TRAVAUX DIRIGÉS: DIAGONALISATION (RÉPONSES - INDICATIONS)

1. RÉDUCTION DES ENDOMORPHISMES

Exercice 1.

- (1) a = 1 et b = -1.
- (2) Utiliser la question (1) ou procéder par Analyse-Synthèse.
- (3) Conclure avec la question (2) et en effectuant une distinction de cas.

Exercice 2.

- (1) Soit λ une valeur propre non nulle de f, et soit x un vecteur propre de f pour λ . Comme $f(x) = \lambda x$, on voit que $x = f\left(\frac{x}{\lambda}\right)$, et donc x appartient à $\mathfrak{Im}(f)$. (2) Montrer que $\bigoplus_{\lambda \neq 0} E_{\lambda}(f) \subset \mathfrak{Im}(f)$ et conclure.

Exercice 3.

- (1) Vérifier que C(f) est non vide, inclus dans $\mathcal{L}(E)$ et stable par combinaisons linéaires.
- (2) Vérifier que $g(E_{\lambda}(f)) \subset E_{\lambda}(f)$.
- (3) Idem qu'à la question (2).
- (4) (a) Utiliser la question (2) et le fait que les sous-espaces propres sont de dimension 1.
 - (b) Conclure avec une base de diagonalisation de f.

Exercice 4.

- (1) $\operatorname{Sp}(f) = \{0\}.$
- (2) Par double implication.

Exercice 5.

- (1) (a) A faire!
 - (b) On trouve que:

$$M = \begin{pmatrix} 0 & 2/n & 0 & \cdots & 0 \\ 1 & 0 & 3/n & \ddots & \vdots \\ 0 & 1 - 1/n & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & n/n \\ 0 & \cdots & 0 & 1/n & 0 \end{pmatrix}.$$

- (2) (a) Vérifier que $f(P_k) = \left(\frac{n-2k}{n}\right) P_k$. (b) Conclure avec la question (2)(a) et vérifier que $E_{\frac{n-2k}{n}}(f) = \text{Vect}(P_k)$.

Exercice 6.

- (1) On trouve que $u^2(P) = P$ pour tout $P \in E$, et donc $Q: x \mapsto x^2 1$ est annulateur de u.
- (2) $\operatorname{Sp}(u) = \{-1, 1\}.$ Base de $E_1(u): (x \mapsto 1, x \mapsto (x-1)^2)$. Base de $E_{-1}(u): (x \longmapsto x-1, x \longmapsto (x-1)^3).$

Exercice 7.

- (1) A faire!
- (2) (a) A vérifier en calculant v(P), où $P: x \mapsto a_0 + a_1x + ... + a_rx^r$ et $a_r \neq 0$.
 - (b) Montrer avec la question (2)(a) que $(u \mathrm{Id}_E)^{n-1} = 0$ pour tout $P \in \mathbb{R}_n[x]$.
 - (c) On en déduit que $Sp(u) = \{0\}$ et u n'est pas diagonalisable.

Exercice 8. Montrer que $Sp(f) \subset \{0, -1, 1\}$, puis faire une distinction de cas suivant que 0 est valeur propre de f ou non.

Exercice 9.

- (1) Vérifier que f est linéaire. Faire le calcul de f(A) ensuite.
- (2) (a) Montrer que $ker(f) \subset Vect(A)$ et conclure.
 - (b) En dimension finie, remarquer que f est bijective si et seulement si $\ker(f) = \{0\}$.
- (3) (a) Procéder par Analyse-Synthèse pour démontrer (3)(a) et (3)(b).
 - (b) Voir (3)(a)!
- (4) Calculer $f \circ f(M)$ pour tout $M \in \mathcal{M}_n(\mathbb{R})$. Vérifier ensuite que $E_1(f) = \ker \operatorname{Tr} \operatorname{et} E_{-1}(f) = \operatorname{Vect}(A)$.
- (5) (a) On trouve que $Q: x \mapsto x^2 (2 2\operatorname{Tr}(A))x + 1 2\operatorname{Tr}(A)$ est annulateur de f.
 - (b) Procéder par double implication et par une distinction de cas avec la question (5)(a).

Exercice 10.

- (1) Développer $(f \lambda \operatorname{Id}_E) \circ (f \mu \operatorname{Id}_E)$ et utiliser le fait que $\operatorname{Id}_E = p + q$, $f = \lambda p + \mu q$ et $f^2 = \lambda^2 p + \mu^2 q$.
- (2) Procéder comme à l'exercice 1.

Exercice 11.

- (1) Démonstration de cours à savoir refaire!
- (2) Raisonner par l'absurde sur les racines de Q.

Exercice 12.

- (1) (a) Vérifier que $\mathfrak{Im}(\varphi) \subset \ker(g)$.
 - (b) Utiliser le théorème du rang!
- (2) Vérifier que, si $\lambda_1, ..., \lambda_p$ sont les valeurs propres distinctes de f et si \mathcal{B} est une base de vecteurs propres de f, alors $P(\mathfrak{mat}_{\mathcal{B}}(f)) = 0$ et conclure.
- (3) (a) Raisonner par récurrence à l'aide de la question (1)(b).
 - (b) Utiliser la question précédente.
- (4) Comme f est diagonalisable, f est annulé par un polynôme P non nul, scindé à racines simples d'après la question (2). Donc c'est aussi le cas pour $f_{|E_0}$ par restriction. Conclure alors avec la question (3).
- (5) On suppose que dim $E_{\lambda}(f) = 2$ et dim $E_{\mu}(f) = 1$. Alors les sous-espaces vectoriels stables par f sont $\{0\}, E_{\mu}(f), E_{\lambda}(f), E$ ou de la forme $D, E_{\mu}(f) \oplus D$, où D est une droite vectorielle incluse dans $E_{\lambda}(f)$.

2. RÉDUCTION DES MATRICES

Exercice 13.

(1)
$$M$$
 est diagonalisable, $\operatorname{Sp}(M) = \{0, 2\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}.$

(2)
$$M$$
 est diagonalisable, $\operatorname{Sp}(M) = \{1, 2\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

- (3) M n'est pas diagonalisable et $Sp(M) = \{2\}.$
- (4) M n'est pas diagonalisable et $Sp(M) = \emptyset$.
- (5) M n'est pas diagonalisable et $Sp(M) = \{0\}$.

Exercice 14.

(1)
$$M$$
 est diagonalisable, $Sp(M) = \{2, 4\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$

(2)
$$M$$
 est diagonalisable, $Sp(M) = \{2, 4\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

(3)
$$M$$
 est diagonalisable, $Sp(M) = \{0, 2\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

(4)
$$M$$
 est diagonalisable, $Sp(M) = \{0, 1\}$, $M = PDP^{-1}$ avec $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

(5)
$$M$$
 est diagonalisable, $Sp(M) = \{0, 1, -1\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$

- (6) M n'est pas diagonalisable et $Sp(M) = \{1\}.$
- (7) M n'est pas diagonalisable et $Sp(M) = \{1, 2\}$.
- (8) M n'est pas diagonalisable et $Sp(M) = \emptyset$.

Exercice 15.

(1)
$$M$$
 est diagonalisable, $Sp(M) = \{1, 2, 3\}$, $M = PDP^{-1}$ avec $P = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.

- (2) M n'est pas diagonalisable et $Sp(M) = \{1, 2\}$.
- (3) M n'est pas diagonalisable et $Sp(M) = \{0, 1\}$.

Exercice 16. On trouve que A est diagonalisable, $Sp(A) = \{-1, 2, 5\}$, $A = PDP^{-1}$ avec :

$$P = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

De plus, on a pour tout $n \in \mathbb{N}$:

$$A^{n} = \begin{pmatrix} 2((-1)^{n}) - 2^{n} & 2(-1)^{n} - 2^{n+1} & 0\\ (-1)^{n+1} + 2^{n} & (-1)^{n+1} + 2^{n+1} & 0\\ 5^{n} - 2^{n} & 2(5^{n}) - 2^{n+1} & 5^{n} \end{pmatrix}.$$

Exercice 17. On trouve que $A^3 - 3A^2 + 3A - I = 0$. De plus, A n'est pas diagonalisable et $Sp(A) = \{1\}$.

Exercice 18.

- (1) On voit que : $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{pmatrix}$.
- (2) A démontrer par récurrence.
- (3) On trouve que $Sp(A) = \{1, 2, 3\}$, A est diagonalisable et $A = PDP^{-1}$, avec :

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

(4) On obtient que, pour tout $n \in \mathbb{N}$: $u_n = 2^n - 1$.

Exercice 19. On trouve que $A^2 = nA$ et $Sp(A) = \{0, n\}$.

Exercice 20.

- (1) A faire!
- (2) $D_1 = E_1(f) = \text{Vect}((1,1,0))$ et $D_2 = E_2(f) = \text{Vect}((0,0,1))$.

Exercice 21. Calculer AX, où $X = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

Exercice 22.

- (1) A faire!
- (2) Si \mathcal{B} est la base canonique de $\mathbb{R}_n[x]$, alors on trouve que :

$$\max_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 1 & -2 & 0 & \cdots & 0 \\ 0 & 2 & 2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 6 & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & -n(n-1) \\ \vdots & & & \ddots & \ddots & n \\ 0 & \cdots & \cdots & & 0 & n(n+1) \end{pmatrix}.$$

(3) On obtient que $\operatorname{Sp}(u) = \{k(k+1), k \in [0, n]\}$ et u est diagonalisable.

Exercice 23.

- (1) On trouve que $B = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$. Vérifier le reste.
- (2) $\operatorname{Sp}(B) = \{-1, 2\}$ et B est diagonalisable
- (3) Montrer que, si λ est valeur propre de A, alors $\lambda^2 + 2$ est valeur propre de B.
- (4) Raisonner par l'absurde en utilisant la question précédente.
- (5) Vérifier que B est inversible et $B^{-1} = \frac{1}{2}(B I_3)$.
- (6) (a) Citer le théorème sur la division euclidienne.
 - (b) On trouve que $R_n: x \longmapsto \left[\frac{2^n (-1)^n}{3}\right]x + \left[\frac{2^n + 2(-1)^n}{3}\right]$.
 - (c) On en déduit que, pour tout $n \in \mathbb{N}$:

$$B^{n} = \left[\frac{2^{n} - (-1)^{n}}{3}\right] B + \left[\frac{2^{n} + 2(-1)^{n}}{3}\right] I_{3}.$$

Exercice 24.

- (1) On trouve que $D = \begin{pmatrix} 4 & 0 \\ 0 & 8 \end{pmatrix}$ et $P = \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix}$.
- (2) (a) Soit $X \in E_{\lambda}(A)$. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $BX = \alpha X$ (en utilisant le fait que les sous-espaces propres de A sont de dimension 1).
 - (b) Conclure avec la question (2)(a).
 - (c) Si $M^2 = A$, vérifier que AM = MA. On en déduit avec les questions précédentes que l'ensemble S des solutions de l'équation " $M^2 = A$ " est donné par :

$$S = \left\{ P \begin{pmatrix} 2 & 0 \\ 0 & 2\sqrt{2} \end{pmatrix} P^{-1}, P \begin{pmatrix} 2 & 0 \\ 0 & -2\sqrt{2} \end{pmatrix} P^{-1}, P \begin{pmatrix} -2 & 0 \\ 0 & 2\sqrt{2} \end{pmatrix} P^{-1}, P \begin{pmatrix} -2 & 0 \\ 0 & -2\sqrt{2} \end{pmatrix} P^{-1} \right\}.$$

Exercice 25.

- (1) $\operatorname{Sp}(f) = \{0, 1, 2\}, E_0(f) = \operatorname{Vect}((-1, 1, 0)), E_1(f) = \operatorname{Vect}((-1, 1, 1)), E_2(f) = \operatorname{Vect}((0, 1, 1)).$ Conclure à l'aide du spectre de f.
- (2) On trouve que $Q: x \mapsto x(x-1)(x-2)$.
- (3) On obtient que dim $\mathcal{E} = 3$.
- (4) Montrer que dim C = 3 et $E \subset C$, et en déduire que C = E.

Exercice 26.

- (1) A faire! On trouve que $\dim E = 4$.
- (2) A vérifier!
- (3) On trouve que : $M = \begin{pmatrix} -2 & 3 & -2 & 0 \\ 0 & -2 & 6 & -6 \\ 0 & 0 & -2 & 9 \\ 0 & 0 & 0 & -2 \end{pmatrix}$.
- (4) Vérifier que M est inversible et non diagonalisable.

Exercice 27.

- (1) A faire!
- (2) On trouve que $Sp(A) = \{1\}$. La matrice A n'est pas diagonalisable.
- (3) Base de $E_1(A)$: $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$.
- (4) Faire l'Analyse-Synthèse!

Exercice 28.

- (1) Cf. cours de deuxième année!
- (2) (a) On trouve que:

$$\operatorname{rg}(C) = \begin{cases} n-1 & \text{si} \quad a_0 = 0 \\ n & \text{si} \quad a_0 \neq 0 \end{cases} \quad \text{et} \quad \ker(f) = \begin{cases} \operatorname{Vect}((1,0,...,0)) & \text{si} \quad a_0 = 0 \\ \{(0,0,...,0)\} & \text{si} \quad a_0 \neq 0 \end{cases}.$$

(b) C est inversible si et seulement si $a_0 \neq 0$. Dans ce cas, on a :

$$C^{-1} = \begin{pmatrix} -a_1/a_0 & -a_2/a_0 & \cdots & -1/a_0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

- (3) (a) Résoudre le système linéaire $CX = \lambda X$ en procédant par substitutions successives. On trouve alors que λ est valeur propre de C si et seulement si $P(\lambda) = 0$, où $P: x \longmapsto a_0 + a_1x + ... + a_{n-1}x^{n-1} + x^n$.
 - (b) Vérifier que $\operatorname{rg}(C \lambda I_n) \ge n 1$ pour tout $\lambda \in \mathbb{R}$. En déduire que $\dim E_{\lambda}(C) = 1$ pour toute valeur propre λ de C. Conclure.
- (4) (a) On trouve que $Sp(M) = \{-2, 1, 4\}$.
 - (b) Déduire de la question (3)(b) que M n'est pas diagonalisable.

Exercice 29. Montrer par l'absurde que la matrice A n'est pas diagonalisable, en supposant qu'elle l'est et en utilisant une diagonalisation de A.

3. Exercices supplémentaires

Exercice 30.

- (1) Base de $\ker(f)$: ((-1,1,0,...,0),(-1,0,1,0,...,0),...,(-1,0,...,0,1)). Base de $\mathfrak{Im}(f)$: ((1,...,1)).
- (2) Vérifier que f(y) = ny, et donc y est vecteur propre de f pour la valeur propre n.
- (3) On trouve que $Sp(f) = \{0, n\}$.
- (4) Vérifier que f est diagonalisable. Une base $\mathcal B$ de diagonalisation de f est donnée par :

$$\mathcal{B} = ((-1, 1, 0, ..., 0), (-1, 0, 1, 0, ..., 0), ..., (-1, 0, ..., 0, 1), (1, ..., 1)).$$

Exercice 31.

- (1) A faire!
- (2) On trouve que:

$$M = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}$$

- (3) Vérifier que $f \circ f = \text{Id}_E$. En déduire dans un premier temps que $\text{Sp}(f) \subset \{-1,1\}$, puis montrer que -1 et 1 sont effectivement valeurs propres de f et conclure.
- (4) Base de $E_1(f): (x \mapsto 1 + x^3, x \mapsto x + x^2)$. Base de $E_{-1}(f): (x \mapsto 1 x^3, x \mapsto x x^2)$.

Exercice 32.

- (1) A faire!
- (2) Si \mathcal{B} est la base canonique de $\mathbb{R}_n[x]$, alors on trouve que :

$$\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & -2a & 0 & \cdots & 0 \\ 0 & 2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 6 & \ddots & 0 \\ \vdots & & \ddots & \ddots & -na \\ 0 & \cdots & \cdots & 0 & n+1 \end{pmatrix}.$$

- (3) On trouve que $Sp(f) = \{0, 2, 3, ..., n + 1\}$. En déduire que f est diagonalisable.
- (4) On obtient que rg(f) = n. Base de $ker(f) : (x \mapsto 1)$.
- (5) On trouve que $f(e_k) = (k+1)e_k$ pour tout $k \in [2, n]$. Base de $E_{k+1}(f)$: (e_k) .

Exercice 33.

- (1) A faire!
- (2) Base de ker(f): $(x \mapsto x^2 1, x \mapsto x(x^2 1), ..., x \mapsto x^{n-2}(x^2 1))$. Base de $\mathfrak{Im}(f)$: $(x \mapsto x, x \mapsto x^2)$.
- (3) (a) On trouve que $Q: x \mapsto x^2 2x$ est annulateur de f.
 - (b) On obtient que $Sp(f) \subset \{0, 2\}$.
 - (c) Raisonner comme à l'exo 2!

- (d) On trouve que $Sp(f) = \{0, 2\}$. De plus, on a : Base de $E_0(f)$: $(x \mapsto x^2 - 1, x \mapsto x(x^2 - 1), ..., x \mapsto x^{n-2}(x^2 - 1))$. Base de $E_2(f)$: $(x \mapsto x, x \mapsto x^2)$.
- (e) Conclure avec la question précédente que f est diagonalisable.

Exercice 34.

- (1) A faire!
- (2) On trouve que $Q: x \mapsto x^2 \text{Tr}(A)x$ est annulateur de f.
- (3) On obtient que $Sp(f) \subset \{0, Tr(A)\}.$
- (4) On trouve que A est vecteur propre de f pour $\lambda_0 = 0$.
- (5) Base de $E_{\lambda_0}(f)$: (A).
- (6) Partir de l'égalité $f(M) = \lambda M$ et passer à la trace!
- (7) Vérifier que $\lambda_1 = \text{Tr}(A)$ est aussi valeur propre de f. On trouve que dim $E_{\lambda_1}(f) = n^2 1$.
- (8) Conclure avec les questions précédentes!

Exercice 35.

(1)
$$M$$
 est diagonalisable, $Sp(M) = \{-3, -1, 6\}$, $M = PDP^{-1}$ avec $P = \begin{pmatrix} -1 & 2 & 1 \\ -1 & -5 & 1 \\ 2 & 2 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 6 \end{pmatrix}$.

(2)
$$M$$
 est diagonalisable, $Sp(M) = \{0, 2\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} -1 & 2 & 3 \\ -1 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$

- (3) M n'est pas diagonalisable, $Sp(M) = \{2\}.$
- (4) M n'est pas diagonalisable, $Sp(M) = \{0, 1\}$.
- (5) M n'est pas diagonalisable, $Sp(M) = \{2\}.$

(6)
$$M$$
 est diagonalisable, $\operatorname{Sp}(M) = \{-1, 1, 3\}, M = PDP^{-1} \text{ avec } P = \begin{pmatrix} 1 & 3 & -1 \\ -2 & 4 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$

Exercice 36.

- (1) On trouve que $Q: x \mapsto x^2 \frac{n(n+1)}{2}x$ est annulateur de A. (2) Vérifier que $A^p = \left(\frac{n(n+1)}{2}\right)^{p-1}A$ pour tout $p \in \mathbb{N}^*$.
- (3) On obtient que $\operatorname{Sp}(A) = \left\{0, \frac{n(n+1)}{2}\right\}$

(4) Base de
$$E_0(A)$$
: $\begin{pmatrix} -1 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$, ..., $\begin{pmatrix} 0 \\ \vdots \\ \vdots \\ -1 \\ 1 \end{pmatrix}$. Base de $E_{\frac{n(n+1)}{2}}$: $\begin{pmatrix} 1 \\ \vdots \\ \vdots \\ \vdots \\ 1 \end{pmatrix}$.

(5) Vérifier avec la question précédente que la matrice A est diagonalisable.

Exercice 37.

- (1) (a) On trouve comme reste : $R_n: x \mapsto \left[\frac{2^n (-1)^n}{3}\right] x + \left[\frac{2^n + 2(-1)^n}{3}\right]$.
 - (b) On en déduit que :

$$a_n = \frac{2^n - (-1)^n}{3}$$
 et $b_n = \frac{2^n + 2(-1)^n}{3}$.

- (2) A faire!
- (3) On trouve que $A = PDP^{-1}$, avec :

$$P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

On montre par récurrence que $A^n = PD^nP^{-1}$, et on termine le calcul.

(4) On voit que $J^2 = 3J$, et donc on obtient par une récurrence facile que $J^k = 3^{k-1}J$ pour tout $k \in \mathbb{N}^*$. On applique ensuite la formule du binôme à $A^n = (-I_3 + J)^n$, et enfin on trouve que :

$$A^n = (-1)^n I_3 + \left[\frac{2^n - (-1)^n}{3} \right] J.$$

Exercice 38.

- (1) On trouve que $Q: x \mapsto x^3 2x$ est annulateur de K.
- (2) Vérifier que $\operatorname{Sp}(M) = \{-\sqrt{2}, 0, \sqrt{2}\}$, et en déduire que la matrice K est diagonalisable. En outre, on trouve après calculs que $K = PDP^{-1}$ avec :

$$P = \begin{pmatrix} 1 & -1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & 1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} -\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}.$$

- (3) On trouve que $M = (a b)I_3 + cK + bK^2$.
- (4) Vérifier que toute base de diagonalisation de K est aussi une base de diagonalisation de M. A l'aide des questions précédentes, on trouve que $M = PDP^{-1}$ avec :

$$P = \begin{pmatrix} 1 & -1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & 1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} a+b-\sqrt{2}c & 0 & 0 \\ 0 & a-b & 0 \\ 0 & 0 & a+b+\sqrt{2}c \end{pmatrix}.$$

(5) Vérifier que $M^n = PD^nP^{-1}$ pour tout $n \in \mathbb{N}$, puis conclure avec la question précédente.

Exercice 39.

- (1) Vérifier que A est inversible, puis que A^n est inversible pour tout $n \in \mathbb{N}$, et donc tout entier $n \in \mathbb{N}$ convient
- (2) Vérifier que A est diagonalisable. En déduire que A^n est diagonalisable pour tout $n \in \mathbb{N}$, et donc tout entier $n \in \mathbb{N}$ convient.

Exercice 40.

- (1) A faire!
- (2) Si f est cyclique, considérons un vecteur x_0 de E tel que $(x_0, h(x_0), ..., h^{n-1}(x_0)) = (e_1, ..., e_n)$ soit une base de E. Alors $h^n(x_0) = h(e_n)$ s'écrit sous la forme $\alpha_0 e_1 + \alpha_1 e_2 + ... + \alpha_{n-1} e_n$. En déduire la forme de la matrice $\mathfrak{mat}_{\mathcal{B}}(f)$. Réciproque à faire!
- (3) Montrer que $P(f)(x_0) = 0$, puis que $P(f)(f^l(x_0)) = f^l(P(f)(x_0)) = f^l(0) = 0$ pour tout $l \in \mathbb{N}$. Comme la famille $(x_0, f(x_0), ..., f^{n-1}(x_0))$ est une base de E, en déduire que P(f) = 0.
- (4) (a) Vérifier que $(\mathrm{Id}_E, f, ..., f^{n-1})$ est génératrice de R(f) à l'aide de la division euclidienne. Prouver ensuite que cette famille est libre en utilisant le fait que $(x_0, f(x_0), ..., f^{n-1}(x_0))$ est une base de E.
 - (b) Soit g un élément de C(f). Comme la famille $(x_0, f(x_0), ..., f^{n-1}(x_0)) = (e_1, ..., e_n)$ est une base de E, il existe des réels $\alpha_0, \alpha_1, ..., \alpha_{n-1}$ tels que :

$$g(x_0) = \alpha_0 x_0 + \alpha_1 f(x_0) + \dots + \alpha_{n-1} f^{n-1}(x_0).$$

Dès lors, on voit que, pour tout $l \in \mathbb{N}$:

$$g(f^{l}(x_{0})) = f^{l}(g(x_{0})) = f^{l}\left(\sum_{k=0}^{n-1} \alpha_{k} e_{k+1}\right) = \sum_{k=0}^{n-1} \alpha_{k} f^{l}\left(e_{k+1}\right) = \sum_{k=0}^{n-1} \alpha_{k} f^{k+l}(x_{0}) = \sum_{k=0}^{n-1} \alpha_{k} f^{k}(f^{l}(x_{0})).$$

En particulier, g et $\sum_{k=0}^{n-1} \alpha_k f^k$ coincident sur une base de E, et donc ces deux endomorphismes sont égaux. En d'autres termes, on a l'inclusion $C(f) \subset R(f)$. Conclure avec la question (1).

(5) On suppose que $\alpha_0 = 0$. On trouve alors que $\operatorname{rg}(f) = n - 1$ et de plus, une base de $\ker(f)$ est donnée par $(f_1) = (f^{n-1}(x_0) - \alpha_1 x_0 - \dots - \alpha_{n-1} f^{n-2}(x_0))$. Si $\alpha_1 = 0$, alors f_1 appartient à $\mathfrak{Im}(f)$, et donc $\ker(f) \cap \mathfrak{Im}(f) \neq \{0\}$. Si maintenant $\alpha_1 \neq 0$, alors f_1 n'appartient pas à $\mathfrak{Im}(f)$, et donc $\ker(f) \cap \mathfrak{Im}(f) = \{0\}$. Conclure alors avec le théorème du rang.

Exercice 41.

- (1) (a) A faire!
 - (b) n = 3.
 - (c) L'application T n'est pas surjective sur E.
- (2) (a) $\deg(P) = 3$.
 - (b) $F = \mathbb{R}_3[x]$.

(3) (a) Si \mathcal{B} est la base canonique de $\mathbb{R}_3[x]$, alors on trouve que :

$$\mathfrak{mat}_{\mathcal{B}}(T) = \begin{pmatrix} 8 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 3 & -1 \end{pmatrix}.$$

Après calculs, on obtient que $Sp(T) = \{-1, 0, 3, 8\}$ et de plus :

$$\begin{cases} E_{-1}(T) &= \operatorname{Vect}(x \longmapsto x^3), \\ E_0(T) &= \operatorname{Vect}(x \longmapsto 3x^3 + x^2), \\ E_3(T) &= \operatorname{Vect}(x \longmapsto 3x^3 + 4x^2 + 3x), \\ E_8(T) &= \operatorname{Vect}(x \longmapsto x^3 + 3x^2 + 6x + 10). \end{cases}$$

(b) L'application T n'est pas injective car 0 est valeur propre de T.

Exercice 42.

- (1) Procéder par Analyse-Synthèse!
- (2) Un exemple d'endomorphisme non diagonalisable f de \mathbb{R}^3 tel que $f^3 = f^2$ est donné par l'endomorphisme canoniquement associé à la matrice :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 43.

- (1) $\operatorname{Sp}(A) = \operatorname{Sp}(B) = \{0\}, \operatorname{rg}(A) = \operatorname{rg}(B) = 2 \text{ et } \dim E_0(A) = \dim E_0(B) = 2.$
- (2) A et B ne sont pas semblables. Sinon A^2 et B^2 le seraient, et c'est impossible car $A^2 \neq 0$ et $B^2 = 0$.

Exercice 44.

- (1) On trouve que $Sp(f) = \{0\}.$
- (2) Montrer que les seuls sous-espaces vectoriels de \mathbb{R}^3 qui sont stables par f sont $\{0\}$, $\ker(f)$, $\mathfrak{Im}(f)$, \mathbb{R}^3 .

Exercice 45.

- (1) (a) Utiliser l'indication donnée!
 - (b) A faire!
 - (c) Les suites géométriques appartenant à \mathcal{E} sont exactement les multiples de $(1)_{p\in\mathbb{N}}$ ou de $(2^p)_{p\in\mathbb{N}}$.
 - (d) Vérifier que $((1)_{p\in\mathbb{N}}, (2^p)_{p\in\mathbb{N}}, (p)_{p\in\mathbb{N}})$ est une famille libre de \mathcal{E} , et en déduire que c'en est une base. Dès lors, si $(u_p)_{p\in\mathbb{N}} \in \mathcal{E}$, il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tels que : $\forall p \in \mathbb{N}$, $u_p = \alpha + \beta 2^p + \gamma p$.
- (2) (a) A faire par un calcul direct!
 - (b) Vérifier que dim $E_1(A) = \dim E_2(A) = 1$, et en déduire que la matrice A n'est pas diagonalisable.
 - (c) Suivre l'indication donnée!
 - (d) A faire par un calcul direct ou à l'aide de la question précédente!
- (3) (a) A démontrer par récurrence!
 - (b) Utiliser les relations de récurrence trouvées à la question précédente entre $a_{p+1}, b_{p+1}, c_{p+1}$ et a_p, b_p, c_p pour montrer que la suite $(a_p)_{p \in \mathbb{N}}$ vérifie la relation de récurrence qui définit les éléments de \mathcal{E} .
 - (c) A l'aide de la question précédente, on trouve d'abord l'expression de a_p en fonction de p. Ensuite, on en déduit après calculs que $A^p = (2^p p 1)A^2 + (-2^{p+1} + 3p + 2)A + (2^p 2p)I_3$ pour tout $p \in \mathbb{N}$.
 - (d) Vérifier avec la question (2)(d) que la matrice A est inversible et que l'on a :

$$A^{-1} = \frac{1}{2} \left(A^2 - 4A + 5I_3 \right).$$

Exercice 46.

- (1) A l'aide des croissances comparées, vérifier que $P(t)e^t = o(\frac{1}{t^2})$, puis conclure par négligeabilité.
- (2) A faire!
- (3) Penser à la dérivation! On trouve que $ker(T) = \{0\}$.
- (4) (a) Vérifier que $T(e_0) = e_0$, puis effectuer une IPP!
 - (b) Raisonner par récurrence!
 - (c) Vérifier à l'aide de la question précédente que $T(E) \subset E$.
- (5) Vérifier avec les questions précédentes que la matrice M de T dans la base canonique de E est triangulaire supérieure avec uniquement des 1 sur la diagonale. En déduire que $(I_n M)^{n+1} = 0$ et conclure.
- (6) Montrer avec la question précédente que $Sp(T) = \{1\}$, puis que T n'est pas diagonalisable.

(7) Utiliser la question (5) et la formule du binôme!

Exercice 47.

- (1) Cf. cours!
- (2) A faire!
- (3) Soit $\lambda \in \operatorname{Sp}(\phi)$. Alors il existe un endomorphisme $v \neq 0_{\mathcal{L}(E)}$ tel que $\phi(v) = u \circ v = \lambda v$. Comme $v \neq 0_{\mathcal{L}(E)}$, il existe un vecteur x de E tel que $v(x) \neq 0_E$, et donc $u(v(x)) = \lambda v(x)$. En particulier, v(x) est un vecteur propre de u pour la valeur propre λ , d'où le résultat!
- (4) D'après la question précédente, on sait déjà que $\operatorname{Sp}(\phi) \subset \operatorname{Sp}(u)$. Pour établir l'inclusion inverse, on se fixe un vecteur propre x de u pour la valeur propre λ , et on considère un projecteur v sur $\operatorname{Vect}(x)$ parallèlement à un supplémentaire G de $\operatorname{Vect}(x)$ dans E. Vérifier alors que $\phi(v) = \lambda v$ et conclure!
- (5) (a) A faire!
 - (b) Avec la question précédente, on trouve que :

$$\dim \ker (\phi - \lambda \operatorname{Id}_{\mathcal{L}(E)}) = \dim \mathcal{L}(E, \ker(u - \lambda \operatorname{Id}_E)) = n \dim E_{\lambda}(u).$$

(6) Utiliser la question précédente!

Exercice 48.

- (1) (a) A faire!
 - (b) A faire en utilisant la question précédente ou en revenant à la définition de l'inversibilité!
- (2) Soit λ un réel non nul.
 - (a) Supposons la matrice $\lambda I_n AB$ inversible. Si $X \in \ker(\lambda I_n BA)$, alors on voit que $BAX = \lambda X$. En multipliant par A à gauche, il vient que $ABAX = \lambda AX$. Donc AX appartient à $\ker(\lambda I_n AB)$, qui est égal à $\{0\}$ car $\lambda I_n AB$ est inversible, et donc AX = 0. En particulier, on obtient que $BAX = 0 = \lambda X$, et donc X = 0 car $\lambda \neq 0$. Dès lors, on voit que $\ker(\lambda I_n BA) = \{0\}$, et donc $\lambda I_n BA$ est inversible si $\lambda I_n AB$ l'est. On procède enfin de la même façon pour la réciproque!
 - (b) Effectuer le produit (à droite ou à gauche) de $\lambda I_n AB$ avec $\frac{1}{\lambda}I_n + \frac{1}{\lambda}A(\lambda I_n BA)^{-1}B$ et conclure!
- (3) Utiliser la question (2)(a) pour montrer que AB et BA ont les mêmes valeurs propres non nulles. Utiliser ensuite la question (1)(b) pour montrer que 0 est valeur propre de AB si et seulement si 0 est valeur propre de BA, et enfin conclure!
- (4) (a) On trouve que $Sp(BA) = \{0, n\}$.
 - (b) Utiliser la question (2)(a) pour l'inversibilité. Avec la question (2)(b), on obtient que :

$$(I_n - AB)^{-1} = \frac{1}{1-p} \begin{pmatrix} 2-p & 1 & \cdots & 1\\ 1 & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & 1\\ 1 & \cdots & 1 & 2-p \end{pmatrix}.$$

Exercice 49.

- (1) Montrer par récurrence que $f^n \circ g g \circ f^n = n\alpha f^n$ pour tout $n \in \mathbb{N}$.
- (2) Supposons que $f^n \neq 0$ pour tout $n \in \mathbb{N}$. Alors l'endomorphisme $\varphi : h \longmapsto h \circ g g \circ h$ admet une infinité de valeurs propres distinctes d'après la question précédente, ce qui est impossible en dimension finie!

Exercice 50.

- (1) Soit x un vecteur non nul de E. Considérer un projecteur p sur Vect(x) parallèlement à un supplémentaire G de Vect(x) dans E. Utiliser le fait que u et p commutent pour conclure!
- (2) Se reporter à la feuille de TD "Applications linéaires et matrices".