TRAVAUX DIRIGÉS: DIAGONALISATION

1. RÉDUCTION DES ENDOMORPHISMES

Exercice 1. Soit E un espace vectoriel de dimension finie > 0, et soit $u \in \mathcal{L}(E)$ tel que $u^2 - 3u + 2\mathrm{Id}_E = 0$.

- (1) Déterminer des réels a, b tels que $\mathrm{Id}_E = a(u \mathrm{Id}_E) + b(u 2\mathrm{Id}_E)$.
- (2) Montrer que $E = \ker(u \operatorname{Id}_E) \oplus \ker(u 2\operatorname{Id}_E)$.
- (3) En déduire que u est diagonalisable.

Exercice 2. Soit f un endomorphisme d'un espace vectoriel E de dimension finie > 0.

- (1) Montrer que, si λ est une valeur propre non nulle de f, alors $E_{\lambda}(f) \subset \mathfrak{Im}(f)$.
- (2) En déduire que, si f est diagonalisable, alors $E = \ker(f) \oplus \mathfrak{Im}(f)$.

Exercice 3. Soit E un espace vectoriel de dimension finie $n \geq 2$, et soit f un endomorphisme de E. On définit le commutant de f par $C(f) = \{g \in \mathcal{L}(E) | f \circ g = g \circ f\}$. Par la suite, on dit qu'un endomorphisme h de E stabilise un sous-espace vectoriel F de E (ou que F est stable par h) si $h(F) \subset F$.

- (1) Montrer que C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- (2) Soit $g \in C(f)$. Montrer que g stabilise les sous-espaces propres de f.
- (3) Soit $q \in C(f)$. Montrer que q stabilise le noyau et l'image de f.
- (4) Dans cette question, on suppose que f admet n valeurs propres distinctes.
 - (a) Soit $g \in C(f)$. Montrer que les vecteurs propres de f sont des vecteurs propres de g.
 - (b) En déduire que tout élément g de C(f) est diagonalisable.

Exercice 4. Soit E un espace vectoriel de dimension finie n > 0. Soit f un endomorphisme nilpotent de E, c'est-à-dire un endomorphisme de E pour lequel il existe un entier p > 0 tel que $f^p = 0$.

- (1) Déterminer le spectre de f.
- (2) En déduire que f est diagonalisable si et seulement si f est l'endomorphisme nul.

Exercice 5. Soit $n \in \mathbb{N}^*$. On pose $E = \mathbb{R}_n[x]$ et on considère l'application f définie pour tout $P \in E$ par :

$$f(P): x \longmapsto xP(x) - \frac{1}{n}(x^2 - 1)P'(x).$$

- (1) (a) Montrer que f est un endomorphisme de E (indication : on vérifiera que $f(E) \subset E$).
 - (b) Déterminer la matrice M de f dans la base canonique de E.
- (2) Pour tout $k \in \{0, ..., n\}$, on pose $P_k : x \longmapsto (x-1)^k (x+1)^{n-k}$.
 - (a) Montrer que P_k est un vecteur propre de f et trouver la valeur propre associée.
 - (b) En déduire que f est diagonalisable et préciser les sous-espaces propres de f.

Exercice 6. On pose $E = \mathbb{R}_3[x]$, et on considère l'endomorphisme u de E, défini pour tout $P \in E$ par :

$$u(P): x \longmapsto P(2-x).$$

- (1) Calculer $u^2(P)$ pour tout $P \in E$, et en déduire un polynôme annulateur non nul de u.
- (2) Déterminer les valeurs propres de u, ainsi qu'une base de chaque sous-espace propre de u.

Exercice 7. Soit n un entier ≥ 3 . Pour tout $P \in \mathbb{R}_n[x]$, on pose $u(P): x \longmapsto P(x+1) - P'(x)$.

- (1) Montrer que u est un endomorphisme de $\mathbb{R}_n[x]$.
- (2) Par la suite, on pose $v = u \mathrm{Id}_E$.
 - (a) Montrer que, pour tout $P \in \mathbb{R}_n[x]$, on a : $\deg(v(P)) \leq \deg(P) 2$.
 - (b) En déduire que le polynôme $P: x \longmapsto (x-1)^{n-1}$ est annulateur de u.
 - (c) En déduire le spectre de u. L'endomorphisme u est-il diagonalisable?

Exercice 8. (QSP HEC 2011) Soit f un endomorphisme de \mathbb{R}^3 tel que $f^4 = f^2$ et dont -1 et 1 sont valeurs propres. Montrer que f est diagonalisable.

Exercice 9. (ESCP 2015) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et soit $f : \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$ l'application définie par f(M) = M - 2Tr(M)A, où Tr désigne l'application "trace".

- (1) L'application f est-elle linéaire? Montrer que f(A) = 0 si et seulement si $Tr(A) = \frac{1}{2}$ ou A = 0.
- (2) (a) Montrer que, si $Tr(A) \neq \frac{1}{2}$, alors $ker(f) = \{0\}$.
 - (b) Montrer que f est bijective si et seulement si $Tr(A) \neq \frac{1}{2}$.
- (3) Dans cette question, on suppose que $Tr(A) = \frac{1}{2}$ et l'on pose $H = \{M \in \mathcal{M}_n(\mathbb{R}), Tr(M) = 0\}$.
 - (a) Montrer que H et Vect(A) sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.
 - (b) Montrer que f est le projecteur de $\mathcal{M}_n(\mathbb{R})$ sur H parallèlement à $\operatorname{Vect}(A)$.
- (4) Montrer que $f \circ f = \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})}$ si et seulement si $\mathrm{Tr}(A) = 1$ ou A = 0. Quels sont alors les sous-espaces propres de f?
- (5) Dans cette question, on ne fait aucune hypothèse sur Tr(A).
 - (a) Déterminer un polynôme annulateur de f.
 - (b) Montrer que f est diagonalisable si et seulement si $Tr(A) \neq 0$ ou A = 0.

Exercice 10. (QSP HEC 2015) Soit E un espace vectoriel de dimension $n \ge 2$. Soient f, p, q des endomorphimes de E et soient λ, μ des réels distincts tels que : $\forall k \in \{0, 1, 2\}, f^k = \lambda^k p + \mu^k q$.

- (1) Montrer que $(f \lambda \operatorname{Id}_E) \circ (f \mu \operatorname{Id}_E) = 0$.
- (2) En déduire que l'ensemble des valeurs propres de f est inclus dans $\{\lambda, \mu\}$ et que f est diagonalisable.

Exercice 11. (QSP HEC 2015) Soit f un endomorphisme d'un espace vectoriel E de dimension finie.

- (1) Etablir l'existence d'un polynôme P non nul tel que P(f) = 0.
- (2) Soit Q un polynôme non nul tel que Q(f) = 0, et de degré minimal parmi les polynômes non nuls tels que P(f) = 0. Montrer que toute racine de Q est une valeur propre de f.

Exercice 12. (ESCP 2023) Soit E un espace vectoriel de dimension finie $n \geq 2$, et soit $f \in \mathcal{L}(E)$.

- (1) Soient g, h deux endomorphismes de E et soit $\varphi : \ker(g \circ h) \longrightarrow E, u \longmapsto h(u)$.
 - (a) Comparer $\mathfrak{Im}(\varphi)$ et $\ker(g)$.
 - (b) En déduire que : $\dim \ker(g \circ h) \leq \dim \ker(h) + \dim \ker(g)$.
- (2) Dans cette question, on suppose que f est diagonalisable. Montrer qu'il existe des réels distincts $\lambda_1, ..., \lambda_p$ tels que $P: x \longmapsto (x \lambda_1)(x \lambda_2)...(x \lambda_p)$ soit un polynôme annulateur de f.
- (3) Réciproquement, on suppose qu'il existe des réels distincts $\lambda_1, ..., \lambda_p$ tels que le polynôme $P: x \mapsto (x \lambda_1)(x \lambda_2)...(x \lambda_p)$ soit annulateur de f.
 - (a) Montrer que $\sum_{i=1}^{p} \dim \ker(f \lambda_i \operatorname{Id}_E) \geq n$.
 - (b) En déduire que l'endomorphisme f est diagonalisable.
- (4) Dans cette question, on suppose que f est diagonalisable. Montrer que, si E_0 est un sous-espace vectoriel de E stable par f, alors l'endomorphisme $f_{|E_0}$ de E_0 induit par f est, lui aussi, diagonalisable.
- (5) Dans cette question, E est un espace vectoriel de dimension 3 et f est un endomorphisme diagonalisable de E tel que $Sp(f) = \{\lambda, \mu\}$. Déterminer tous les sous-espaces vectoriels de E stables par f.

2. RÉDUCTION DES MATRICES

Exercice 13. Calculer les valeurs propres de la matrice $M \in \mathcal{M}_2(\mathbb{R})$, déterminer si M est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ et si oui la diagonaliser, et ce dans chacun des cas suivants :

$$(1) \ M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad (2) \ M = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}, \quad (3) \ M = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}, \quad (4) \ M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad (5) \ M = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}.$$

Exercice 14. Calculer les valeurs propres de la matrice $M \in \mathcal{M}_3(\mathbb{R})$, déterminer si M est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et si oui la diagonaliser, et ce dans chacun des cas suivants :

$$(1) \ M = \begin{pmatrix} 4 & 2 & -2 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \quad (2) \ M = \begin{pmatrix} 5 & 1 & -3 \\ 0 & 4 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad (3) \ M = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}, \quad (4) \ M = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ 2 & 0 & 0 \end{pmatrix},$$

$$(5) \ M = \begin{pmatrix} -2 & -2 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, \quad (6) \ M = \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 2 \\ 1 & -3 & 3 \end{pmatrix}, \quad (7) \ M = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & -1 \\ 1 & 2 & 0 \end{pmatrix}, \quad (8) \ M = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Exercice 15. Calculer les valeurs propres de la matrice $M \in \mathcal{M}_4(\mathbb{R})$, déterminer si M est diagonalisable dans $\mathcal{M}_4(\mathbb{R})$ et si oui la diagonaliser, et ce dans chacun des cas suivants :

$$(1) \ M = \begin{pmatrix} 3 & -1 & -2 & 1 \\ 2 & 0 & -2 & 1 \\ 2 & -2 & -1 & 2 \\ 4 & -4 & -4 & 5 \end{pmatrix}, \quad (2) \ M = \begin{pmatrix} 3 & 1 & 0 & 4 \\ 2 & 2 & 0 & 4 \\ -2 & -1 & 1 & -4 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \quad (3) \ M = \begin{pmatrix} 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix}.$$

Exercice 16. La matrice $A = \begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$ est-elle diagonalisable? Calculer A^n en fonction de $n \in \mathbb{N}$.

Exercice 17. Calculer $A^3 - 3A^2 + 3A - I$, où $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. La matrice A est-elle diagonalisable?

Exercice 18. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=0, u_1=1, u_2=3$ et par la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 6u_{n+2} - 11u_{n+1} + 6u_n.$$

Pour tout $n \in \mathbb{N}$, on désigne par X_n le vecteur colonne de composantes u_n, u_{n+1}, u_{n+2} .

- (1) Justifier qu'il existe une matrice $A \in \mathcal{M}_3(\mathbb{R})$ (que l'on déterminera) telle que : $\forall n \in \mathbb{N}, X_{n+1} = AX_n$.
- (2) Montrer que $X_n = A^n X_0$ pour tout $n \in \mathbb{N}$.
- (3) Etablir que A est diagonalisable et la diagonaliser.
- (4) En déduire l'expression de u_n en fonction de n.

Exercice 19. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ telle que $a_{i,j} = \frac{i}{j}$ pour tous $i, j \in \{1, ..., n\}$. Calculer A^2 en fonction de n et A, et en déduire les valeurs propres de A.

Exercice 20. Soit n un entier ≥ 1 , soit f un endomorphisme de \mathbb{R}^n et soit D une droite vectorielle de \mathbb{R}^n , c'est-à-dire un sous-espace vectoriel de dimension 1 de \mathbb{R}^n . Par la suite, on dit qu'un sous-espace vectoriel F de \mathbb{R}^n est $stable\ par\ f$ si $f(F) \subset F$.

- (1) Montrer que D est stable par f si et seulement si D est engendrée par un vecteur propre de f.
- (2) Déterminer toutes les droites vectorielles stables par l'endomorphisme f canoniquement associé à :

$$M = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Exercice 21. Soit $S \in \mathbb{R}$ et soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que la somme des coefficients par ligne est égale à S. Montrer que S est une valeur propre de A.

Exercice 22. Pour tout $P \in \mathbb{R}_n[x]$, on pose $u(P): x \longmapsto (x^2 - 1)P''(x) + (2x + 1)P'(x)$.

- (1) Montrer que u est un endomorphisme de $\mathbb{R}_n[x]$.
- (2) Déterminer la matrice de u dans la base canonique de $\mathbb{R}_n[x]$.
- (3) En déduire le spectre de u. L'endomorphisme u est-il diagonalisable? Justifier.

Exercice 23. On considère la matrice $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

- (1) Calculer la matrice $B = A^2 + 2I_3$, puis montrer que $B^2 = B + 2I_3$.
- (2) Déterminer les valeurs propres et les sous-espaces propres de B. La matrice B est-elle diagonalisable?
- (3) Etablir une relation entre les valeurs propres de B et celles de A.
- (4) En déduire que la matrice A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- (5) Montrer que B est inversible, et calculer B^{-1} en fonction de B et I_3 .
- (6) A présent, on s'intéresse aux puissances de B. On suppose que $n \geq 2$.
 - (a) Justifier l'existence et l'unicité de deux polynômes $Q_n, R_n \in \mathbb{R}[x]$, avec $\deg(R_n) < 2$, tels que :

$$\forall x \in \mathbb{R}, \quad x^n = (x^2 - x - 2)Q_n(x) + R_n(x).$$

- (b) Déterminer le polynôme R_n en fonction de n.
- (c) En déduire l'expression de B^n en fonction de n, I, B.

Exercice 24. On considère la matrice $A = \begin{pmatrix} 0 & -8 \\ 4 & 12 \end{pmatrix}$.

- (1) Déterminer une matrice D diagonale et une matrice P inversible telle que $D = P^{-1}AP$.
- (2) Soit B une matrice de $\mathcal{M}_2(\mathbb{R})$ telle que AB = BA.
 - (a) Montrer que tout vecteur propre de A est un vecteur propre de B.
 - (b) En déduire que $P^{-1}BP$ est une matrice diagonale.
 - (c) Déterminer toutes les matrices $M \in \mathcal{M}_2(\mathbb{R})$ telles que $M^2 = A$.

Exercice 25. (ESCP 2010) Soit f l'endomorphisme canoniquement associé à la matrice $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- (1) Déterminer les valeurs propres et les vecteurs propres de f, puis justifier que A est diagonalisable.
- (2) Soit D une matrice diagonale semblable à A. Déterminer un polynôme annulateur Q de D, unitaire et de degré minimal. En déduire un polynôme annulateur de A avec les mêmes propriétés.
- (3) Déterminer la dimension du sous-espace vectoriel \mathcal{E} engendré par la famille $(A^k)_{k\in\mathbb{N}}$.
- (4) Déterminer l'ensemble \mathcal{C} des matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec A, puis comparer \mathcal{C} et \mathcal{E} .

Exercice 26. (HEC 2010) Soit \mathcal{F} l'espace vectoriel des fonctions définies sur \mathbb{R} à valeurs réelles, et soit E le sous-espace vectoriel de \mathcal{F} engendré par la famille $\mathcal{B} = (f_0, f_1, f_2, f_3)$, où $f_k : x \longmapsto x^k e^{-x}$ pour tout $k \in \mathbb{N}$.

- (1) Montrer que \mathcal{B} est une base de E, et en déduire la dimension de E.
- (2) Pour tout $f \in E$, on pose D(f) = f' f''. Montrer que D est un endomorphisme de E.
- (3) Ecrire la matrice M de D dans la base \mathcal{B} .
- (4) La matrice M est-elle inversible? diagonalisable?

Exercice 27. (HEC 2011) On considère les matrices $A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

- (1) Vérifier que $A^2 + I_3 = 2A$.
- (2) Montrer que A admet une seule valeur propre λ . La matrice A est-elle diagonalisable?
- (3) Déterminer une base du sous-espace propre de A associé à λ .
- (4) Montrer que A est semblable à B (indication : procéder par Analyse-Synthèse).

Exercice 28. (Matrice compagnon - HEC 2017) Soit n un entier ≥ 2 , soit $(a_0, ..., a_{n-1}) \in \mathbb{R}^n$ et soit C la matrice de $\mathcal{M}_n(\mathbb{R})$ donnée par :

$$C = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{n-1} \end{pmatrix}.$$

On désigne par f l'endomorphisme de \mathbb{R}^n canoniquement associé à C

- (1) Question de cours : condition nécessaire et suffisante pour qu'une matrice soit diagonalisable.
- (2) (a) Déterminer le rang de la matrice C. Préciser le noyau de l'endomorphisme f.
 - (b) Donner une condition nécessaire et suffisante pour que la matrice C soit inversible. Sous cette condition, expliciter la matrice C^{-1} .
- (3) (a) Montrer qu'un réel λ est valeur propre de C si et seulement s'il est racine d'un polynôme qu'on explicitera en fonction des réels $a_0, a_1, ..., a_{n-1}$ (indication : résoudre le système linéaire $CX = \lambda X$).
 - (b) Montrer que la matrice C est diagonalisable si et seulement si elle admet n valeurs propres distinctes (indication: déterminer la dimension d'un sous-espace propre quelconque de C).
- (4) On pose : $M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 8 & -14 & 3 & 4 \end{pmatrix}$.
 - (a) Déterminer les valeurs propres de M.
 - (b) Etudier la diagonalisabilité de M.

Exercice 29. (QSP ESCP 2022) Soit n un entier ≥ 2 , et soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que $A^2(A - I_n) = 0$ et $A(A - I_n) \neq 0$. La matrice A est-elle diagonalisable?

3. Exercices supplémentaires

Exercice 30. Soit J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1, et soit f l'endomorphisme de \mathbb{R}^n canoniquement associé à J.

- (1) Déterminer une base de ker(f) et une base de $\mathfrak{Im}(f)$.
- (2) Soit y un vecteur non nul de $\mathfrak{Im}(f)$. Montrer que y est vecteur propre de f. Pour quelle valeur propre?
- (3) En déduire l'ensemble des valeurs propres de f.
- (4) L'endomorphisme f est-il diagonalisable? Si oui, en donner une base de diagonalisation.

Exercice 31. Soit $n \in \mathbb{N}^*$ et soit $E = \mathbb{R}_n[x]$. Pour tout $P \in E$ et pour tout $x \in \mathbb{R}^*$, on pose $f(P)(x) = x^n P\left(\frac{1}{x}\right)$.

- (1) Montrer que f est un endomorphisme de E.
- (2) Calculer la matrice M de f dans la base canonique de E.
- (3) Calculer $f \circ f$, et en déduire le spectre de f.
- (4) Dans cette question, on suppose que n=3. Déterminer une base de chaque sous-espace propre de f.

Exercice 32. Soit $a \in \mathbb{R}$. Pour tout $P \in \mathbb{R}_n[x]$, on pose $f(P) : x \longmapsto (x-a)P'(x) + P(x) - P(a)$. Par la suite, on pose aussi $e_k : x \longmapsto (x-a)^k$ pour tout $k \in \mathbb{N}$.

- (1) Montrer que f est un endomorphisme de $\mathbb{R}_n[x]$.
- (2) Déterminer la matrice de f dans la base canonique de $\mathbb{R}_n[x]$.
- (3) En déduire le spectre de f. L'endomorphisme f est-il diagonalisable? Justifier.
- (4) Calculer le rang de f, et en déduire une base de $\ker(f)$.
- (5) Calculer $f(e_k)$ pour tout $k \in [2, n]$, et en déduire des bases des sous-espaces propres de f.

Exercice 33. Soit n un entier ≥ 2 . Pour tout $P \in \mathbb{R}_n[x]$ et pour tout $x \in \mathbb{R}$, on pose :

$$f(P)(x) = (x^2 + x)P(1) + (x^2 - x)P(-1).$$

- (1) Montrer que f est un endomorphisme de $\mathbb{R}_n[x]$.
- (2) Déterminer des bases de ker(f) et de $\mathfrak{Im}(f)$.
- (3) (a) Montrer que f admet un polynôme annulateur de degré 2 que l'on déterminera.
 - (b) En déduire l'ensemble des valeurs propres possibles de f.
 - (c) Montrer que, si P est vecteur propre de f pour une valeur propre $\lambda \neq 0$, alors P appartient à $\mathfrak{Im}(f)$.
 - (d) Déterminer les valeurs propres et des bases des sous-espaces propres de f.
 - (e) L'endomorphisme f est-il diagonalisable? Justifier.

Exercice 34. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{tr}(A) \neq 0$. Pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on pose :

$$f(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A.$$

- (1) Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- (2) Déterminer un polynôme annulateur non nul P de f.
- (3) En déduire les valeurs propres possibles de f.
- (4) Montrer que A est vecteur propre de f pour une valeur propre λ_0 que l'on donnera.
- (5) Déterminer une base du sous-espace propre $E_{\lambda_0}(f)$.
- (6) Soit M une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que $f(M) = \lambda M$ pour un réel $\lambda \neq \lambda_0$. Montrer que $\operatorname{tr}(M) = 0$.
- (7) En déduire que f admet une valeur propre $\lambda_1 \neq \lambda_0$, et déterminer la dimension de $E_{\lambda_1}(f)$.
- (8) En déduire que f est diagonalisable.

Exercice 35. Calculer les valeurs propres de la matrice $M \in \mathcal{M}_3(\mathbb{R})$, déterminer si M est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et si oui la diagonaliser, et ce dans chacun des cas suivants :

$$(1) M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 4 & 2 & 0 \end{pmatrix}, \qquad (2) M = \begin{pmatrix} -2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4 \end{pmatrix}, \quad (3) M = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix},$$

$$(4) \ M = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 2 & -3 \\ -2 & 2 & 1 \end{pmatrix}, \quad (5) \ M = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad (6) \ M = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Exercice 36. Soit n un entier ≥ 2 . On considère la matrice $A = \begin{pmatrix} 1 & \cdots & 1 \\ 2 & \cdots & 2 \\ \vdots & & \vdots \\ n & \cdots & n \end{pmatrix}$.

- (1) Montrer que A admet un polynôme annulateur de degré 2 que l'on déterminera.
- (2) En déduire l'expression de A^p pour tout $p \in \mathbb{N}^*$.
- (3) En déduire les valeurs propres de A.
- (4) Déterminer une base de chaque sous-espace propre de A.
- (5) La matrice A est-elle diagonalisable? Justifier.

Exercice 37. On considère la matrice $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- (1) (a) Calculer le reste de la division euclidienne de $E_n: x \longmapsto x^n$ par $P: x \longmapsto x^2 x 2$.
 - (b) En déduire des réels a_n, b_n tels que $A^n = a_n A + b_n I_3$.
- (2) Retrouver le résultat de la question (1) à l'aide d'un raisonnement par récurrence.
- (3) Diagonaliser la matrice A, puis retrouver le résultat de (1).
- (4) On pose $J = A + I_3$. Calculer J^n pour tout $n \in \mathbb{N}$, puis retrouver le résultat de (1).

Exercice 38. Pour tout $(a, b, c) \in \mathbb{R}^3$, on pose $M = \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix}$ et $K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

- (1) Déterminer un polynôme annulateur de degré 3 de K.
- (2) Montrer que la matrice K est diagonalisable et la diagonaliser.
- (3) Montrer que M s'écrit en fonction des puissances de K.
- (4) En déduire une diagonalisation de M.
- (5) En déduire l'expression de M^n pour tout $n \in \mathbb{N}$.

Exercice 39. On considère la matrice : $A = \begin{pmatrix} 0 & 0 & 0 & 16 \\ 0 & 0 & 9 & 0 \\ 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

- (1) Déterminer les entiers $n \in \mathbb{N}$ tels que A^n soit inversible.
- (2) Déterminer les entiers $n \in \mathbb{N}$ tels que A^n soit diagonalisable.

Exercice 40. (Endomorphismes cycliques - ESCP 2016) Soit E un espace vectoriel de dimension $n \ge 1$. On dit qu'un endomorphisme h de E est cyclique s'il existe un vecteur $x_0 \in E$ tel que la famille $(x_0, h(x_0), ..., h^{n-1}(x_0))$ soit une base de E. Considérons un endomorphisme f de E. On note C(f) l'ensemble des endomorphismes de E qui commutent avec f et R(f) l'ensemble des polynômes en f, c'est-à-dire :

$$C(f) = \{g \in \mathcal{L}(E) | g \circ f = f \circ g\} \text{ et } R(f) = \{P(f) | P \in \mathbb{R}[x]\}.$$

- (1) Montrer que C(f) et R(f) sont des sous-espaces vectoriels de $\mathcal{L}(E)$, puis que $R(f) \subset C(f)$.
- (2) Montrer que f est cyclique si et seulement s'il existe une base \mathcal{B} de E et des réels $\alpha_0,...,\alpha_{n-1}$ tels que :

$$\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & \alpha_0 \\ 1 & 0 & \cdots & \cdots & \alpha_1 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 & \alpha_{n-1} \end{pmatrix}.$$

A partir de maintenant, on suppose que l'endomorphisme f est cyclique, et on se fixe un vecteur $x_0 \in E$ tel que la famille $\mathcal{B} = (x_0, f(x_0), ..., f^{n-1}(x_0))$ soit une base de E.

- (3) Soit $P(f) = f^n \sum_{k=0}^{n-1} \alpha_k f^k$. Montrer que P(f) = 0 (indication : remarquer que $P(f)(x_0) = 0$, puis montrer que $P(f)(f^l(x_0)) = 0$ pour tout $l \in \mathbb{N}$).
- (4) (a) Montrer que $(\mathrm{Id}_E, f, ..., f^{n-1})$ est une base de R(f) (indication: utiliser la division euclidienne).
 - (b) En déduire que C(f) = R(f) (indication : $si \ g \in C(f)$, exprimer $g(x_0)$ dans la base \mathcal{B} , puis calculer $g(f^l(x_0))$ pour tout $l \in \mathbb{N}$).
- (5) On suppose que $\alpha_0 = 0$. Montrer que $E = \ker(f) \oplus \mathfrak{Im}(f)$ si et seulement si $\alpha_1 \neq 0$ (indication : calculer le rang de f, puis une base de $\ker(f)$ à l'aide de x_0 et f).

Exercice 41. (ESCP 2016) On pose $E = \mathbb{R}[x]$ et on considère l'application T sur E, définie par :

$$\forall P \in E, \quad T(P) : x \longmapsto (3x+8)P(x) - x(5-x)P'(x) + x^2(1-x)P''(x).$$

Enfin, on rappelle qu'un sous-espace vectoriel F de E est stable par T si $T(F) \subset F$.

- (1) (a) Montrer que T est un endomorphisme de E.
 - (b) Pour quelles valeurs de n le sous-espace vectoriel $\mathbb{R}_n[x]$ est-il stable par T? Justifier.
 - (c) L'application T est-elle surjective sur E? Justifier.
- (2) Soit P un polynôme propre de T, c'est-à-dire un polynôme $P \neq 0_E$ tel que la famille (P, T(P)) soit liée.
 - (a) Que peut valoir le degré de P? Justifier.
 - (b) Montrer que les polynômes propres de T appartiennent à un sous-espace vectoriel F de E de dimension finie, et que la restriction de T à F induit un endomorphisme de F (noté encore T).
- (3) (a) Déterminer les valeurs propres et les sous-espaces propres de T.
 - (b) L'application T est-elle injective? Justifier.

Exercice 42. (QSP HEC 2016) Soit E un espace vectoriel et soit f un endomorphisme de E tel que : $f^3 = f^2$.

- (1) Montrer que $E = \ker(f \operatorname{Id}_E) \oplus \ker(f^2)$.
- (2) Dans le cas où $E = \mathbb{R}^3$, donner un exemple d'endomorphisme non diagonalisable f tel que $f^3 = f^2$.

Exercice 43. (QSP HEC 2018) On considère les deux matrices :

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1) Comparer leurs spectres, leurs rangs, ainsi que les dimensions de leurs sous-espaces propres.
- (2) Les matrices A et B sont-elles semblables? Justifier (indication : calculer A^2 et B^2).

Exercice 44. (QSP HEC 2019) Soit f un endomorphisme de \mathbb{R}^3 tel que $f^3 + f = 0$ et $\operatorname{rg}(f) = 2$.

- (1) Déterminer le spectre de f.
- (2) Déterminer les sous-espaces vectoriels de \mathbb{R}^3 qui sont stables par f.

Exercice 45. (ESCP 2022)

(1) Soit \mathcal{E} l'ensemble des suites réelles $(u_p)_{p\in\mathbb{N}}$ telles que :

$$\forall p \in \mathbb{N}, \quad u_{p+3} = 4u_{p+2} - 5u_{p+1} + 2u_p.$$

- (a) Montrer que \mathcal{E} est un espace vectoriel de dimension 3 (indication : on pourra montrer que l'application $f:(u_p)_{p\in\mathbb{N}}\longmapsto (u_0,u_1,u_2)$ est un isomorphisme de \mathcal{E} dans \mathbb{R}^3).
- (b) Vérifier que la suite $(p)_{p\in\mathbb{N}}$ appartient à \mathcal{E} .
- (c) Déterminer les suites géométriques appartenant à \mathcal{E} .
- (d) En déduire l'expression des suites appartenant à \mathcal{E} .
- (2) Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \begin{pmatrix} 7 & 3 & -4 \\ -6 & -2 & 5 \\ 4 & 2 & -1 \end{pmatrix}.$$

- (a) Vérifier que 1 et 2 sont valeurs propres de A.
- (b) La matrice A est-elle diagonalisable? Justifier.
- (c) Montrer que A est semblable à la matrice :

$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

(indication: procéder par Analyse-Synthèse).

- (d) En déduire que $P: x \longmapsto (x-1)^2(x-2)$ est annulateur de A.
- (3) (a) Justifier que:

$$\forall p \in \mathbb{N}, \quad \exists (a_p, b_p, c_p) \in \mathbb{R}^3, \quad A^p = a_p A^2 + b_p A + c_p I_3.$$

- (b) Montrer que la suite $(a_p)_{p\in\mathbb{N}}$ appartient à \mathcal{E} .
- (c) Expliciter A^p en fonction de p, A^2, A, I_3 .
- (d) La matrice A est-elle inversible? Si oui, trouver son inverse.

Exercice 46. (ESCP 2022) Soit n un entier ≥ 2 , et posons $E = \mathbb{R}_n[x]$.

(1) Montrer que l'intégrale $\int_{-\infty}^{x} P(t)e^{t}dt$ converge pour tout $P \in E$ et pour tout $x \in \mathbb{R}$.

Pour tout $P \in E$, on pose alors : $T(P): x \longmapsto e^{-x} \int_{-\infty}^{x} P(t)e^{t}dt$.

- (2) Montrer que l'application $T: P \longrightarrow T(P)$ est linéaire.
- (3) Déterminer le noyau de T.
- (4) Pour tout $k \in \mathbb{N}$, on pose $e_k : x \longmapsto x^k$.
 - (a) Calculer $T(e_0)$, puis montrer que, pour tout $k \in [0, n-1]$, on a : $T(e_{k+1}) = e_{k+1} (k+1)T(e_k)$.
 - (b) En déduire que, pour tout $k \in [1, n]$, on a : $T(e_k) e_k \in \text{Vect}(e_0, e_1, ..., e_{k-1})$.
 - (c) En déduire que T est un endomorphisme de E.
- (5) Montrer que $(\mathrm{Id}_E T)^{n+1} = 0$.
- (6) En déduire le spectre de T. L'endomorphisme T est-il diagonalisable?
- (7) En déduire une expression de T^{-1} (comme polynôme en T).

Exercice 47. (HEC 2022) Soit E un espace vectoriel de dimension finie n > 0, et soit $u \in \mathcal{L}(E)$. On considère l'application $\phi : \mathcal{L}(E) \longrightarrow \mathcal{L}(E)$, $v \longmapsto u \circ v$.

- (1) Cours: rappeler la définition d'un projecteur et ses propriétés.
- (2) Montrer que ϕ est un endomorphisme de $\mathcal{L}(E)$.
- (3) Montrer que $Sp(\phi) \subset Sp(u)$.
- (4) En considérant des endomorphismes particuliers de E, montrer que $Sp(\phi) = Sp(u)$.
- (5) Soit $\lambda \in \mathrm{Sp}(u)$.
 - (a) Montrer que : $v \in \ker (\phi \lambda \operatorname{Id}_{\mathcal{L}(E)}) \iff \mathfrak{Im}(v) \subset \ker (u \lambda \operatorname{Id}_E)$.
 - (b) En déduire la dimension de ker $(\phi \lambda \operatorname{Id}_{\mathcal{L}(E)})$.
- (6) Montrer que u est diagonalisable si et seulement si ϕ est diagonalisable.

Exercice 48. (ESCP 2023) Soit n un entier ≥ 2 , et soient A, B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Pour toute $M \in \mathcal{M}_n(\mathbb{R})$, on désigne par $\ker(M)$ (resp. $\mathfrak{Im}(M)$) le noyau (resp. l'image) de l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ défini par $X \longmapsto MX$.

- (1) (a) Montrer que $\ker(B) \subset \ker(AB)$ et $\mathfrak{Im}(AB) \subset \mathfrak{Im}(A)$.
 - (b) Montrer que, si le produit AB est inversible, alors les matrices A et B sont inversibles.
- (2) Soit λ un réel non nul.
 - (a) Montrer que la matrice $\lambda I_n AB$ est inversible si et seulement si la matrice $\lambda I_n BA$ l'est.
 - (b) Montrer que, si λ n'est pas valeur propre de AB, alors :

$$(\lambda I_n - AB)^{-1} = \frac{1}{\lambda} I_n + \frac{1}{\lambda} A(\lambda I_n - BA)^{-1} B.$$

- (3) Montrer que les matrices AB et BA ont les mêmes valeurs propres.
- (4) Dans cette question, on considère les matrices A et B de $\mathcal{M}_n(\mathbb{R})$ données par :

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

- (a) Déterminer les valeurs propres de la matrice BA.
- (b) Après avoir justifié son existence, calculer l'inverse de la matrice $I_n AB$.

Exercice 49. (QSP HEC 2023) Soit E un espace vectoriel de dimension finie > 0. Soient f, g des endomorphismes de E tels que : $\exists \alpha \in \mathbb{R}^*$, $f \circ g - g \circ f = \alpha f$.

- (1) Simplifier $f^n \circ g g \circ f^n$ pour tout $n \in \mathbb{N}$.
- (2) En déduire qu'il existe $n \in \mathbb{N}^*$ tel que $f^n = 0$ (indication : raisonner par l'absurde et considérer l'endomorphisme $\varphi : h \longmapsto h \circ g g \circ h$).

Exercice 50. (QSP ESCP 2024) Soit E un espace vectoriel de dimension finie > 0 et soit u un endomorphisme de E qui commute avec tous les projecteurs de E.

- (1) Montrer que, si x est un vecteur non nul de E, alors x est vecteur propre de u.
- (2) En déduire que u est une homothétie, c'est-à-dire qu'il existe $\lambda \in \mathbb{R}$ tel que $u = \lambda \mathrm{Id}_E$.