi uniforme sur [0, 1].

- (1) Déterminer une densité de $Y_k = -\max\{X_1,...,X_k\}$ pour tout $k \in [1, n-1]$.
- (2) En déduire la valeur de $P([X_n \ge X_1] \cap ... \cap [X_n \ge X_{n-1}])$.

Exercice 22. (HEC 2012) Soit X une variable aléatoire à densité telle que $X(\Omega) \subset \mathbb{R}_{+}^{*}$.

- (1) Montrer que, si $X + \frac{1}{X}$ admet une espérance, alors X admet aussi une espérance.
- (2) La réciproque est-elle vraie? Justifier (indication : considérer une variable uniforme).

Exercice 23. (HEC 2013) Soit X une variable aléatoire suivant la loi exponentielle de paramètre $\lambda > 0$. On pose $Y = \lfloor X \rfloor$ et Z = X - Y.

- (1) Montrer que Y est une variable aléatoire et déterminer sa loi. Que dire de Y + 1?
- (2) Montrer que Z est une variable aléatoire et déterminer sa loi.
- (3) Les variables aléatoires Y et Z sont-elles indépendantes?

Exercice 24. (Loi du χ^2 de Pearson - ESCP 2019) On rappelle que $\Gamma(1/2) = \sqrt{\pi}$. Soit $r \in \mathbb{N}^*$. On dit qu'une variable aléatoire X suit la loi du χ^2 à r degrés de liberté (notation : $X \hookrightarrow \chi^2(r)$) si X admet une densité donnée par :

$$f_X(x) = \begin{cases} 0 & \text{si } x \le 0\\ \frac{x^{(r/2)-1}e^{-x/2}}{\Gamma(r/2)2^{r/2}} & \text{si } x > 0 \end{cases}.$$

- (1) Soit X une variable aléatoire suivant la loi $\chi^2(r)$. On pose $Z = \frac{X}{2}$ et $\nu = \frac{r}{2}$.
 - (a) Déterminer la loi de Z.
 - (b) En déduire l'espérance et la variance de X.
- (2) (a) Montrer que, pour tout $\lambda > 0$ et pour tout $n \in \mathbb{N}^*$, on a :

$$e^{\lambda} = \sum_{k=0}^{n-1} \frac{\lambda^k}{k!} + \int_0^{\lambda} e^{\lambda - t} \frac{t^{n-1}}{(n-1)!} dt.$$

- (b) Soit Y_{λ} une variable aléatoire suivant la loi de Poisson $\mathcal{P}(\lambda)$, et soit X une variable aléatoire suivant la loi $\chi^2(2n)$. Montrer que $P([X_{2n} > 2\lambda]) = P([Y_{\lambda} < n])$.
- (c) Ecrire une fonction en Python qui, étant donnés un entier $n \ge 1$ et un réel x > 0, calcule et affiche la valeur de $P([X_{2n} > x])$.
- (3) Soit $k \in \mathbb{N}^*$ et soient $X_1, ..., X_k$ des variables aléatoires indépendantes suivant toutes la loi $\mathcal{N}(0, 1)$.
 - (a) Déterminer la loi de X_1^2 .
 - (b) En déduire la loi de $\sum_{i=1}^{\bar{n}} X_i^2$.
 - (c) Soient r et s deux entiers tels que 2 < r < s. Soient T_r et T_s deux variables aléatoires qui suivent respectivement la loi $\chi^2(r)$ et la loi $\chi^2(s)$. Tracer sur un même graphique l'allure des fonctions de répartition de T_r et T_s (indication: comparer $P([T_r \le x])$ et $P([T_s \le x])$).

Exercice 25. (Loi de Pareto - HEC 2021) On dit qu'une variable aléatoire X définie sur un espace probabilisé (Ω, \mathcal{A}, P) suit la distribution de Lévy-Pareto s'il existe un réel $\varepsilon > 0$ tel que (1) $P([X > \varepsilon]) = 1$, (2) pour tout $\eta > \varepsilon$, on a $P([X > \eta]) > 0$ et (3) pour tous réels $\eta_1, \eta_2 > \varepsilon$, la loi de $\frac{X}{\eta_1}$ sachant $[X > \eta_1]$ est la même que celle de $\frac{X}{\eta_2}$ sachant $[X > \eta_2]$, c'est-à-dire :

$$\forall x \in \mathbb{R}, \quad P_{[X > \eta_1]} \left(\left\lceil \frac{X}{\eta_1} > x \right\rceil \right) = P_{[X > \eta_2]} \left(\left\lceil \frac{X}{\eta_2} > x \right\rceil \right).$$

Déterminer la forme d'une densité de X (indication : vérifier que $Z = \ln\left(\frac{X}{\varepsilon}\right)$ suit une loi sans mémoire).

Exercice 26. (HEC 2021) Soient X et Y des variables aléatoires indépendantes, à valeurs dans $]0, +\infty[$ et telles que $\ln(X)$ et $\ln(Y)$ suivent la loi normale centrée réduite. Calculer une densité de $Z = (X.Y)^{\frac{1}{\sqrt{2}}}$.

3. Exercices supplémentaires

Exercice 27. Soit $t \in \mathbb{R}_{+}^{*}$ et soient X et Y deux variables aléatoires indépendantes qui suivent la loi $\mathcal{E}(1)$.

- (1) Déterminer une densité de la variable aléatoire -tX.
- (2) Montrer que la variable aléatoire Y tX admet pour densité la fonction h définie par :

$$h(x) = \begin{cases} \frac{e^{-x}}{t+1} & \text{si } x > 0\\ \frac{e^{x/t}}{t+1} & \text{si } x \le 0 \end{cases}.$$

- (3) En déduire la fonction de répartition de la variable aléatoire Z = Y/X.
- (4) Déterminer la loi de la variable aléatoire $U = \frac{X}{X+Y}$.

Exercice 28. (Loi log-normale) On considère la fonction f définie par :

$$f(x) = \begin{cases} \frac{1}{x\sqrt{2\pi}} e^{-\frac{1}{2}(\ln(x) - 1)^2} & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}.$$

- (1) (a) Montrer que f est une densité d'une variable aléatoire X.
 - (b) Exprimer la fonction de répartition de X à l'aide de celle de la loi normale centrée réduite.
 - (c) Calculer l'espérance et la variance de X.
- (2) Soit X une variable gaussienne de paramètres m et σ^2 . On pose $Y = e^X$.
 - (a) Déterminer une densité de Y.
 - (b) Calculer l'espérance et la variance de Y.

Exercice 29. (Loi de Pareto) Soient $\alpha, a, x_0, \lambda \in \mathbb{R}$ tels que $\alpha, a > 0$. On considère la fonction f définie par :

$$f(x) = \mathbb{1}_{]x_0 + a, +\infty[}(x) \lambda \left(\frac{a}{x - x_0}\right)^{\alpha + 1}.$$

- (1) Déterminer λ pour que f soit une densité d'une variable aléatoire X.
- (2) Soit X une variable aléatoire de densité f, où λ est la valeur trouvée à la question (1).
 - (a) Déterminer la fonction de répartition de X.
 - (b) Etudier l'existence et les valeurs éventuelles de E(X) et V(X).
 - (c) Déterminer la loi de $Z = \beta \gamma^T$, où $\beta > 0$, $\gamma > 1$ et $T \hookrightarrow \mathcal{E}(\mu)$.

Exercice 30. (ESCP 2017) Soit α un réel > 0 et soit $(Y_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) . On suppose que, pour tout $i \in \mathbb{N}^*$, Y_i suit la loi exponentielle de paramètre $i\alpha$. Enfin, pour tout $n \in \mathbb{N}^*$, on pose $Z_n = \sum_{i=1}^n Y_i$ et on désigne par g_n une densité de Z_n nulle \mathbb{R}_{-} et continue sur \mathbb{R}_{+}^{*} .

- (1) (a) Déterminer la fonction g_2 .
 - (b) Montrer que, pour tout $n \in \mathbb{N}^*$ et pour tout x > 0, on a : $g_n(x) = n\alpha e^{-\alpha x}(1 e^{-\alpha x})^{n-1}$.
 - (c) Calculer l'espérance de \mathbb{Z}_n sous la forme d'une somme, puis donner un équivalent simple de $\mathbb{E}(\mathbb{Z}_n)$ quand n tend vers $+\infty$ (indication: montrer que la suite $(\sum_{k=1}^{n} \frac{1}{k} - \ln(n))_{n\geq 1}$ converge).
 - (d) Calculer la variance de Z_n sous la forme d'une somme, puis montrer que la suite $(V(Z_n))_{n\geq 1}$ admet une limite finie quand n tend vers $+\infty$.
- (2) Pour tout n∈ N*, on pose U_n = 1/n Z_n.
 (a) Déterminer la fonction de répartition H_n de U_n.

 - (b) Calculer $\lim_{x \to \infty} H_n(x)$ pour tout $x \in \mathbb{R}$.
 - (c) Calculer $\lim_{n \to +\infty} E(U_n)$ et $\lim_{n \to +\infty} V(U_n)$.

Exercice 31. (HEC 2018) On note Φ la fonction de répartition de la loi normale centrée réduite.

(1) Montrer que, pour tout x > 0, on a :

$$\left(\frac{1}{x} - \frac{1}{x^3}\right)e^{-x^2/2} \le \sqrt{2\pi} \left(1 - \Phi(x)\right) \le \frac{1}{x}e^{-x^2/2}$$

(indication : utiliser des études de fonction).

(2) Soit X une variable normale centrée réduite. Calculer $\lim_{x \to +\infty} P_{[X \ge x]} \left(\left[X \ge x + \frac{1}{x} \right] \right)$.