TRAVAUX DIRIGÉS: RECHERCHE D'EXTREMA **RÉPONSES - INDICATIONS**

1. Recherche d'extrema

Exercice 1.

(1) A faire! Pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, on trouve que:

$$\begin{cases}
\nabla(f)(x,y) = \left(2x - \frac{1}{(x+y)^2}, 2y - \frac{1}{(x+y)^2}\right) \\
\nabla^2(f)(x,y) = \left(2 + \frac{2}{(x+y)^3} \quad \frac{2}{(x+y)^3} \\
\frac{2}{(x+y)^3} \quad 2 + \frac{2}{(x+y)^3}\right)
\end{cases}.$$

- (2) Montrer que A = (1/2, 1/2) est l'unique point critique de f. Calculer ensuite les valeurs propres de $\nabla^2(f)(A)$ et conclure.
- (3) Exprimer $q_{(x,y)}(h_1,h_2)$ sous forme d'une somme de carrés et conclure.

Exercice 2.

(1) A faire! Pour tout $(x,y) \in \mathbb{R}^2$, on trouve que :

$$\begin{cases}
\nabla(f)(x,y) = (2x + 2y + y^3, 2x + 2y + 3xy^2) \\
\nabla^2(f)(x,y) = \begin{pmatrix} 2 & 2 + 3y^2 \\ 2 + 3y^2 & 2 + 6xy \end{pmatrix} \\
q_{(x,y)}(h_1, h_2) = 2h_1^2 + 2(2 + 3y^2)h_1h_2 + (2 + 6xy)h_2^2
\end{cases}$$

- d'extremum local en (0,0).

Exercice 3.

- (1) A faire!
- (2) Etudier la fonction $z \longmapsto ze^z$ sur \mathbb{R} .
- (3) Vérifier que $C = \{(a,b)\}$ avec a = b, $a = \sqrt{\frac{z_0}{2}}$ et $z_0 e^{z_0} = 1$.
- (4) Pour tout $(x, y) \in \mathbb{R}^2$, on trouve que :

Four tout
$$(x,y) \in \mathbb{R}^+$$
, on trouve que:
$$\begin{cases} \nabla(f)(x,y) = \left(2xe^{x^2+y^2} - \frac{1}{x}, 2ye^{x^2+y^2} - \frac{1}{y}\right) \\ \nabla^2(f)(x,y) = \left((2+4x^2)e^{x^2+y^2} + \frac{1}{x^2} - 4xye^{x^2+y^2} - \frac{1}{y^2}\right) \\ 4xye^{x^2+y^2} - (2+4y^2)e^{x^2+y^2} + \frac{1}{y^2} \end{cases}$$

$$q_{(x,y)}(h_1,h_2) = \left((2+4x^2)e^{x^2+y^2} + \frac{1}{x^2}\right)h_1^2 + 8xye^{x^2+y^2}h_1h_2 + \left((2+4y^2)e^{x^2+y^2} + \frac{1}{y^2}\right)h_2^2$$
From the result of the property of th

- (5) Exprimer $q_{(x,y)}(u,v)$ comme somme de carrés, et en déduire que $q_{(x,y)}(u,v) \geq 0$ pour tout $(x,y) \in \mathcal{D}$ et tout $(u, v) \in \mathbb{R}^2$.
- (6) Montrer à l'aide de la question précédente que f admet un minimum global en A.

Exercice 4.

(1) A faire! Pour tout $(x,y) \in \mathbb{R}^2$, on trouve que :

$$\begin{cases}
\nabla(f)(x,y) = (2x(1+y)^3, 3x^2(1+y)^2 + 14y) \\
\nabla^2(f)(x,y) = \begin{pmatrix} 2(1+y)^3 & 6x(1+y)^2 \\ 6x(1+y)^2 & 14 + 6x^2(1+y) \end{pmatrix}
\end{cases}$$

- (2) Vérifier que $C = \{(0,0)\}, \text{ et donc } A = (0,0).$
- (3) Utiliser la hessienne en (0,0) pour conclure!
- (4) Montrer que f(1,y) tend vers $+\infty$ (resp. $-\infty$) quand y tend vers $+\infty$ (resp. $-\infty$). En déduire que f n'admet pas de minimum global.

Exercice 5.

- (1) A faire
- (2) Pour tout $(x, y) \in (\mathbb{R}_+^*)^2$, on trouve que :

$$\left\{ \begin{array}{l} \nabla(f)(x,y) = \left(\ln(y) - \frac{y}{x}, \frac{x}{y} - \ln(x)\right) \\ \\ \nabla^2(f)(x,y) = \left(\frac{y}{x^2} - \frac{1}{y} - \frac{1}{x}\right) \end{array} \right. .$$

(3) Montrer que (e, e) est l'unique point critique de f, et que c'est un point-selle. Conclure.

Exercice 6.

- (1) A faire!
- (2) Pour tout $x = (x_1, ..., x_n) \in \mathbb{R}^n$, on trouve que :

$$\nabla(f)(x) = \left(-\exp\left(n + 1 - \sum_{k=1}^{n} x_k\right) + e^{x_1}, \dots, -\exp\left(n + 1 - \sum_{k=1}^{n} x_k\right) + e^{x_n}\right).$$

- (3) Montrer que $\hat{x} = (1, ..., 1)$ est l'unique point critique de f.
- (4) (a) Après calculs, on trouve que :

$$\nabla^2(f)(\widehat{x}) = \begin{pmatrix} 2e & e & \cdots & e \\ e & 2e & \ddots & \vdots \\ \vdots & \ddots & \ddots & e \\ e & \cdots & e & 2e \end{pmatrix}.$$

(b) Si $x_1, ..., x_n$ sont les composantes du vecteur colonne X, vérifier que :

$${}^t\!X\nabla^2(f)(\widehat{x})X = e\left(\sum_{k=1}x_k^2 + \left(\sum_{k=1}^n x_k\right)^2\right).$$

Conclure avec cette égalité!

- (c) A faire avec la question précédente.
- (d) Calculer ${}^t X \nabla^2(f)(x) X$ et conclure comme à l'exo 1, question (3). La fonction f admet bien un minimum global au point \widehat{x} .

Exercice 7. Montrer que, pour tout $x \in E$, on a :

$$f(x) = \sum_{k=1}^{p} \|x - u_k\|^2 = p \left\| x - \frac{1}{p} \sum_{k=1}^{p} u_k \right\|^2 - \frac{1}{p} \left\| \sum_{k=1}^{p} u_k \right\|^2 + \sum_{k=1}^{p} \|u_k\|^2.$$

En déduire que f admet un minimum global atteint au point $x_0 = \frac{1}{p} \sum_{k=1}^{p} u_k$ et valant :

$$f(x_0) = -\frac{1}{p} \left\| \sum_{k=1}^p u_k \right\|^2 + \sum_{k=1}^p \|u_k\|^2.$$

2. Recherche d'extrema sous contraintes

Exercice 8.

- (1) Si C_0 est l'ensemble des points critiques sous contrainte, vérifier que $C_0 = \left\{ \left(\frac{1}{2}, 0, \frac{1}{2}, 0\right) \right\}$.
- (2) Utiliser la convexité de la fonction $t \mapsto t^4$.
- (3) Sous la contrainte \mathcal{C} , on obtient avec la question (2) que $f(x,y,z,t) \geq x^4 + (1-x)^4 + 2y^4 \geq \frac{1}{8}$ avec égalité si $x = \frac{1}{2}$, y = 0, $z = \frac{1}{2}$, t = 0. On peut alors conclure!

Exercice 9.

- (1) On trouve que $C = \emptyset$.
- (2) Pas d'extremum local/global.
- (3) On trouve que $A = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. (4) On obtient que $q_{(x,y,z)}(u,v,w) = \frac{2u^2}{x^3} + \frac{2v^2}{y^3} + \frac{2w^2}{z^3} \ge 0$.
- (5) Conclure comme à l'exo 1, question (3)

Exercice 10.

- (1) Vérifier que Γ est fermé borné, que f est continue sur \mathbb{R}^n et conclure quant à l'existence du maximum. Etablir ensuite que ce maximum est non nul.
- (2) Si \mathcal{C}_0 est l'ensemble des points critiques sous contrainte, vérifier que $\mathcal{C}_0 = \left\{ \left(\frac{s}{n}, ..., \frac{s}{n}\right) \right\}$.
- (3) On trouve que $M = \left(\frac{s}{n}\right)^n$, conclure avec ça!

Exercice 11.

- (1) A faire!
- (2) Si C_0 est l'ensemble des points critiques sous contrainte, vérifier que $C_0 = \{(r, ..., r)\}$.
- (3) On trouve que, pour tout $(x_1, ..., x_n) \in]0, +\infty[^n :$

$$\nabla^{2}(h)(x_{1},...,x_{n}) = \begin{pmatrix} -1/x_{1}^{2} & 0 & \cdots & 0 \\ 0 & -1/x_{2}^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1/x_{n}^{2} \end{pmatrix}.$$

(4) A faire! On trouve que ce maximum vaut $f(r,...,r) = n \ln(r)$.

Exercice 12.

- (2) On trouve que $\nabla(f)(x,y) = \left(2x + y \frac{1}{x^2}, 2y + x \frac{1}{y^2}\right)$ pour tout $(x,y) \in U$.
- (3) (a) Utiliser la relation $\nabla(f)(x,y) = (0,0)$, puis effectuer des opérations élémentaires sur les lignes du système obtenu.
 - (b) Utiliser le théorème de la bijection.
 - (c) On trouve que $M = \left(\frac{1}{\sqrt[3]{3}}, \frac{1}{\sqrt[3]{3}}\right)$.
- (4) (a) Par des calculs simples, on obtient que :

$$\nabla^2(f)(x,y) = \begin{pmatrix} 2 + 2/x^3 & 1 \\ 1 & 2 + 2/y^3 \end{pmatrix}.$$

Ecrire $q_{x,y}(u,v)$ comme une somme de carrés et conclure.

- (b) La fonction f admet un minimum global sur U, atteint au point M.
- (5) Dans cette question, on veut étudier les extrema de f sur U sous la contrainte $\mathcal{C}: x-y=-1$.

(a) Si \mathcal{C}_0 est l'ensemble des points critiques sous contrainte, vérifier que :

$$(x,y) \in \mathcal{C}_0 \iff \begin{cases} x-y=-1\\ \exists \lambda \in \mathbb{R}, \begin{cases} 2x+y-\frac{1}{x^2} = \lambda\\ x+2y-\frac{1}{y^2} = -\lambda \end{cases} \\ \iff \begin{cases} x-y=-1\\ 3x+3y-\frac{1}{x^2}-\frac{1}{y^2} = 0 \end{cases}.$$

(b) Etudier la fonction $h: x \longmapsto 3x + 3(x+1) - \frac{1}{x^2} - \frac{1}{(x+1)^2}$ sur \mathbb{R}_+^* , et montrer qu'elle est bijective. En déduire que, si x_0 est l'unique antécédent de 0 par h, alors $(x_0, x_0 + 1)$ est l'unique point critique sous contrainte de f. Conclure avec la question (4)(a) que la fonction f admet un maximum global en $(x_0, x_0 + 1)$ sous la contrainte \mathcal{C} .

3. Exercices supplémentaires

Exercice 13.

- (1) On trouve que $C = \left\{ \left(2, \frac{1}{4}\right), \left(2, \frac{1}{4}\right) \right\}$, les deux points critiques sont des points selles et il n'y a pas d'extremum local.
- (2) On trouve que $C = \left\{ \left(\sqrt[3]{2}, \sqrt[3]{2}\right) \right\}$, le point critique correspond à un minimum local.
- (3) On trouve que \$\mathcal{C} = \left\{(0,0), (1,0), (0,1), \left(\frac{1}{3},\frac{1}{3}\right)\right\}\$, les trois premiers points critiques sont des points selles, le quatrième correspond à un minimum local.
 (4) On trouve que \$\mathcal{C} = \left\{(0,0), (1,0), (0,1), \left(\frac{2}{3},\frac{2}{3}\right)\right\}\$, les trois premiers points critiques sont des points selles, le quatrième correspond à un maximum local.
 (5) On trouve que \$\mathcal{C} = \left\{(1,0), (2^{-2},0)\right\}\$.
- (5) On trouve que $C = \{(1,0), (e^{-2},0)\}$, le premier point critique correspond à un minimum local et le second est un point selle.
- (6) On trouve que $C = \{(-1, -1)\}$ et le point critique est un point selle.

Exercice 14.

- (1) On trouve que $C = \{(0,0,0),(1,1,1),(-1,-1,1),(1,-1,-1),(-1,1,-1)\}$, le point critique (0,0,0) correspond à un minimum local et tous les autres sont des points selles.
- (2) On trouve que $C = \{(-1,0,0)\}$ et le point critique correspond à un minimum local.
- (3) On trouve que $C = \{(1, 1, -1)\}$ et le point critique est un point selle.
- (4) On trouve que $\mathcal{C} = \{(0,0,0),(2,2,2)\}$ et les deux points critiques sont des points selles.

Exercice 15.

- (1) On trouve que $C = \{(1, 2), (-1, 0)\}.$
- (2) A traiter avec la hessienne!
- (3) Oui car f(1,2) = f(-1,0) = 0 et f est positive sur \mathbb{R}^2 .

Exercice 16.

- (1) A faire!
- (2) On trouve que $C = \{(t, ..., t), t \in \mathbb{R}_+^*\}$ et $f(t, ..., t) = n^2$ pour tout t > 0.
- (3) On se propose de montrer que f admet un minimum global en ces points. Pour tout $t \in \mathbb{R}$, on pose :

$$P(t) = \sum_{k=1}^{n} \left(t\sqrt{x_k} + \frac{1}{\sqrt{x_k}} \right)^2.$$

- (a) Après calculs, on obtient que : $P(t) = t^2 \sum_{k=1}^{n} x_k + 2tn + \sum_{k=1}^{n} \frac{1}{x_k}$.
- (b) Le polynôme P est du second degré et positif sur \mathbb{R} , donc son discriminant est négatif. Calculer le discriminant pour conclure.
- (c) On a égalité si et seulement si $x_1 = ... = x_n$.

Exercice 17.

(1) On trouve que $\mathcal{C} = \emptyset$.

- (2) Pas d'extremum local/global.
- (3) Si C_a est l'ensemble des points critiques sous contrainte, vérifier que $C_a = \left\{ \left(\frac{e^{-1/3}}{\sqrt{a}}, \sqrt{a}e^{-1/3} \right) \right\}$. De plus, ce point critique sous contrainte correspond à un minimum global sous contrainte.

Exercice 18.

- (1) On trouve que $C = \{(1,1,1)\}$ et le point critique est un point selle. Pas d'extremum local/global sur \mathbb{R}^3 .
- (2) Si C_0 est l'ensemble des points critiques sous contrainte, vérifier que $C_0 = \left\{ \left(\frac{4}{7}, \frac{1}{7}, \frac{3}{7} \right) \right\}$. De plus, ce point critique sous contrainte correspond à un maximum global sous contrainte.

Exercice 19. Dans les deux cas, on trouve que (1, ..., 1) est l'unique point critique sous contrainte de f, et qu'il correspond à un maximum global sous contrainte.

Exercice 20.

- (1) La fonction h est croissante sur $]0, e^{-1}[$, croissante sur $]e^{-1}, +\infty[$, tend vers 0 en 0 et vers $+\infty$ en $+\infty$.
- (2) Utiliser la question (1) pour voir que la fonction f est minorée sur \mathcal{D} par $-3e^{-1}$, et qu'elle n'est ni majorée, ni bornée sur \mathcal{D} .
- (3) A faire!
- (4) On trouve que $A = (e^{-1}, e^{-1}, e^{-1})$.
- (5) Utiliser la hessienne en A, puis vérifier avec la question (1) que f admet un minimum global en A.
- (6) (a) Si C_a est l'ensemble des points critiques sous contrainte, vérifier que $C_a = \{(a, a, a)\}.$
 - (b) Calculer la hessienne de f en tout point et utiliser la formule de Taylor avec reste intégral pour montrer que f admet un minimum global sous la contrainte C_a , atteint en (a, a, a) et valant $3a \ln(a)$.

Exercice 21.

- (1) On trouve que $C = \{(10, 10)\}$ et le point critique correspond à un maximum global.
- (2) Si C_0 est l'ensemble des points critiques sous contrainte, vérifier que $C_0 = \{(9,4)\}$. De plus, le point critique sous contrainte correspond à un maximum sous contrainte, qui vaut 1064.

Exercice 22.

- (1) (a) On trouve que $C = \{(0,0),(1,1)\}$, le premier point critique est un point selle et le deuxième correspond à un minimum local.
 - (b) En calculant $\lim_{y \to \pm \infty} f(x,y)$, on peut vérifier que f n'a aucun extremum global.
 - (c) La réponse est non (considérer la restriction de f à la droite $\mathrm{Vect}((1,0))$).
- (2) Utiliser le théorème de la bijection après avoir étudié la fonction $h: y \longmapsto f(x,y)$ si $x < \frac{1}{2}$.
- (3) Calculer $f(x, \varphi(x))$ en utilisant un développement limité à l'ordre 3 en 0 de $\varphi(x)$, de la forme $\varphi(x) = a + bx + cx^2 + dx^3 + o(x^3)$ au voisinage de 0. On trouve que $\varphi(0) = 1$, $\varphi'(0) = b = 1$ et $\varphi(x) = 1 + x \frac{2}{3}x^3 + o(x^3)$ au voisinage de 0.

Exercice 23.

- (1) Question de cours : Cf. cours. On rappelle que $f_h'(x) = \langle \nabla(f)(x), h \rangle$ et $f_h''(x) = q_x(h) = {}^tH\nabla^2(f)(x)H$.
- (2) (a) Utiliser la formule de Koenig-Huygens, la linéarité de l'espérance et le fait que les variables aléatoires soient indépendantes.
 - (b) Utiliser l'inégalité de Cauchy-Schwarz.
 - (c) Sous la contrainte $\sum_{k=1}^{n} x_k = 1$, on a $f(x_1, ..., x_n) = \sigma^2 \sum_{k=1}^{n} x_k^2 \ge \frac{\sigma^2}{n}$, avec égalité si et seulement si $x_1 = ... = x_n = \frac{1}{n}$. Conclure.
- (3) (a) La fonction f est polynomiale, et donc de classe \mathcal{C}^1 sur \mathbb{R}^n . De plus, pour tout $(x_1, ..., x_n) \in \mathbb{R}^n$:

$$\nabla(f)(x) = \left(2\sigma^2 x_1 + 2\mu^2 \left(\sum_{k=1}^n x_k - 1\right), ..., 2\sigma^2 x_n + 2\mu^2 \left(\sum_{k=1}^n x_k - 1\right)\right).$$

On trouve alors que $a = \left(\frac{\mu^2}{\sigma^2 + n\mu^2}, ..., \frac{\mu^2}{\sigma^2 + n\mu^2}\right)$.

(b) En utilisant la formule de Taylor avec reste intégral, on trouve que :

$$f(a+h) = f(a) + 2\int_0^1 (1-t) \left(\mu^2 \left(\sum_{i=1}^n h_i \right)^2 + \sigma^2 \sum_{i=1}^n h_i^2 \right) dt.$$

Par positivité de l'intégrale, il s'ensuit que $f(a+h) \ge f(a)$ pour tout $h \in \mathbb{R}^n$, et donc f admet un minimum global en a.

Exercice 24.

- (1) La matrice J_n est de rang 1, ses valeurs propres sont 0 et n et elle est de plus diagonalisable.
- (3) On trouve que $C = \left\{ \left(\frac{1}{\sqrt{2n}}, ..., \frac{1}{\sqrt{2n}} \right), \left(\frac{-1}{\sqrt{2n}}, ..., \frac{-1}{\sqrt{2n}} \right) \right\}.$ (4) Avec la question (1), vérifier que les valeurs propres de $H_n(a)$ sont toutes < 0, et donc f_n admet un
- maximum local en a, qui vaut $f(a) = \sqrt{\frac{n}{2}}e^{-1/2}$.
- (5) (a) La fonction h est croissante sur $\left[0,\frac{1}{\sqrt{2}}\right]$ et décroissante sur $\left]\frac{1}{\sqrt{2}},+\infty\right[$. (b) Utiliser <u>l'inégalité</u> de Cauchy-Schwarz.

 - (c) Si $s = \sqrt{\sum_{k=1}^{n} x_k^2}$, on voit avec les 2 questions précédentes que, pour tout $(x_1, ..., x_n) \in \mathbb{R}^n$:

$$f(x_1, ..., x_n) \le \sqrt{n}h(s) \le \sqrt{n}h\left(\frac{1}{\sqrt{2}}\right) = \sqrt{\frac{n}{2}}e^{-1/2}.$$

On en déduit que f_n admet un maximum global en a. Idem pour b.