TRAVAUX DIRIGÉS: SÉRIES NUMÉRIQUES

Exercice 1. Etudier la nature des séries données par :

(1)
$$\sum_{n>1} \frac{1}{n + \ln(n)}$$
 , (2) $\sum_{n>1} \frac{1}{n^n}$, (3) $\sum_{n>1} \frac{1}{n2^n}$, (4) $\sum_{n>1} (1 - \sqrt[n]{n})$

$$(5) \sum_{n\geq 1} \frac{\cos(n)}{n^2 \sqrt{n}} \qquad , \quad (6) \sum_{n\geq 1} \left(\frac{\ln(n)}{n}\right)^2 \qquad , \quad (7) \sum_{n\geq 1} n^2 e^{-n} \qquad \qquad , \quad (8) \sum_{n\geq 1} \frac{n!}{n^n}$$

$$(9) \sum_{n\geq 1} \frac{1}{\sqrt{n}} \sin\left(\frac{\pi}{\sqrt{n}}\right) , \quad (10) \sum_{n\geq 1} \frac{\ln(n)}{n!} , \quad (11) \sum_{n\geq 0} e^{-\sqrt{n}} , \quad (12) \sum_{n\geq 1} \frac{n^2 - 5}{n(2n+1)}$$

$$(13) \sum_{n\geq 1} \frac{n-2}{2^n-1} \qquad , \quad (14) \sum_{n\geq 1} \frac{\sqrt[n]{2}-1}{2n+3} \qquad , \quad (15) \sum_{n\geq 0} n \sin\left(\frac{1}{3^n}\right) \qquad , \quad (16) \sum_{n\geq 0} \frac{n}{n+1} \qquad ,$$

$$(17) \sum_{n \geq 1} \frac{\cos(n!)}{n^3 + \cos(n!)} \quad , \quad (18) \sum_{n \geq 1} \frac{1}{\sqrt{n(n+1)}} \quad , \quad (19) \sum_{n \geq 1} e - \left(1 + \frac{1}{n}\right)^n \quad , \quad (20) \sum_{n \geq 1} \ln\left(\cos\left(\frac{1}{n}\right)\right)$$

Exercice 2. Etudier la nature des séries $\sum (\sqrt{n+1} - \sqrt{n})^a$ et $\sum \ln \left(1 + \frac{1}{n^a}\right)$ en fonction de $a \in \mathbb{R}$.

Exercice 3. A l'aide des développements limités, étudier la nature des séries $\sum 2 \ln(n^3 + n^2) - 3 \ln(n^2 + n)$, $\sum \sqrt[n]{n+1} - \sqrt[n]{n} \text{ et } \sum 2 + n \ln \left(\frac{n-1}{n+1} \right).$

Exercice 4. Soit $p \in \mathbb{N}$. Montrer que les séries suivantes convergent et calculer leur somme :

(1)
$$\sum_{n>0} \frac{n(n-1)}{3^n}$$
 , (2) $\sum_{n>0} \frac{n^2}{3^n \cdot n!}$, (3) $\sum_{n>1} \frac{1}{n^2 + n}$, (4) $\sum_{n>0} \binom{n}{2} e^{-n}$

$$(5) \sum_{n\geq 0} \frac{2}{3^{n+1}} , \quad (6) \sum_{n\geq 0} \frac{4^n}{(2n)!} , \quad (7) \sum_{n\geq 0} \frac{2n(n+1)}{4^n} , \quad (8) \sum_{n\geq 0} (-1)^n \frac{n^2+3}{5^n}$$

$$(9) \sum_{n\geq 0} \frac{(n+1)}{n!} , (10) \sum_{n\geq 0} \frac{\binom{n}{p}}{n!} , (11) \sum_{n\geq 1} \frac{1}{n(n+1)(n+2)} , (12) \sum_{n\geq 0} \frac{2^n(n^2+1)}{n!}$$

$$(13) \sum_{n\geq 0} \frac{(-1)^n 2^n}{(n+1)!} \quad , \quad (14) \sum_{n\geq 0} \frac{n^2+n+1}{n!} \quad , \quad (15) \sum_{n\geq 2} \ln\left(\frac{n^3}{(n+2)(n-1)^2}\right) \quad , \quad (16) \sum_{n\geq 1} \ln\left(\frac{\cos(\frac{1}{n})}{\cos(\frac{1}{n+1})}\right)$$

Exercice 5. Montrer que, si la série numérique $\sum u_n$ converge absolument, alors $\sum u_n^2$ converge.

Exercice 6. (Critère spécial des séries alternées) Etant donnée une suite $(a_k)_{k\geq 1}$ décroissante de limite nulle, on se propose d'étudier la nature de la série $\sum_{k\geq 1} (-1)^k a_k$. Pour ce faire, on pose pour tout $n\in\mathbb{N}^*$:

$$u_n = \sum_{k=1}^{2n} (-1)^k a_k$$
 et $v_n = \sum_{k=1}^{2n+1} (-1)^k a_k$.

- (1) Etudier la convergence des suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$.
- (2) En déduire que $\sum_{k\geq 1} (-1)^k a_k$ converge. Ce résultat est appelé le critère spécial des séries alternées.
- (3) Etudier la convergence et l'absolue convergence des séries $\sum_{k\geq 1} \frac{(-1)^k}{k}$ et $\sum_{k\geq 1} \frac{(-1)^k}{\sqrt{k}}$. (4) A l'aide d'un développement limité, montrer que la série $\sum_{k\geq 1} \frac{(-1)^k}{\sqrt{k}+(-1)^k}$ diverge.

Exercice 7. (Constante d'Euler) Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$ et $v_n = u_{n+1} - u_n$.

- (1) A l'aide d'un développement limité, déterminer un équivalent de v_n en $+\infty$.
- (2) Montrer que la série de terme général v_n converge.
- (3) En déduire que la suite de terme général u_n converge. La limite de cette suite, communément notée γ , est appelée la constante d'Euler. Elle vaut $\simeq 0.5772$.

Exercice 8. (Règle de D'Alembert) Soit $(a_n)_{n\geq 1}$ une suite à termes strictement positifs. On suppose qu'il existe un réel $l \ge 0$ tel que : $\frac{a_{n+1}}{a_n} \xrightarrow[n \to +\infty]{} l$.

- (1) On suppose dans cette question que l < 1, et soit $q \in]l, 1[$ un réel fixé.
 - (a) Justifier qu'il existe un entier n_0 tel que, pour tout $n \ge n_0$, on a : $\frac{a_{n+1}}{a_n} \le q$.
 - (b) Montrer que, pour tout $n \ge n_0$, on a : $a_n \le a_{n_0} q^{n-n_0}$.
 - (c) En déduire que la série $\sum_{n\geq 1} a_n$ converge.
- (2) On suppose dans cette question que l > 1, et soit $q \in]1, l[$ un réel fixé.
 - (a) Justifier qu'il existe un entier n_0 tel que, pour tout $n \ge n_0$, on a : $\frac{a_{n+1}}{a_n} \ge q$.
 - (b) En déduire que la suite (a_n) est croissante à partir d'un certain rang.
 - (c) Quelle est la nature de la série $\sum_{n>1} a_n$? Justifier.

Les résultats trouvés en (1)(c) et (2)(c) constituent ce que l'on appelle la règle de D'Alembert. (3) Etudier la nature de la série $\sum_{n\geq 1} \frac{n!}{1.3...(2n-1)}$.

Exercice 9. (ESCP 2009) Soit (a_n) une suite réelle décroissante de limite nulle. Pour tout $n \in \mathbb{N}^*$, on pose $b_n = n(a_{n-1} - a_n)$. Dans cet exercice, on se propose de comparer la nature des séries $\sum a_n$ et $\sum b_n$.

- Montrer que, pour tout n∈ N*, on a : ∑_{k=1}ⁿ b_k = ∑_{k=0}ⁿ⁻¹ a_k na_n.
 Dans cette question, on suppose que la série de terme général a_n converge.
- - (a) Montrer que la série $\sum b_n$ converge, puis que la suite (na_n) converge.
 - (b) Etablir que la suite (na_n) tend vers 0, et en déduire que : $\sum_{n=1}^{+\infty} b_n = \sum_{n=0}^{+\infty} a_n$.
- (3) Dans cette question, on suppose que la série de terme général b_n converge.

 - (a) Montrer que, pour tous $n, k \in \mathbb{N}^*$, on a : $n(a_n a_{n+k}) \leq \sum_{j=n+1}^{n+k} b_j$. (b) En déduire que la série $\sum a_n$ converge et que : $\sum_{n=0}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$.

Exercice 10. (Produit infini - ESCP 2021) Soit $(u_n)_{n\geq 1}$ une suite réelle. On dit que le produit $\prod_{n>1} u_n$ converge si la suite $(v_n)_{n\geq 1}$ définie pour tout $n\in\mathbb{N}^*$ par $v_n=\prod_{k=1}^n u_k$ admet une limite finie non nulle l, et l'on pose alors:

$$l = u_1 \times u_2 \times u_3 \times \dots = \prod_{k=1}^{+\infty} u_k.$$

- (1) Dans cette question, on suppose que $u_n > 0$ pour tout $n \in \mathbb{N}^*$. Montrer l'équivalence entre les trois propositions suivantes:
 - (a) le produit $\prod_{n\geq 1}(1+u_n)$ converge; (b) la série $\sum_{n\geq 1}\ln(1+u_n)$ converge;

 - (c) la série $\sum_{n\geq 1}^{-} u_n$ converge.
- (2) Dans cette question, on suppose que la suite $(u_n)_{n\geq 1}$ est à valeurs >-1 et que la série $\sum_{n\geq 1}u_n^2$ converge.
 - (a) Montrer qu'il existe C>0 et $N\in\mathbb{N}^*$ tels que : $\forall n\geq N, |\ln(1+u_n)-u_n|\leq C\overline{u_n^2}$
- (b) En déduire que le produit $\prod_{n\geq 1}(1+u_n)$ converge si et seulement si la série $\sum_{n\geq 1}u_n$ converge.
- (3) Dans cette question, pour tout entier $n \ge 1$, on pose $u_n = \cos\left(\frac{x}{2^n}\right)$ avec $x \in]0, \pi[$ et $v_n = \prod_{k=1}^n u_k$.
 - (a) On pose $w_n = v_n \sin\left(\frac{x}{2^n}\right)$ pour tout $n \in \mathbb{N}^*$. A l'aide de la relation $\sin(2y) = 2\sin(y)\cos(y)$, montrer que, pour tout $n \in \mathbb{N}^*$

$$w_n = \frac{\sin(x)}{2^n}.$$

- (b) En déduire la limite de la suite $(v_n)_{n>1}$.
- (c) En déduire l'égalité suivante : $\frac{2}{\pi} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2+\sqrt{2}}}{2} \times \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \times \dots$

Exercise 11. (HEC 2014) Pour tout entier $n \ge 1$, on pose : $u_n = \ln(n) + a \ln(n+1) + b \ln(n+2)$.

- (1) Déterminer a et b pour que la série de terme général u_n soit convergente (indication : calculer un développement limité du terme général u_n quand n tend vers $+\infty$).
- (2) Calculer la somme de cette série dans ce cas.

1. Exercices supplémentaires

Exercice 12. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Pour tout $n\in\mathbb{N}$, on pose : $v_n=\frac{u_n}{1+u_n}$. Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Exercice 13. (Formule de Stirling) Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{n^n e^{-n}}{n!}$ et $v_n = \ln\left(\frac{u_{n+1}}{u_n}\right)$.

- (1) A l'aide d'un développement limité, déterminer un équivalent de v_n en $+\infty$.
- (2) Montrer que la série de terme général v_n diverge.
- (3) En déduire que la suite (u_n) converge. Quelle est sa limite?
- (4) Pour tout $n \in \mathbb{N}^*$, on pose $a_n = u_n \sqrt{n}$ et $b_n = \ln(a_{n+1}) \ln(a_n)$.
 - (a) A l'aide d'un développement limité, déterminer un équivalent de b_n en $+\infty$.
 - (b) Montrer que la série de terme général b_n converge.
 - (c) En déduire que la suite (a_n) converge vers un réel C > 0.
 - (d) En déduire un équivalent de n! en $+\infty$ en fonction de C, n.

Cet équivalent de n! en $+\infty$ est appelée la formule de Stirling, et l'on peut montrer que $C=\frac{1}{\sqrt{2\pi}}$.

Exercice 14. Pour tout $n \in \mathbb{N}$, on pose : $u_n = \int_{\hat{a}}^{\frac{n}{4}} \tan^n(t) dt$.

- (a) Calculer les valeurs de u_0, u_1, u_2 .
 - (b) Etudier la monotonie de la suite (u_n) , et en déduire qu'elle converge.
 - (c) Calculer $u_{n+2} + u_n$ pour tout $n \in \mathbb{N}$, et en déduire la limite de (u_n) .
- (2) (a) Montrer que, pour tout entier $n \ge 2$, on a : $\frac{1}{2(n+1)} \le u_n \le \frac{1}{2(n-1)}$.
 - (b) En déduire un équivalent de u_n quand n tend vers $+\infty$.
 - (c) En déduire la nature de la série $\sum_{n\geq 0} u_n$.
- (3) (a) A l'aide de la question (1)(c), montrer que, pour tout $p \in \mathbb{N}^*$:

$$u_{2p} = (-1)^p \left(u_0 + \sum_{k=1}^p \frac{(-1)^k}{2k-1} \right)$$
 et $u_{2p+1} = (-1)^p \left(u_1 + \sum_{k=1}^p \frac{(-1)^k}{2k} \right)$.

(b) En déduire que les séries $\sum_{k\geq 1} \frac{(-1)^k}{2k-1}$ et $\sum_{k\geq 1} \frac{(-1)^k}{k}$ convergent et donner leurs sommes.

Exercice 15. (Produit de Cauchy) Etant données deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ à termes positifs, on considère la suite réelle $(w_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par :

$$w_n = \sum_{k=0}^n u_k v_{n-k}.$$

(1) Montrer que, pour tout $n \in \mathbb{N}$, on a :

$$\sum_{k=0}^{n} w_k \le \left(\sum_{k=0}^{n} u_k\right) \left(\sum_{k=0}^{n} v_k\right) \le \sum_{k=0}^{2n} w_k.$$

- (2) En déduire que, si les séries $\sum_{k\geq 0} u_k$ et $\sum_{k\geq 0} v_k$ convergent, de sommes respectives U et V, alors la série $\sum_{k>0} w_k$ converge, de somme UV.
- (3) Pour tout $n \ge 0$, on pose $w_n = 2^{-n} \sum_{k=0}^n \frac{4^k}{k!}$. Montrer que $\sum_{n>0} w_n$ converge et calculer sa somme.

Exercice 16. (ESCP 2014) Soit $(f_n)_{n\geq 0}$ la suite définie par $f_0=f_1=1$ et : $\forall n\in\mathbb{N},\ f_{n+2}=f_{n+1}+f_n$.

- (1) Soit $\sum_{n>0} a_n$ une série à termes strictement positifs telle que la suite $(\frac{a_{n+1}}{a_n})_{n\geq 0}$ converge vers un réel l < 1. Montrer que la série $\sum_{n>0} a_n$ converge.
- (2) Montrer que la suite $(f_n)_{n\geq 0}$ est à valeurs strictement positives.
- (3) Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{f_{n+1}}{f_n}$.
 - (a) Expliciter une fonction rationnelle φ telle que : $\forall n \in \mathbb{N}^*$, $u_{n+1} = \varphi(u_n)$.
 - (b) Déterminer le sens de variation de φ sur \mathbb{R}_+^* .
- (4) (a) Montrer que les suites $(u_{2n})_{n\geq 1}$ et $(u_{2n+1})_{n\geq 1}$ sont monotones et convergentes, et déterminer leurs limites respectives.
- (b) En déduire que la suite $(u_n)_{n\geq 1}$ converge vers $\Phi = \frac{1+\sqrt{5}}{2}$ (que l'on appelle le nombre d'or). (5) On pose $R = \frac{1}{\Phi}$. De plus, pour tout réel x pour lequel la série $\sum_{n\geq 0} f_n x^n$ converge, on pose :

$$A(x) = \sum_{n=0}^{+\infty} f_n x^n, \quad A_0(x) = \sum_{n=0}^{+\infty} f_n x^{n+2}, \quad A_1(x) = \sum_{n=0}^{+\infty} f_{n+1} x^{n+2}, \quad A_2(x) = \sum_{n=0}^{+\infty} f_{n+2} x^{n+2}.$$

- (a) Montrer que, pour tout $x \in]-R, R[$, la série définissant A(x) converge absolument.
- (b) Exprimer $A_0(x)$, $A_1(x)$, $A_2(x)$ en fonction de A(x) pour tout $x \in]-R$, R[.
- (c) En déduire l'expression de A(x) en fonction de x pour tout $x \in]-R, R[$.

Exercice 17. (HEC 2015) Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite convergente à termes strictement positifs et de limite nulle. Pour tout $n\in\mathbb{N}^*$, on pose $S_n=\sum_{k=1}^n u_k$ et $v_n=\frac{u_{n+1}}{S_n}$.

- (1) Montrer que, pour tout $k \geq 1$, on a : $\int_{S_k}^{S_{k+1}} \frac{dt}{t} \leq v_k$. (2) Etudier la nature de la série $\sum_{k \geq 1} v_k$ en fonction de la nature de la série $\sum_{k \geq 1} u_k$.
- (3) Quel résultat obtient-on dans le cas où $u_n = \frac{1}{n}$?

Exercice 18. (ESCP 2019) On admet que $\sum_{1}^{+\infty} \frac{1}{p^2} = \frac{\pi^2}{6}$.

- (1) Montrer que la série $\sum_{p\geq 1} \frac{(-1)^{p+1}}{p^2}$ converge et donner sa somme. (2) (a) Montrer que, pour tout $x\in[0,1]$ et pour tout entier $p\geq 1$, on a :

$$\ln(1+x) = \sum_{k=0}^{p} (-1)^k \frac{x^{k+1}}{k+1} + (-1)^{p+1} \int_0^x \frac{t^{p+1}}{1+t} dt$$

 $\begin{array}{l} (indication: calculer\ 1+t+t^2+\ldots+t^p). \\ \text{(b) Soit}\ n\in\mathbb{N}^*\ \text{fix\'e}.\ \text{Montrer que, pour tout entier}\ p\geq 1\ \text{et pour tout}\ x\in[0,1],\ \text{on a}: \end{array}$

$$\ln(1+x^n) = \sum_{k=1}^{p+1} (-1)^{k+1} \frac{x^{nk}}{k} + R_p(x) \quad \text{avec} \quad |R_p(x)| \le \frac{1}{p+2}.$$

- (3) (a) Montrer que $\int_0^1 \ln(1+x^n) dx = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k(nk+1)}$.
 - (b) Montrer qu'il existe une constante C > 0 telle que, pour tout $n \in \mathbb{N}^*$, on a :

$$\left| n \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k(nk+1)} - \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k^2} \right| \le \frac{C}{n}.$$

- (c) En déduire un équivalent de $I_n = \int_0^1 \ln(1+x^n) dx$ quand n tend vers $+\infty$. (d) Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \int_0^1 \frac{dt}{1+t^n}$. Déduire de la question précédente que :

$$u_n \underset{n \to +\infty}{=} 1 - \frac{\ln(2)}{n} + \frac{\pi^2}{12n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice 19. (HEC 2019)

- (1) (a) Question de cours : minorant et minimum d'une partie non vide de \mathbb{R} .
 - (b) Pour tout $x \in \mathbb{R}$, justifier que l'ensemble $\{|x-n|; n \in \mathbb{Z}\}$ admet un minimum.
- (2) On note f la fonction définie pour tout $x \in \mathbb{R}$ par : $f(x) = \min\{|x n|; n \in \mathbb{Z}\}.$

 - (a) Calculer f(x) lorsque x est compris entre -1/2 et 1/2.
 (b) Tracer la courbe représentative de f (indication : vérifier que la fonction f est 1-périodique).
- (3) Soit $(x, y) \in \mathbb{R}^2$.
 - (a) Justifier que, pour tout $n \in \mathbb{Z}$, on a : $f(x) \le |y n| + |x y|$.
 - (b) Etablir l'inégalité : $|f(y) f(x)| \le |y x|$.
- (4) (a) Justifier pour tout $x \in \mathbb{R}$ la convergence de la série $\sum_{n>0} 2^{-n} f(2^n x)$.

Par la suite, on note b l'application définie pour tout $x \in \mathbb{R}$ par : $b(x) = \sum_{n=0}^{+\infty} 2^{-n} f(2^n x)$.

(b) Soit $(x,y) \in \mathbb{R}^2$. Justifier pour tout $n \in \mathbb{N}^*$ les inégalités :

$$|b(y) - b(x)| \le \sum_{k=0}^{n-1} 2^{-k} |f(2^k y) - f(2^k x)| + 2^{-n} \le n|y - x| + 2^{-n}.$$

- (c) En déduire que la fonction b est continue (indication: utiliser la question (4)(b) et la définition axiomatique de la continuité en un point d'une fonction).
- (d) Démontrer que la fonction b n'est pas dérivable à droite en 0 (indication : montrer que $b(2^{-n}) = n2^{-n}$ pour tout $n \in \mathbb{N}^*$).