TRAVAUX DIRIGÉS: SÉRIES NUMÉRIQUES (RÉPONSES - INDICATIONS)

Exercice 1.

$$(1) div$$
 , $(2) cv$, $(3) cv$, $(4) div$,

$$(5) \text{ cv}$$
 , $(6) \text{ cv}$, $(7) \text{ cv}$, $(8) \text{ cv}$,

$$(9) \text{ div } , (10) \text{ cv } , (11) \text{ cv } , (12) \text{ div } ,$$

$$(13) \text{ cv}$$
 , $(14) \text{ cv}$, $(15) \text{ cv}$, $(16) \text{ div}$,

$$(17) \text{ cv}$$
 , $(18) \text{ div}$, $(19) \text{ div}$, $(20) \text{ cv}$.

Exercice 2.

- (1) $\sum (\sqrt{n+1} \sqrt{n})^a$ converge si et seulement si a > 2.
- (2) $\sum \ln \left(1 + \frac{1}{n^a}\right)$ converge si et seulement si a > 1.

Exercice 3.

- (1) $\sum 2 \ln(n^3 + n^2) 3 \ln(n^2 + n)$ diverge. (2) $\sum \sqrt[n]{n+1} \sqrt[n]{n}$ converge.
- (3) $\sum 2 + n \ln \left(\frac{n-1}{n+1} \right)$ converge.

Exercice 4. Soit $p \in \mathbb{N}$. Montrer que les séries suivantes convergent et calculer leur somme :

$$(1) \quad \frac{3}{4}$$

(2)
$$\frac{4}{9}e^{1/3}$$

, (2)
$$\frac{4}{9}e^{1/3}$$
 , (3) 1 , (4) $\frac{e}{(e-1)^3}$,

(5) 1 , (6)
$$\frac{e^2 + e^{-2}}{2}$$
 , (7) $\frac{64}{27}$, (8) $\frac{65}{27}$

$$, (8) \frac{65}{27}$$

(9)
$$2e$$
 , (10) $\frac{e}{p!}$, (11) $\frac{1}{4}$, (12) $7e^2$

(11)
$$\frac{1}{4}$$

(12)
$$7e^2$$

(13)
$$-2(e^{-2}-1)$$
 , (14) $4e$, (15) $\ln(6)$, (16) $\ln(\cos(1))$.

$$(15) \quad \ln(6)$$

$$(16) \quad \ln(\cos(1))$$

Exercice 5. Utiliser le critère de négligeabilité et le fait que $u_n^2 = o(u_n)$.

Exercice 6.

- (1) Montrer que $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ sont adjacentes.
- (2) Remarquer que u_n et v_n sont les sommes partielles d'ordres pair et impair de la série.
- (3) Vérifier que les séries en question divergent absolument, puis utiliser la question (2) pour montrer qu'elles convergent.
- (4) Effectuer un développement limité du terme général à l'ordre 2 au voisinage de $+\infty$. En déduire que la série en question diverge.

Exercice 7.

- (2) Utiliser la question (1) et le critère d'équivalence.
- (3) Passer par un télescopage.

Exercice 8.

- (a) Utiliser la définition axiomatique avec ε et n_0 de la limite d'une suite.
 - (b) Procéder par récurrence.

- (c) Utiliser le critère de comparaison par rapport à une série géométrique.
- (2) (a) Procéder comme en (1)(a).
 - (b) Utiliser (2)(a) pour montrer que $a_{n+1} \ge a_n$ pour tout $n \ge n_0$.
- (c) La série $\sum a_n$ diverge. (3) La série $\sum_{n\geq 1} \frac{n!}{1.3....(2n-1)}$ converge car $\frac{a_{n+1}}{a_n} \xrightarrow[n \to +\infty]{1} \frac{1}{2}$.

Exercice 9.

- (1) Procéder par récurrence.
- (2) (a) Montrer que $\sum_{k=1}^{n} b_k \leq \sum_{k=0}^{n-1} a_k$ pour tout $n \geq 1$, puis conclure sur la convergence de la série $\sum b_n$. En déduire que la suite (na_n) converge comme différence de deux suites convergentes.
 - (b) Raisonner par l'absurde pour montrer que la suite (na_n) tend vers 0, puis conclure.
- (a) Faire une minoration sur la somme de droite.
 - (b) Utiliser la question (3)(a) pour montrer que $0 \le na_n \le \sum_{j=n+1}^{+\infty} b_j$. Conclure comme en (2)(b).

Exercice 10.

- (1) Passer par le logarithme et utiliser le critère d'équivalence.
- (2) (a) Utiliser la formule de Taylor.
 - (b) Utiliser les questions (1), (2)(a) et le fait que la série $\sum u_n^2$ converge.
- (3) (a) Procéder par récurrence.
 - (b) Utiliser des équivalents pour montrer que : $\lim_{n \to +\infty} v_n = \frac{\sin(x)}{x}$.
 - (c) Appliquer la question (3)(b) au cas où $x = \frac{\pi}{2}$

Exercice 11.

- (1) a = -2 et b = 1.
- (2) La somme de la série vaut $-\ln(2)$.

1. Exercices supplémentaires

Exercice 12. Procéder par double implication, en utilisant le critère d'équivalence et le fait que $u_n = \frac{v_n}{1 - v_n}$.

Exercice 13.

- (3) Vérifier que $\sum_{k=1}^{n} v_k \underset{n \to +\infty}{\longrightarrow} -\infty$, puis utiliser un télescopage pour montrer que (u_n) converge vers 0.
- (4) (a) $b_n \underset{n \to +\infty}{\sim} \frac{12n^2}{}$
 - (b) Utiliser la question (4)(a) et le critère d'équivalence.
 - (c) Penser au télescopage!
 - (d) $n! \underset{n \to +\infty}{\sim} \frac{n^n e^{-n} \sqrt{n}}{C}$.

Exercice 14.

- (1) (a) $u_0 = \frac{\pi}{4}$, $u_1 = \frac{\ln(2)}{2}$, $u_2 = 1 \frac{\pi}{4}$. (b) Déterminer le signe de $u_{n+1} u_n$, puis conclure avec le théorème de la limite monotone.

 - (c) Vérifier que $u_{n+2} + u_n = \frac{1}{n+1}$ pour tout $n \in \mathbb{N}$. Utiliser ensuite la question (1)(b) et faire un passage à la limite.
- (2) (a) Utiliser la question (1)(c) et la décroissance de la suite (u_n) .

 - (b) $u_n \underset{n \to +\infty}{\sim} \frac{1}{2n}$. (c) La série $\sum_{n \geq 0} u_n$ diverge.
- (3) (a) Utiliser la question (1)(c) et procéder par récurrence.
 - (b) Les séries en question convergent d'après (3)(a). De plus : $\sum_{k=1}^{+\infty} \frac{(-1)^k}{2k-1} = -\frac{\pi}{4} \text{ et } \sum_{k=1}^{+\infty} \frac{(-1)^k}{k} = -\ln(2).$

Exercice 15.

- (1) Développer le produit du milieu.
- (2) Utiliser la question (1).
- (3) Appliquer la question (2) aux suites (u_n) et (v_n) définies pour tout $n \ge 0$ par $u_n = \frac{2^n}{n!}$ et $v_n = \frac{1}{2^n}$. La somme vaut $S = 2e^2$.

Exercice 16.

- (1) Procéder comme à l'exo 8 sur la règle de D'Alembert.
- (2) Effectuer une récurrence.
- (3) (a) $\varphi(x) = 1 + \frac{1}{x}$. (b) φ est strictement décroissante sur \mathbb{R}_+^* .
- (4) (a) Vérifier que $u_{2n+2} = \varphi^2(u_{2n})$ et $u_{2n+3} = \varphi^2(u_{2n+1})$ pour tout $n \in \mathbb{N}$. Constater que φ^2 est croissante, et en déduire la monotonie des suites (u_{2n}) et (u_{2n+1}) . Montrer ensuite par récurrence qu'elles sont positives, et conclure à l'aide du théorème de la limite monotone. Pour trouver leurs limites respectives, résoudre l'équation $\varphi^2(x) = x$.
 - (b) Les suites (u_{2n}) et (u_{2n+1}) convergent vers la même limite, donc (u_n) converge. Pour la limite, utiliser la question (4)(a).
- (5) (a) Utiliser le critère de comparaison avec une série géométrique.
 - (b) $A_0(x) = x^2 A(x)$, $A_1(x) = x(A(x) 1)$, $A_2(x) = A(x) 1 x$ pour tout $x \in]-R, R[$.
 - (c) Comme $f_{n+2} = f_{n+1} + f_n$ pour tout $n \in \mathbb{N}$, on peut vérifier que $A_0(x) + A_1(x) = A_2(x)$ pour tout $x \in]-R, R[$. On en déduit que, pour tout $x \in]-R, R[$:

$$A(x) = \frac{-1}{x^2 + x - 1}.$$

Exercice 17.

- (1) Utiliser le fait que $\frac{1}{t} \leq \frac{1}{S_k}$ pour tout $t \in [S_k, S_{k+1}]$ et la croissance de l'intégrale. (2) Montrer à l'aide de (1) que $\sum u_k$ converge si et seulement si $\sum_{n=1}^{\infty} v_k$ converge.
- (3) Si $u_n = \frac{1}{n}$, on peut vérifier à l'aide de l'exo 7 que $S_n = \sum_{k=1}^n \frac{1}{k} \sim \ln(n)$. Donc $v_n \sim \frac{1}{n \to +\infty} \ln(n)$ et $\sum \frac{1}{n \ln(n)}$ diverge.

Exercice 18.

- (1) Vérifier la convergence absolue. Pour la somme, séparer en termes pairs et impairs. On trouve : $S = \frac{\pi^2}{12}$.
- (2) (a) Ecrire que $\frac{1+t^{p+1}}{1+t} = \sum_{k=0}^{p} (-t)^k$ pour tout $t \in [0,1]$, puis intégrer cette relation sur [0,1].
 - (b) Utiliser la question (2)(a) et majorer $\left| \int_0^x \frac{t^{p+1}}{1+t} dt \right|$ à l'aide de la croissance de l'intégrale.
- (3) (a) Utiliser la question (2)(b), intégrer le tout sur [0,1] puis faire tendre p vers $+\infty$. (b) Montrer que $\frac{n}{k(nk+1)} \frac{1}{k^2} = -\frac{1}{k^2(nk+1)}$, puis majorer avec l'inégalité triangulaire.

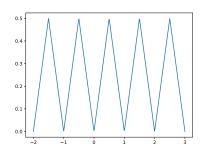
 - (d) Vérifier à l'aide d'une IPP que, pour tout $n \in \mathbb{N}^*$:

$$u_n - 1 = \int_0^1 \frac{-t^n dt}{1 + t^n} = \frac{-1}{n} \left[\ln(2) - \ln(1) - \int_0^1 \ln(1 + t^n) dt \right].$$

Conclure en utilisant la question précédente.

Exercice 19.

- (a) Cf. cours.
 - (b) L'ensemble $E = \{|x-n|; n \in \mathbb{Z}\}$ est une partie non vide de \mathbb{R} et minorée par 0, donc E admet une borne inférieure. Vérifier ensuite que c'est un minimum.
- (a) f(x) = |x| pour tout $x \in [-1/2, 1/2]$.
 - (b) Comme f est 1-périodique, on trouve avec un petit programme Python le graphe suivant :



- (3) (a) D'après l'inégalité triangulaire, on a $|x-n| \leq |x-y| + |y-n|$ pour tout $n \in \mathbb{Z}$. On passe ensuite à la borne inférieure.
 - (b) Avec la question (3)(a), on commence par écrire que, pour tout $n_i n \mathbb{Z}$:

$$f(x) - f(y) \le |y - n| + |x - y| - f(y).$$

En passant à la borne inférieure, on trouve que $f(x) - f(y) \le |x - y|$. On procède de même pour majorer f(y) - f(x) et on conclut.

- (4) (a) Comme f est bornée sur \mathbb{R} , on peut effectuer une comparaison par rapport à une série géométrique.
 - (b) Utiliser l'inégalité triangulaire et la question (3)(a).

 - (c) Suivre l'indication donnée. (d) Vérifier que $f(2^k 2^{-n}) = 2^{k-n}$ si $k \le n-1$ et $f(2^k 2^{-n}) = 0$ sinon. A l'aide de ce résultat, montrer que $b(2^{-n}) = n2^{-n}$ pour tout $n \ge 1$. En déduire que $\frac{b(2^{-n}) b(0)}{2^{-n}} = n \xrightarrow[n \to +\infty]{} +\infty$, et conclure.