TRAVAUX DIRIGÉS: CONVERGENCES ET APPROXIMATIONS

Exercice 1. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de même loi uniforme sur [0,1], et posons $Y_n = \inf\{X_1, ..., X_n\}$. Montrer que la suite (Y_n) converge en probabilité vers la variable certaine nulle.

Exercice 2. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires et soit X une variable aléatoire. On suppose que toutes ces variables aléatoires admettent une variance, et que de plus :

$$\lim_{n \to +\infty} E(X_n) = E(X) \quad \text{et} \quad \lim_{n \to +\infty} V(X_n - X) = 0.$$

A l'aide de l'inégalité de Markov, montrer que (X_n) converge en probabilité vers X.

Exercice 3. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables de Bernoulli indépendantes et de paramètre $p\in]0,1[$. Pour tout $n\in\mathbb{N}^*$, on pose $Y_n=X_nX_{n+1}$ et :

$$S_n = \frac{Y_1 + \dots + Y_n}{n}.$$

- (1) Déterminer la loi de Y_n pour tout $n \in \mathbb{N}^*$.
- (2) Calculer la covariance de (Y_n, Y_m) pour tous $n, m \in \mathbb{N}^*$ tels que $n \neq m$.
- (3) Les variables aléatoires Y_n et Y_m sont-elles indépendantes? Justifier.
- (4) Montrer que (S_n) converge en probabilité vers la variable certaine égale à p^2 .

Exercice 4. (Inégalité de Cantelli et applications) Soit X une variable aléatoire admettant une variance égale à σ^2 , où $\sigma > 0$, et soit t un réel > 0.

- (1) (a) A l'aide de l'inégalité de Markov, montrer que : $\forall \lambda \geq 0, \ P(X E(X) \geq t) \leq \frac{\sigma^2 + \lambda^2}{(t + \lambda)^2}.$
 - (b) Etudier la fonction $f: \lambda \longmapsto \frac{\sigma^2 + \lambda^2}{(t+\lambda)^2}$ sur \mathbb{R}_+ , et en déduire que : $P(X E(X) \ge t) \le \frac{\sigma^2}{\sigma^2 + t^2}$.
- (2) Dans cette question, on considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires définies sur un même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes et admettant toutes une espérance nulle et une variance égale à σ^2 , où $\sigma > 0$. Pour tout $\omega \in \Omega$, on pose $N(\omega) = \inf\{n \in \mathbb{N}^* | X_n(\omega) \le 1\}$ et par convention, on a $N(\omega) = 0$ si $X_n(\omega) > 1$ pour tout $n \in \mathbb{N}^*$. Par la suite, on admet que N est une variable aléatoire discrète, et cette variable aléatoire est appelée un temps d'arrêt.
 - (a) A l'aide de la question (1), établir que : $\forall n \in \mathbb{N}^*, P([N=n]) \leq P([N>n-1]) \leq \left(\frac{\sigma^2}{\sigma^2+1}\right)^{n-1}$.
 - (b) En déduire que P([N=0]) = 0.
 - (c) En déduire que N admet des moments de tous ordres, puis qu'il existe un réel $\alpha>0$ tel que $e^{\alpha N}$ admet un espérance.

Exercice 5. (HEC 2008) Soit θ un réel > 0. Pour tout $n \in \mathbb{N}^*$, on désigne par X_n une variable aléatoire suivant la loi de Poisson de paramètre $n\theta$.

- (1) Montrer que la suite $\left(\frac{X_n n\theta}{n}\right)$ converge en probabilité vers la variable nulle.
- (2) En déduire l'existence et la valeur de $\lim_{n\to+\infty}e^{-n\theta}\sum_{k\le nx}\frac{(n\theta)^k}{k!}$ pour tout $x\neq\theta$.
- (3) A l'aide du théorème limite central, établir l'existence et la valeur de $\lim_{n\to+\infty} e^{-n\theta} \sum_{k\leq n\theta} \frac{(n\theta)^k}{k!}$.

Exercice 6. Soit X une variable aléatoire à densité ne prenant que des valeurs ≥ 0 , et soit $(X_n)_{n \in \mathbb{N}^*}$ la suite de variables aléatoires définie pour tout $n \in \mathbb{N}^*$ par $X_n = \frac{\lfloor nX \rfloor}{n}$. Montrer que $(X_n)_{n \in \mathbb{N}^*}$ converge en loi vers X.

Exercice 7. (HEC 2011) Soit $\theta \in \mathbb{R}_+^*$ et soit $(U_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes et suivant toutes la loi uniforme sur $[0, \theta]$. Pour tout $n \in \mathbb{N}^*$, on pose $X_n = \max\{U_1, ..., U_n\}$.

- (1) Prouver que la suite (X_n) converge en probabilité vers θ .
- (2) Etudier la convergence en loi de $Y_n = n(\theta X_n)$.

Exercice 8. (HEC 2015) Soit $p \in]0,1[$ et soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables indépendantes et suivant toutes la loi de Bernoulli de paramètre p. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{i=1}^n X_i$ et $M_n = \frac{1}{n}S_n$.

- (1) Déterminer $\lim_{n\to+\infty} E(e^{M_n})$.
- (2) Etudier la convergence en probabilité de la suite de variables aléatoires $(e^{M_n})_{n\in\mathbb{N}^*}$.

Exercice 9. Soit b un réel > 0, et soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires indépendantes de même loi, admettant pour densité la fonction f définie pour tout $x \in \mathbb{R}$ par :

$$f(x) = \begin{cases} e^{-(x-b)} & \text{si} \quad x \ge b \\ 0 & \text{si} \quad x < b \end{cases}.$$

De plus, pour tout $n \in \mathbb{N}^*$, on pose $M_n = \inf\{X_1, ..., X_n\}$.

- (1) Justifier que f est bien une densité de probabilité.
- (2) Etudier la convergence en loi de la suite (M_n) .
- (3) Etudier la convergence en probabilité de la suite (M_n) .

Exercice 10. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes à valeurs dans $[-1, +\infty[$, dont la loi est donnée pour tout $n\in\mathbb{N}^*$ par :

$$\forall k \in [-1, +\infty[, P([X_n = k]) = \frac{1}{e(k+1)!}]$$

- (1) Déterminer la loi de $S_n = X_1 + ... + X_n$ pour tout $n \in \mathbb{N}^*$.
- (2) A l'aide du théorème limite central, montrer que : $\lim_{n\to+\infty} P([S_n \le 0]) = \frac{1}{2}$.

Exercice 11. Pour tout $x \in \mathbb{R}$, on pose $f_n(x) = (n+1)(1-x)^n$ si $x \in [0,1]$, et $f_n(x) = 0$ sinon.

- (1) Vérifier que f_n est une densité de probabilité.
- (2) Calculer la fonction de répartition de $Y_n = nX_n$, où X_n est une variable aléatoire de densité f_n .
- (3) Montrer que (Y_n) converge en loi vers une variable aléatoire suivant une loi exponentielle.

Exercice 12. (HEC 2012) Soit $(U_n)_{n\in\mathbb{N}^*}$ une suite de variables indépendantes, définies sur un espace probabilisé (Ω, \mathcal{A}, P) et suivant toutes la loi uniforme sur]0,1]. Pour tout $n\in\mathbb{N}^*$, on pose :

$$X_n = \prod_{i=1}^n U_i^{\frac{1}{n}} \quad \text{et} \quad Y_n = (eX_n)^{\sqrt{n}}.$$

Montrer que la suite $(\ln(Y_n))_{n\geq 1}$ converge en loi vers une variable aléatoire dont on précisera la loi.

Exercice 13. (ESCP 2017) Soit $\alpha \in \mathbb{R}_+^*$ et soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes telle que Y_k suit la loi exponentielle de paramètre $k\alpha$ pour tout $k \in \mathbb{N}^*$. Pour tout $n \in \mathbb{N}^*$, on pose $Z_n = \sum_{k=1}^n Y_k$ et on note g_n une densité de Z_n nulle sur \mathbb{R}_+ et continue sur \mathbb{R}_+^* .

- (1) (a) Déterminer une densité g_2 de Z_2 .
 - (b) Montrer que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}_+^*$, on a : $g_n(x) = n\alpha e^{-\alpha x}(1 e^{-\alpha x})^{n-1}$.
 - (c) Exprimer l'espérance de Z_n sous la forme d'une somme, et en donner un équivalent simple quand n tend vers $+\infty$ (indication: on admet que $\sum_{k=1}^{n} \frac{1}{k} \sim \ln(n)$).
 - (d) Exprimer la variance de Z_n sous la forme d'une somme, et montrer qu'elle admet une limite finie quand n tend vers $+\infty$.
- (2) Pour tout $n \in \mathbb{N}^*$, on pose : $U_n = \frac{1}{n} Z_n$.
 - (a) Déterminer la fonction de répartition de H_n de U_n .
 - (b) Montrer que la suite $(U_n)_{n>1}$ converge en loi et déterminer la loi limite.
 - (c) Montrer que la suite $(U_n)_{n\geq 1}$ converge en probabilité vers une variable aléatoire que l'on précisera.
 - (d) Déterminer la limite des suites $(E(U_n))_{n\geq 1}$ et $(V(U_n))_{n\geq 1}$.

Exercice 14. Soit X une variable aléatoire qui suit la loi de Poisson $\mathcal{P}(25)$. Calculer des valeurs approchées de P([X > 25]) et $P([X \le 30])$ (note : $\Phi(1) \simeq 0,8413$).

Exercice 15. Un étudiant se trompe en moyenne à une question sur 2 dans un DS. Donner une valeur approchée de la probabilité de faire au plus 15 erreurs dans un DS comportant 36 questions ($note : \Phi(1) \simeq 0,8413$).

Exercice 16. Soient $X_1, ..., X_{100}$ des variables aléatoires indépendantes admettant une espérance commune m=1 et une variance commune $\sigma^2=\frac{1}{2}$, et posons $S=\frac{1}{100}(X_1+...+X_{100})$. Calculer une valeur approchée de $P([S\leq 1,10])$ (note : $\Phi(\sqrt{2})\simeq 0,9310$).

1. Exercices supplémentaires

Exercice 17. A l'aide de l'inégalité de Bienaymé-Tchebychev, montrer que, pour tout x>0:

$$\int_0^x e^{-t^2/2} dt \ge \sqrt{\frac{\pi}{2}} \left(1 - \frac{1}{x^2} \right).$$

Exercice 18. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires admettant toutes une espérance et une variance. On suppose qu'il existe un réel m tel que :

$$\lim_{n \to +\infty} E(X_n) = m \quad \text{et} \quad \lim_{n \to +\infty} V(X_n) = 0.$$

- (1) A l'aide de l'inégalité de Markov, montrer que : $\forall \varepsilon > 0, P([|X_n m| \ge \varepsilon]) \le \frac{V(X_n) + (E(X_n) m)^2}{\varepsilon^2}$.
- (2) En déduire que $(X_n)_{n\in\mathbb{N}^*}$ converge en probabilité vers la variable certaine égale à m.
- (3) Dans cette question, on suppose que X_n suit la loi géométrique de paramètre $\frac{n}{n+1}$ pour tout $n \in \mathbb{N}^*$. Etudier la convergence en probabilité de la suite (e^{X_n}) .

Exercice 19. (Convergence presque sûre) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires et soit X une variable aléatoire. On suppose que la suite $(X_n)_{n\in\mathbb{N}}$ converge presque sûrement vers X, c'est-à-dire :

$$P(A) = 1$$
, où $A = \left\{ \omega \in \Omega \mid \lim_{n \to +\infty} X_n(\omega) = X(\omega) \right\}$.

- (1) Soit $\varepsilon > 0$ et posons $B_n = \bigcap_{k=n}^{+\infty} [|X_k X| \le \varepsilon]$ pour tout $n \in \mathbb{N}$. Montrer que : $A \subset \bigcup_{n=0}^{+\infty} B_n$.
- (2) A l'aide de la propriété de limite monotone, déterminer la limite de la suite $(P(B_n))_{n\in\mathbb{N}}$.
- (3) En déduire que (X_n) converge en probabilité vers X.

Exercice 20. (Convergence en moyenne) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires et soit X une variable aléatoire. On dit que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en moyenne vers X s'il existe un rang $n_0 \in \mathbb{N}$ tel que, pour tout $n \geq n_0$, $|X_n - X|$ admet une espérance et si :

$$\lim_{n \to +\infty} E(|X_n - X|) = 0.$$

- (1) Montrer que, si $(X_n)_{n\in\mathbb{N}^*}$ converge en moyenne vers X, alors $(X_n)_{n\in\mathbb{N}^*}$ converge en probabilité vers X.
- (2) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables de Poisson indépendantes de même paramètre $\lambda \geq 1$. Pour tout entier $n \in \mathbb{N}^*$, on pose : $Y_n = X_1...X_n$.
 - (a) Calculer $P([Y_n \neq 0])$ pour tout $n \in \mathbb{N}^*$.
 - (b) En déduire que $(Y_n)_{n\in\mathbb{N}^*}$ converge en probabilité vers la variable certaine nulle.
 - (c) Calculer $E(Y_n)$ pour tout $n \in \mathbb{N}^*$, et en déduire que $(Y_n)_{n \in \mathbb{N}^*}$ ne converge pas en moyenne.

Exercice 21. Pour tout $x \in \mathbb{R}$, on pose : $f(x) = \frac{e^{-x}}{(1 + e^{-x})^2}$.

- (1) Montrer que f est une densité de probabilité.
- (2) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de densité f. Pour tout $n\in\mathbb{N}^*$, on pose $M_n=\max(X_1,...,X_n)$ et $T_n=ne^{-M_n}$.
 - (a) Déterminer la fonction de répartition de M_n .
 - (b) Montrer que la suite $(T_n)_{n>1}$ converge en loi vers une variable aléatoire dont on donnera la loi.

Exercice 22. Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} x^{n-1} e^{-x} dx$ et $J_n = \frac{2^n}{(n-1)!} \int_{(n+\sqrt{n})/2}^{+\infty} x^{n-1} e^{-2x} dx$.

- (1) Pour tout $n \in \mathbb{N}^*$, justifier la convergence de l'intégrale I_n et calculer sa valeur en fonction de n.
- (2) Dans cette question, on considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes et suivant toutes la loi exponentielle de paramètre 1, et l'on pose $S_n = \sum_{k=1}^n X_k$.
 - (a) Donner la loi de la variable aléatoire S_n .
 - (b) Montrer que, pour tout $n \ge 1$, on a : $J_n = P([S_n \ge n + \sqrt{n}])$.
 - (c) En déduire la limite de la suite $(J_n)_{n>1}$.

Exercice 23. Soit λ un réel > 0. Pour tout entier $n \ge \lambda$, on considère une suite $(X_{i,n})_{i\ge 1}$ de variables aléatoires indépendantes telle que, pour tout $i \in \mathbb{N}^*$, $X_{i,n}$ suit la loi de Bernoulli de paramètre λ/n , et l'on pose :

$$N_n = \frac{1}{n} \inf\{i \in \mathbb{N}^*, \ X_{i,n} = 1\}.$$

Etudier la convergence en loi de la suite $(N_n)_{n\geq\lambda}$ (indication : calculer $P([N_n\geq x])$ pour tout $x\in\mathbb{R}$).

Exercice 24. (HEC 2010) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires définies sur un même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes et de même loi. On suppose qu'il existe des réels $\alpha, \lambda > 0$ tels que :

$$P([X_1 > x]) \underset{x \to +\infty}{\sim} \frac{\alpha}{x^{\lambda}}.$$

Pour tout $n \in \mathbb{N}^*$, on pose $Z_n = n^{-\frac{1}{\lambda}} \max\{X_1, ..., X_n\}$. Montrer que la suite de variables aléatoires (Z_n) converge en loi vers une variable aléatoire dont on déterminera la loi.

Exercice 25. (HEC 2015) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes, définies sur un espace probabilisé (Ω, \mathcal{A}, P) . On suppose que, pour tout $n \in \mathbb{N}^*$, X_n suit la loi uniforme sur $\left[\frac{1}{n(n+1)} - 1, \frac{1}{n(n+1)} + 1\right]$. Pour tout $n \in \mathbb{N}^*$, on pose :

$$Y_n = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \left(X_k - \frac{1}{k(k+1)} \right).$$

- (1) Question de cours : définition de la convergence en loi d'une suite de variables aléatoires.
- (2) (a) Justifier la convergence de la série $\sum_{n\geq 1} \frac{1}{n(n+1)}$.
 - (b) On pose $r_n = \sum_{k=n+1}^{+\infty} \frac{1}{k(k+1)}$ le reste de la série ci-dessus. Calculer $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$ et r_n .
- (3) (a) Donner la loi, l'espérance et la variance de $X_k \frac{1}{k(k+1)}$ pour tout $k \in \mathbb{N}^*$.
 - (b) Etudier la convergence en loi de la suite $(Y_n)_{n\geq 1}$.
- (a) Montrer que, pour tout $\varepsilon > 0$, il existe un entier $n_0 \in \mathbb{N}^*$ tel que, pour tout $n \ge n_0$:

$$P\left(Y_n \le \frac{1}{\sqrt{n(n+1)}}\right) \le P(Y_n \le \varepsilon).$$

- (b) Déterminer $\lim_{n\to+\infty} P(Y_n \leq \varepsilon)$.
- (c) En déduire la valeur de $\lim_{n\to+\infty} P(\sum_{k=1}^n X_k \le 1)$.

Exercice 26. (ESCP 2017) Soit (X_n) une suite de variables aléatoires qui converge en probabilité vers une variable aléatoire X, soit (c_n) une suite de réels qui converge vers un réel c et soit ε un réel > 0.

- $(1) \ \text{Montrer que}: \left[|c_n X_n c X| \ge \varepsilon \right] \subset \left[|c_n|.|X_n X| \ge \frac{\varepsilon}{2} \right] \bigcup \left[|c_n c|.|X| \ge \frac{\varepsilon}{2} \right].$
- (2) Justifier que : $\lim_{n \to +\infty} P\left(|X_n X| \ge \frac{\varepsilon}{2(|c| + \varepsilon)}\right) = 0.$
- (3) Montrer que : $\lim_{n \to \infty} P\left(|c_n c| | X| \ge \frac{\varepsilon}{2}\right) = 0$ (indication : utiliser la propriété de limite monotone).
- (4) En déduire que la suite $(c_n X_n)$ converge en probabilité vers cX.
- (5) **Application:** Soit (X_n) une suite de variables aléatoires indépendantes et de même loi, admettant un moment d'ordre 4 et d'espérance commune μ . Pour tout entier $n \geq 2$, on pose :

$$Y_n = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} X_i X_j.$$

Montrer que (Y_n) converge en probabilité vers μ^2 (indication : on pourra établir au préalable l'égalité $Y_n = \frac{n}{n-1} \left(\frac{1}{n} \sum_{k=1}^n X_k\right)^2 - \frac{1}{n(n-1)} \sum_{k=1}^n X_k^2$).

Exercice 27. (ESCP 2018) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes définies sur un même espace probabilisé (Ω, \mathcal{A}, P) , telle que pour tout $n \in \mathbb{N}^*$:

$$P([X_n = -1]) = P([X_n = 1]) = \frac{1}{2}.$$

Pour tout $n \ge 1$, on pose : $S_n = X_1 + ... + X_n$.

- (1) Calculer les moments d'ordre $k \geq 1$ de chaque X_i , puis l'espérance et la variance de S_n .
- (2) Montrer par récurrence que, pour tout $n \ge 1$, on a : $E(S_n^4) = 3n^2 2n$.

Dans la suite, on pose pour tout entier $n \ge 1$:

$$U_n = \left(\frac{S_n}{n}\right)^4$$
 et $A_n = \left\{\omega \in \Omega, \ \exists k \ge n, \ U_k(\omega) \ge \frac{1}{\sqrt{k}}\right\}.$

- (a) Montrer que, pour tout $n \ge 1$, on a : $P\left(\left[U_n \ge \frac{1}{\sqrt{n}}\right]\right) \le \frac{3}{n^{3/2}}$. (b) Montrer que A_n est un événement pour tout $n \ge 1$, puis que : $\lim_{n \to +\infty} P(A_n) = 0$.
- (c) On pose $A = \bigcap_{n=1}^{\infty} A_n$. Montrer que P(A) = 0 et que, pour tout $\omega \in \Omega \setminus A$: $\lim_{n \to +\infty} \frac{S_n(\omega)}{n} = 0$.