Corrigé du devoir Surveillé de Mathématiques $n^{o}2$

Corrigé de l'exercice 1. On considère la suite (u_k) de premier terme $u_0 = 1$, de deuxième terme $u_1 = 2$ et telle que, pour tout entier $k \ge 2$:

 $u_k = \frac{3u_{k-1}^2 + u_{k-2}^2}{4}.$

Ecrivons une fonction en Python qui, étant donné un entier $n \ge 0$, calcule et affiche u_n . Pour ce faire, on va procéder de façon récursive, et ce comme suit :

```
import numpy as np

def suite(n):
    if n==0:
        return 1
    elif n==1:
        return 2
    else:
        return (3*(suite(n-1))**2+(suite(n-2))**2)/4
```

Corrigé de l'exercice 2. Pour tout entier $n \ge 1$, on pose : $S_n = \sum_{k=1}^n \frac{(-1)^k}{k^3}$. A l'aide d'une boucle, écrivons une fonction en Python qui, étant donné un entier $n \ge 1$ entré par l'utilisateur, calcule et affiche S_n . Pour ce faire, on va procéder comme suit :

```
import numpy as np

def somme2(n):
    s=0
    for k in range(1,n+1):
        s=s+((-1)**k/(k**3))
    return s
```

Corrigé de l'exercice 3. Ecrivons une fonction en Python qui, étant donné un entier $n \geq 1$ entré par l'utilisateur, calcule et retourne la valeur de $T_n = \sum_{k=1}^n \sum_{l=1}^k \sin(l)$. Pour ce faire, on va procéder avec une double boucle for comme suit :

```
import numpy as np

def doublesomme(n):
    t=0
    for k in range(1,n+1):
        for l in range(1,k+1):
        t=t+np.sin(l)
    return t
```

1. SUJET TYPE EDHEC-EML

Corrigé de l'exercice 4. Dans tout l'exercice, on désigne par E un espace vectoriel de dimension n (avec $n \geq 2$), on note Id l'endomorphisme identité de E et θ l'endomorphisme nul de E. Pour tout endomorphisme f de E, on appelle trace de f le réel, noté $\mathrm{Tr}(f)$, égal à la trace de n'importe laquelle des matrices représentant f. On admet que l'application trace ainsi définie est une forme linéaire sur $\mathcal{L}(E)$.

Partie I : préliminaires

- (1) On considère un projecteur p de E, c'est-à-dire un endomorphisme de E tel que $p \circ p = p$.
 - (a) Montrons que : $E = \ker(p) \oplus \mathfrak{Im}(p)$. Tout d'abord, on commence par vérifier que $\ker(p)$ et $\mathfrak{Im}(p)$ sont en somme directe. Pour ce faire considérons un vecteur $x \in \ker(p) \cap \mathfrak{Im}(p)$. Alors, on voit que p(x) = 0 et qu'il existe un vecteur z de E tel que x = p(z). Comme $p \circ p = p$, ceci entraine que :

$$0 = p(x) = p \circ p(z) = p(z) = x,$$

et donc x = 0. En particulier, on a $\ker(p) \cap \mathfrak{Im}(p) = \{0\}$ et $\ker(p)$ et $\mathfrak{Im}(p)$ sont en somme directe. Comme de plus $\dim E = \dim \ker(p) + \dim \mathfrak{Im}(p)$ d'après le théorème du rang, on en déduit que :

$$E = \ker(p) \oplus \mathfrak{Im}(p).$$

(b) Etablissons que $\mathfrak{Im}(p) = \ker(\mathrm{Id} - p)$. Tout d'abord, on va montrer que $\mathfrak{Im}(p) \subset \ker(\mathrm{Id} - p)$. Pour ce faire, considérons un vecteur x de $\mathfrak{Im}(p)$. Alors il existe un vecteur z de E tel que x = p(z), ce qui entraine que :

$$(\mathrm{Id} - p)(x) = x - p(x) = p(z) - p \circ p(z) = 0,$$

car $p \circ p = p$ par hypothèse. En particulier, on a :

$$\mathfrak{Im}(p) \subset \ker(\mathrm{Id}-p).$$

A présent, montrons que $\ker(\operatorname{Id}-p)\subset\mathfrak{Im}(p)$. Pour ce faire, considérons un vecteur x de $\ker(\operatorname{Id}-p)$. Alors, on voit que $(\operatorname{Id}-p)(x)=x-p(x)=0$, ce qui entraine que x=p(x), et donc x appartient à $\mathfrak{Im}(p)$. En particulier, on a :

$$\ker(\mathrm{Id}-p)\subset\mathfrak{Im}(p).$$

Par conséquent, on en déduit par double inclusion que :

$$\mathfrak{Im}(p) = \ker(\mathrm{Id} - p).$$

(c) Montrons que : $\operatorname{rg}(p) = \operatorname{Tr}(p)$. Pour ce faire, considérons une base $\mathcal{B}_1 = (e_1, ..., e_r)$ de $\mathfrak{Im}(p)$ et une base $\mathcal{B}_2 = (e_{r+1}, ..., e_n)$ de $\ker(p)$. Comme $E = \ker(p) \oplus \mathfrak{Im}(p)$ d'après la question (1)(a), la concaténation $\mathcal{B} = (e_1, ..., e_n)$ des bases \mathcal{B}_1 et \mathcal{B}_2 donne une base de E. Comme e_i appartient à $\operatorname{Im}(p)$ pour tout $i \in [1, r]$ et que $\operatorname{Im}(p) = \ker(\operatorname{Id} - p)$ d'après la question (1)(b), on voit que $p(e_i) - e_i = 0$ pour tout $i \in [1, r]$, et donc $p(e_i) = e_i$ pour tout $i \in [1, r]$. De plus, comme e_i appartient à $\ker(p)$ pour tout $i \in [r+1, n]$, on voit que $p(e_i) = 0$ pour tout $i \in [r+1, n]$. En particulier, la matrice de p dans la base \mathcal{B} est donnée par :

$$\mathfrak{mat}_{\mathcal{B}}(p) = egin{pmatrix} 1 & 0 & \dots & \dots & 0 \ 0 & \ddots & \ddots & & \vdots \ \vdots & \ddots & 1 & \ddots & \vdots \ \vdots & & \ddots & 0 & \ddots & \vdots \ \vdots & & & \ddots & \ddots & 0 \ 0 & \dots & \dots & 0 & 0 \end{pmatrix}.$$

Dès lors, ceci entraine avec les propriétés de la trace que :

$$\operatorname{Tr}(p) = \operatorname{Tr}(\mathfrak{mat}_{\mathcal{B}}(p)) = 1 + \dots + 1 = r = \operatorname{card}(\mathcal{B}_1) = \dim \mathfrak{Im}(p).$$

Mais par définition du rang, on en déduit que :

$$g(p) = Tr(p).$$

(2) Montrons par récurrence la propriété \mathcal{P} définie pour tout $k \in \mathbb{N}^*$ par :

 $\mathcal{P}(k)$: "si $E_1,...,E_k$ sont des sous-espaces vectoriels de E, alors $\dim(E_1+...+E_k) \leq \dim(E_1)+...+\dim(E_k)$ ".

Tout d'abord, on voit que $\mathcal{P}(1)$ est vraie car dim $E_1 \leq \dim E_1$. A présent, supposons $\mathcal{P}(k)$ vraie pour un certain $k \in \mathbb{N}^*$, et montrons que $\mathcal{P}(k+1)$ l'est aussi. Soient $E_1, ..., E_k, E_{k+1}$ des sous-espaces vectoriels de E. D'après la formule de Grassmann, on a :

$$\dim(E_1 + \dots + E_k + E_{k+1}) = \dim(E_1 + \dots + E_k) + \dim(E_{k+1} - \dim((E_1 + \dots + E_k) \cap E_{k+1}).$$

Comme dim $((E_1 + ... + E_k) \cap E_{k+1}) \ge 0$, ceci entraine que :

$$\dim(E_1 + \dots + E_k + E_{k+1}) \le \dim(E_1 + \dots + E_k) + \dim E_{k+1}.$$

Mais comme $\dim(E_1 + ... + E_k) \leq \dim(E_1) + ... + \dim(E_k)$ par hypothèse de récurrence, il s'ensuit que :

$$\dim(E_1 + \dots + E_k + E_{k+1}) \le \dim(E_1) + \dots + \dim(E_k) + \dim E_{k+1}$$

et donc $\mathcal{P}(k+1)$ est vraie. D'après le principe de récurrence, la propriété \mathcal{P} est vraie à tout ordre $k \geq 1$. Par conséquent, on vient de montrer que, pour tous sous-espaces vectoriels $E_1, ..., E_k$ de E, on a :

$$\dim(E_1 + \ldots + E_k) \le \dim(E_1) + \ldots + \dim(E_k).$$

Partie II : CNS (condition nécessaire et suffisante) pour qu'une somme de projecteurs soit un projecteur

Soit k un entier ≥ 2 . On considère des projecteurs $p_1, ..., p_k$ de E, et l'on pose $q_k = p_1 + p_2 + ... + p_k$.

(1) Montrons que si, pour tout couple $(i,j) \in [\![1,k]\!]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$, alors q_k est un projecteur de E. Remarquons tout d'abord que q_k est un endomorphisme de E car q_k est une somme finie d'endomorphismes de E et $\mathcal{L}(E)$ est un espace vectoriel. Si de plus on suppose que $p_i \circ p_j = \theta$ pour tout couple $(i,j) \in [\![1,k]\!]^2$ tel que $i \neq j$, alors on trouve par distributivité de la composition par rapport à l'addition que :

$$q_k^2 = (p_1 + \dots + p_k) \circ (p_1 + \dots + p_k)$$

$$= \sum_{i=1}^k \sum_{j=1}^k p_i \circ p_j$$

$$= \sum_{i=1}^k p_i \circ p_i + \sum_{1 \le i, j \le k, i \ne j} p_i \circ p_j$$

$$= \sum_{i=1}^k p_i + \sum_{1 \le i, j \le k, i \ne j} \theta$$

$$= \sum_{i=1}^k p_i = q_k.$$

Par conséquent, on en déduit que si, pour tout $(i,j) \in [1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$, alors :

$$q_k$$
 est un projecteur de E .

On suppose dans toute la suite que q_k est un projecteur et on souhaite montrer que, pour tout couple $(i,j) \in [1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$.

(2) (a) Montrons que $\mathfrak{Im}(q_k)$ est inclus dans $\mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k)$. Pour ce faire, considérons un vecteur x de $\mathfrak{Im}(q_k)$. Alors il existe un vecteur z de E tel que $x = q_k(z)$. Comme $q_k = p_1 + ... + p_k$, ceci entraine que :

$$x = q_k(z) = (p_1 + \dots + p_k)(z) = p_1(z) + \dots + p_k(z).$$

Comme chaque vecteur $p_i(z)$ appartient à $\mathfrak{Im}(p_i)$ pour tout $i \in [1, k]$, il s'ensuit que x appartient à $\mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k)$. Mais comme ceci est vrai pour tout $x \in \mathfrak{Im}(q_k)$, on en déduit que :

$$\mathfrak{Im}(q_k)\subset\mathfrak{Im}(p_1)+...+\mathfrak{Im}(p_k).$$

(b) Etablissons tout d'abord que $\operatorname{rg}(q_k) = \dim(\mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k))$. D'après la question précédente, on a $\mathfrak{Im}(q_k) \subset \mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k)$, ce qui nous donne avec la question (2) de la partie I que :

$$\operatorname{rg}(q_k) = \dim \mathfrak{Im}(q_k) \le \dim (\mathfrak{Im}(p_1) + \ldots + \mathfrak{Im}(p_k)) \le \dim \mathfrak{Im}(p_1) + \ldots + \dim \mathfrak{Im}(p_k).$$

Par définition du rang, ceci entraine que :

$$\operatorname{rg}(q_k) = \dim \mathfrak{Im}(q_k) \le \dim (\mathfrak{Im}(p_1) + \dots + \mathfrak{Im}(p_k)) \le \operatorname{rg}(p_1) + \dots + \operatorname{rg}(p_k). \quad (*)$$

Par ailleurs, comme $q_k, p_1, ..., p_k$ sont des projecteurs, on obtient avec la question (1)(b) et par linéarité de la trace que :

$$rg(q_k) = Tr(q_k) = Tr(p_1 + \dots + p_k) = Tr(p_1) + \dots + Tr(p_k) = rg(p_1) + \dots + rg(p_k).$$
 (**)

En associant les relations (*) et (**), il s'ensuit que :

$$\operatorname{rg}(q_k) = \dim \mathfrak{Im}(q_k) = \dim (\mathfrak{Im}(p_1) + \dots + \mathfrak{Im}(p_k)) = \operatorname{rg}(p_1) + \dots + \operatorname{rg}(p_k).$$

Par conséquent, on en déduit que :

$$rg(q_k) = \dim(\mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k)).$$

A présent, montrons que $\mathfrak{Im}(q_k) = \mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k)$. D'après la question (2)(a) de la partie II, on a l'inclusion de sous-espaces vectoriels $\mathfrak{Im}(q_k) \subset \mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k)$. De plus, comme on vient de montrer que $\operatorname{rg}(q_k) = \dim \mathfrak{Im}(q_k) = \dim (\mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k))$, on en déduit que :

$$\mathfrak{Im}(q_k) = \mathfrak{Im}(p_1) + \ldots + \mathfrak{Im}(p_k).$$

(c) Etablissons l'égalité : $\mathfrak{Im}(q_k) = \mathfrak{Im}(p_1) \oplus ... \oplus \mathfrak{Im}(p_k)$. D'après la question (2)(b) de la partie II, on sait que $\mathfrak{Im}(q_k) = \mathfrak{Im}(p_1) + ... + \mathfrak{Im}(p_k)$. Par ailleurs, on a montré à la même question que :

$$rg(q_k) = \dim \mathfrak{Im}(q_k) = \dim (\mathfrak{Im}(p_1) + \dots + \mathfrak{Im}(p_k)) = rg(p_1) + \dots + rg(p_k),$$

ce qui entraine la relation suivante :

$$\dim \mathfrak{Im}(q_k) = \dim (\mathfrak{Im}(p_1)) + ... + \dim (\mathfrak{Im}(p_k)).$$

Par conséquent, on en déduit que :

$$\mathfrak{Im}(q_k) = \mathfrak{Im}(p_1) \oplus ... \oplus \mathfrak{Im}(p_k).$$

(3) (a) Montrons que, pour tout $j \in [\![1,k]\!]$, on a : $q_k \circ p_j = p_j$. Pour ce faire, considérons un vecteur $x \in E$. Comme $p_j(x)$ appartient à $\mathfrak{Im}(p_j)$ par définition et que $\mathfrak{Im}(q_k) = \mathfrak{Im}(p_1) \oplus \ldots \oplus \mathfrak{Im}(p_k)$ d'après la question (2)(c) de la partie II, on voit que $p_j(x)$ appartient à $\mathfrak{Im}(q_k)$. Dès lors, comme q_k est un projecteur de E par hypothèse, on voit d'après la question (1)(b) de la partie I que $p_j(x)$ appartient à $\ker(\mathrm{Id}-q_k)$, ce qui entraine que $p_j(x)-q_k\circ p_j(x)=0$, et donc $q_k\circ p_j(x)=p_j(x)$. Mais comme ceci est vrai pour tout $x\in E$, on en déduit que :

$$q_k \circ p_j = p_j.$$

(b) Montrons que, pour tout $j \in [1, k]$ et pour tout $x \in E$, on a : $\sum_{i=1, i \neq j}^{k} p_i(p_j(x)) = 0$. Pour ce faire, fixons un vecteur $x \in E$. Comme $q_k \circ p_j = p_j$ d'après la question précédente et que $q_k = p_1 + \ldots + p_k$ par hypothèse, ceci nous donne que :

$$q_k \circ p_j(x) = \left(\sum_{i=1}^k p_i\right) \circ p_j(x) = p_j(x).$$

Par distributivité de la composition par rapport à l'addition, on trouve que :

$$\sum_{i=1}^{k} p_i \circ p_j(x) = p_j(x).$$

En particulier, ceci entraine que:

$$\sum_{i=1, i \neq j}^{k} p_i(p_j(x)) = p_j(x) - p_j^2(x).$$

Comme p_j est un projecteur, on sait que $p_j=p_j^2,$ et donc :

$$\sum_{i=1, i\neq j}^{k} p_i(p_j(x)) = p_j(x) - p_j^2(x) = p_j(x) - p_j(x) = 0.$$

Par conséquent, on en déduit que, pour tout $j \in [1, k]$ et pour tout $x \in E$:

$$\sum_{i=1, i\neq j}^{k} p_i(p_j(x)) = 0.$$

(c) Montrons alors que, pour tout $(i,j) \in [1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$. Pour ce faire, fixons un vecteur $x \in E$. D'après la question précédente, on sait que :

$$\sum_{i=1, i\neq j}^{k} p_i(p_j(x)) = 0.$$

Comme $p_i(p_j(x))$ appartient à $\mathfrak{Im}(p_i)$ par hypothèse, on voit que le vecteur $u = \sum_{i=1, i \neq j}^k p_i(p_j(x))$ appartient à $\mathfrak{Im}(p_1) \oplus ... \oplus \mathfrak{Im}(p_k)$. Comme cette somme est directe et que $u = \sum_{i=1, i \neq j}^k p_i(p_j(x))$, on voit que cette écriture de u est sa décomposition dans la somme directe $\mathfrak{Im}(p_1) \oplus ... \oplus \mathfrak{Im}(p_k)$. Dès lors, il s'ensuit que, pour tout indice $i \neq j$:

$$p_i \circ p_j(x) = 0.$$

Mais comme ceci est vrai pour tout $x \in E$, on en déduit que, pour tout $(i, j) \in [1, k]^2$ tel que $i \neq j$, on a l'égalité :

$$p_i \circ p_j = \theta.$$

(4) A la question (1) de la partie I, on a montré que, si pour tout couple $(i, j) \in [1, k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$, alors q_k est un projecteur de E. De plus, on a établi la réciproque de cette assertion à la question (3)(c) de la partie II. Par conséquent, on peut en conclure que :

 q_k est un projecteur si et seulement si, pour tout $(i,j) \in [1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = \theta$.

Corrigé de l'exercice 5. On dit qu'une matrice $M \in \mathcal{M}_2(\mathbb{R})$ est involutive si $M^2 = I$, où I désigne la matrice identité de $\mathcal{M}_2(\mathbb{R})$. Dans ce qui suit, on considère une matrice $M \in \mathcal{M}_2(\mathbb{R})$ de la forme :

$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}.$$

(1) (a) Montrons que $M^2 = (a+d)M - (ad-bc)I$. Pour ce faire, on pose $N = M^2 - (a+d)M + (ad-bc)I$. Par des calculs simples, on trouve que :

$$\begin{split} N &= M^2 - (a+d)M + (ad-bc)I \\ &= \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} - (a+d) \begin{pmatrix} a & c \\ b & d \end{pmatrix} + (ad-bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} a^2 + bc & ac + cd \\ ab + bd & bc + d^2 \end{pmatrix} - \begin{pmatrix} a^2 + ad & ac + cd \\ ab + bd & ad + d^2 \end{pmatrix} + \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} \\ &= \begin{pmatrix} a^2 + bc - a^2 - ad + ad - bc & ac + cd - ac - cd \\ ab + bd - ab - bd & bc + d^2 - ad - d^2 + ad - bc \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \end{split}$$

Par conséquent, on en déduit que :

$$M^2 = (a+d)M - (ad - bc)I.$$

(b) Montrons que M est inversible si et seulement si $ad - bc \neq 0$. Supposons tout d'abord que M soit inversible et montrons que $ad - bc \neq 0$. Pour ce faire, on raisonne par l'absurde et on suppose que ad - bc = 0. Partant de la relation précédente, on voit que :

$$M^2 = (a+d)M.$$

Comme M est inversible, on obtient par produit avec M^{-1} que :

$$M = M^2 M^{-1} = (a+d)MM^{-1} = (a+d)I.$$

Dès lors, il s'ensuit par identification que a=a+d=d, b=0 et c=0, et donc a=b=c=d=0. En particulier, la matrice M est nulle, ce qui contredit le fait qu'elle soit inversible. En d'autres termes, on vient de montrer que, si M est inversible, alors $ad-bc\neq 0$.

Réciproquement, supposons que $ad-bc \neq 0$, et montrons que M est inversible. D'après la question précédente, on sait que :

$$M^2 = (a+d)M - (ad - bc)I.$$

Comme $ad-bc\neq 0$ par hypothèse, on obtient par des calculs simples que :

$$M\left[\frac{M - (a+d)I}{-(ad - bc)}\right] = I.$$

En particulier, il existe une matrice $N \in \mathcal{M}_2(\mathbb{R})$ telle que MN = I, et donc M est inversible. Par conséquent, on en déduit que :

$$M$$
 est inversible si et seulement si $ad - bc \neq 0$.

(c) Dans le cas où $ad - bc \neq 0$, écrivons M^{-1} en fonction de a, b, c, d. D'après les calculs de la question précédente, on voit que :

$$M^{-1} = \frac{M - (a+d)I}{-(ad-bc)} = \frac{1}{ad-bc} \left[-\begin{pmatrix} a & c \\ b & d \end{pmatrix} + (a+d) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right].$$

Par conséquent, on en déduit après simplification que :

$$M^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}.$$

(2) (a) Montrons que la matrice αI , où $\alpha \in \mathbb{R}$, est involutive si et seulement si $\alpha = 1$ ou $\alpha = -1$. Par des calculs simples, on trouve que :

$$M^2 = I \iff \alpha^2 I^2 = I \iff \alpha^2 I = I \iff \alpha^2 = 1 \iff \alpha = \pm 1.$$

Par conséquent, on en déduit que :

$$\alpha I$$
 est involutive si et seulement si $\alpha = 1$ ou $\alpha = -1$.

(b) Dans cette question, on suppose que $M \neq I$ et $M \neq -I$. Montrons que M est involutive si et seulement si a + d = 0 et ad - bc = -1. Supposons tout d'abord que M soit involutive et distincte de I et -I, et montrons que a + d = 0 et ad - bc = -1. Comme $M^2 = I$, on voit avec la question (1)(a) que :

$$M^2 = I = (a+d)M - (ad - bc)I.$$

Dès lors, il s'ensuit que :

$$(a+d)M - (ad - bc + 1)I = 0.$$

Si l'un des coefficients a+d ou ad-bc+1 était non nul, alors les matrices M et I seraient colinéaires. Comme $M^2=I$, la matrice M est non nulle, et donc il existerait un réel α tel que $M=\alpha I$. Mais comme M est involutive, il s'ensuivrait d'après la question précédente que $M=\pm I$, ce qui est impossible par hypothèse. Par conséquent, on vient de montrer que :

si M est involutive, alors
$$a + d = 0$$
 et $ad - bc = -1$.

Réciproquement, supposons que a + d = 0 et ad - bc = -1, et montrons que M est involutive. D'après la question (1)(a), on trouve que :

$$M^2 = (a+d)M - (ad-bc)I = 0 \times M - (-1) \times I = I.$$

Dès lors, il s'ensuit que :

si
$$a + d = 0$$
 et $ad - bc = -1$, alors M est involutive.

Par double implication, on en déduit que :

$$M$$
 est involutive si et seulement si $a + d = 0$ et $ad - bc = -1$.

- (3) Dans cette question, on suppose que a = 5, b = 2, c = -4, d = -1.
 - (a) Trouvons un réel α tel que $M=\alpha I+B$, où B est involutive. Pour ce faire, supposons qu'un tel réel α existe. Comme la matrice M (et donc la matrice $M-\alpha I$) n'est pas un multiple de I, on voit avec la question (2)(b) que la trace de $M-\alpha I$ (c'est-à-dire la somme "a+d") doit être égale à 0, ce qui nous donne par linéarité de la trace que :

$$Tr(M - \alpha I) = Tr(M) - \alpha Tr(I) = 5 - 1 - 2\alpha = 4 - 2\alpha = 0,$$

d'où il s'ensuit que $\alpha=2$. Vérifions à présent que $\alpha=2$ convient bien. Par des calculs simples, on trouve que :

$$(M-2I)^2 = \begin{pmatrix} 5-2 & -4 \\ 2 & -1-2 \end{pmatrix}^2 = \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 9-8 & -12+12 \\ 6-6 & -8+9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

En particulier, la matrice B = M - 2I est bien involutive, et donc :

$$\alpha = 2.$$

(b) Calculons M^n en fonction de I, B, n pour tout $n \in \mathbb{N}$. Comme M = 2I + B et que les matrices 2I et B commutent, la formule du binôme entraine que, pour tout $n \in \mathbb{N}$:

$$M^n = (2I + B)^n = \sum_{k=0}^n \binom{n}{k} B^k (2I)^{n-k}.$$

Comme $B^2=I$, on voit que $B^{2i}=(B^2)^i=I^i=I$ et $B^{2i+1}=(B^2)^iB=I^iB=B$ pour tout $i\in\mathbb{N}$. Dès lors, on obtient en développant la somme ci-dessus et en en séparant les termes d'indice pair et impair que, pour tout $n\in\mathbb{N}$:

$$M^{n} = \binom{n}{0} B^{0} (2I)^{n} + \binom{n}{1} B^{1} (2I)^{1} + \binom{n}{2} B^{2} (2I)^{2} + \dots + \binom{n}{n} B^{n} (2I)^{0}$$

$$= \binom{n}{0} 2^{n} I + \binom{n}{1} 2^{n-1} B + \binom{n}{2} 2^{n-2} I + \dots + \binom{n}{n} 2^{0} B^{n}$$

$$= \left[\sum_{0 \le k \le n, \ k \text{ pair}} \binom{n}{k} 2^{n-k} \right] I + \left[\sum_{0 \le k \le n, \ k \text{ impair}} \binom{n}{k} 2^{n-k} \right] B.$$

Toujours d'après la formule du binôme, on trouve que :

$$\begin{cases} (2+1)^n &= \sum_{k=0}^n \binom{n}{k} 1^k 2^{n-k} &= \sum_{0 \le k \le n, k \text{ pair}} \binom{n}{k} 2^{n-k} + \sum_{0 \le k \le n, k \text{ impair}} \binom{n}{k} 2^{n-k} \\ (2-1)^n &= \sum_{k=0}^n \binom{n}{k} (-1)^k 2^{n-k} &= \sum_{0 \le k \le n, k \text{ pair}} \binom{n}{k} 2^{n-k} - \sum_{0 \le k \le n, k \text{ impair}} \binom{n}{k} 2^{n-k} \end{cases}$$

Par sommation et différence de ces égalités, on obtient que :

$$\sum_{0 \le k \le n, \ k \text{ pair}} \binom{n}{k} 2^{n-k} = \frac{1}{2} (3^n + 1) \quad \text{et} \quad \sum_{0 \le k \le n, \ k \text{ impair}} \binom{n}{k} 2^{n-k} = \frac{1}{2} (3^n - 1).$$

Par conséquent, on en déduit que, pour tout $n \in \mathbb{N}$

$$M^{n} = \frac{1}{2}(3^{n} + 1)I + \frac{1}{2}(3^{n} - 1)B.$$

(c) Montrons que M est inversible et vérifions que la formule de (3)(b) est encore valable pour n=-1. Pour ce faire, on désigne par N la matrice obtenue à l'aide de la formule ci-dessus pour n=-1, c'est-à-dire :

$$N = \frac{1}{2}(3^{-1} + 1)I + \frac{1}{2}(3^{-1} - 1)B = \frac{2}{3}I - \frac{1}{3}B.$$

D'après les propriétés du calcul matriciel, on trouve que :

$$MN = (2I + B) \left(\frac{2}{3}I - \frac{1}{3}B\right)$$

$$= \frac{4}{3}I \times I + \frac{2}{3}B \times I - \frac{2}{3}I \times B - \frac{1}{3}B \times B$$

$$= \frac{4}{3}I + \frac{2}{3}B - \frac{2}{3}B - \frac{1}{3}B^{2}$$

$$= \frac{4}{3}I - \frac{1}{3}B^{2}.$$

Mais comme $B^2 = I$, on trouve que

$$MN = \frac{4}{3}I - \frac{1}{3}B^2 = \frac{4}{3}I - \frac{1}{3}I = I.$$

Dès lors, il s'ensuit que M est inversible, d'inverse N. Mais comme N est la matrice obtenue à l'aide de la formule de la question (3)(c) pour n = -1, on en déduit que :

$$M \text{ est inversible, d'inverse}: M^{-1} = \frac{1}{2}(3^{-1}+1)I + \frac{1}{2}(3^{-1}-1)B.$$

Corrigé du problème 1.

Préliminaires:

(1) (a) Justifions que, pour tout $n \in \mathbb{N}$, on a : $t^n e^{-t^2} = o\left(\frac{1}{t^2}\right)$. Pour ce faire, on pose $y = t^2$ et $\alpha = \frac{n+2}{2}$. Comme y tend vers $+\infty$ quand t tend vers $+\infty$, on obtient par croissances comparées et par composition des limites que :

$$t^{n+2}e^{-t^2} = \frac{y^{\alpha}}{e^y} \underset{t \to +\infty}{\longrightarrow} 0.$$

Dès lors, il s'ensuit que $t^2(t^ne^{-t^2})$ tend vers 0 quand t tend vers $+\infty$, et donc :

$$\boxed{t^n e^{-t^2} \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)}$$

(b) Montrons que, pour tout $n \in \mathbb{N}$, l'intégrale $\int_{-\infty}^{+\infty} t^n e^{-t^2} dt$ converge. Comme la fonction $t \longmapsto t^n e^{-t^2}$ est paire (resp. impaire) si n est un entier pair (resp. impair), il suffit de vérifier que l'intégrale $\int_0^{+\infty} t^n e^{-t^2} dt$ converge. De plus, comme la fonction $t \longmapsto t^n e^{-t^2}$ est continue sur $[0, +\infty[$, l'intégrale en question présente une impropreté en $+\infty$. Reste à étudier cette impropreté. Mais comme $t^n e^{-t^2} = o\left(\frac{1}{t^2}\right)$ et que l'intégrale $\int_1^{+\infty} \frac{dt}{t^2}$ converge (en tant qu'intégrale de Riemann), on voit que l'intégrale $\int_1^{+\infty} t^n e^{-t^2} dt$ converge aussi d'après le critère de négligeabilité. En particulier, l'intégrale $\int_0^{+\infty} t^n e^{-t^2} dt$ converge, et donc :

l'intégrale
$$\int_{-\infty}^{+\infty} t^n e^{-t^2} dt$$
 converge.

(c) Montrons que, pour tout polynôme $P \in \mathbb{R}[x]$, l'intégrale $\int_{-\infty}^{+\infty} P(t)e^{-t^2}dt$ converge. Etant donné un polynôme $P: x \longmapsto a_0 + a_1x + \ldots + a_nx^n$ quelconque de $\mathbb{R}[x]$, on obtient par un calcul évident que, pour tout $t \in \mathbb{R}$:

$$P(t)e^{-t^2} = \sum_{k=0}^{n} a_k t^k e^{-t^2}.$$

Mais comme chaque intégrale $\int_{-\infty}^{+\infty} t^k e^{-t^2} dt$ converge d'après la question précédente, il s'ensuit par linéarité de l'intégrale que, pour tout $P \in \mathbb{R}[x]$:

l'intégrale
$$\int_{-\infty}^{+\infty} P(t)e^{-t^2}dt$$
 converge.

- (2) On rappelle que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$, et l'on pose pour tout $n \in \mathbb{N}$: $I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$.
 - (a) Montrons que, pour tout $n \in \mathbb{N}$, on a : $I_{n+2} = \left(\frac{n+1}{2}\right)I_n$. Pour ce faire, soient a,b des réels tels que a < b, et posons $u(t) = \frac{t^{n+1}}{2}$ et $v(t) = -e^{t^2}$ pour tout $t \in [a,b]$. Alors les fonctions u et v sont de classe \mathcal{C}^1 sur [a,b], et de plus $u'(t) = \frac{n+1}{2}t^n$ et $v'(t) = 2te^{-t^2}$ pour tout $t \in [a,b]$. Dès lors, par intégration par parties, on obtient que :

$$\begin{split} \int_a^b t^{n+2} e^{-t^2} dt &= \int_a^b u(t) v'(t) dt \\ &= \left[u(t) v(t) \right]_a^b - \int_a^b u'(t) v(t) dt \\ &= \left[-\frac{t^{n+1} e^{-t^2}}{2} \right]_a^b - \int_a^b \frac{n+1}{2} t^n \times \left(-e^{-t^2} \right) dt \\ &= -\frac{b^{n+1} e^{-b^2}}{2} + \frac{a^{n+1} e^{-a^2}}{2} + \left(\frac{n+1}{2} \right) \int_a^b t^n e^{-t^2} dt. \end{split}$$

Comme $b^{n+1}e^{-b^2}$ tend vers 0 quand b tend vers $+\infty$ et que $a^{n+1}e^{-a^2}$ tend vers 0 quand a tend vers $-\infty$ d'après la question (1)(a), il s'ensuit par passage à la limite quand b tend vers $+\infty$, puis quand a tend vers $-\infty$ que :

$$\int_{-\infty}^{+\infty} t^{n+2} e^{-t^2} dt = \left(\frac{n+1}{2}\right) \int_{-\infty}^{+\infty} t^n e^{-t^2} dt.$$

Par conséquent, on en déduit que, pour tout $n \in \mathbb{N}$:

$$I_{n+2} = \left(\frac{n+1}{2}\right)I_n.$$

(b) Montrons que, pour tout $p \in \mathbb{N}$, on a : $I_{2p+1} = 0$. Par définition, on sait que :

$$I_{2p+1} = \int_{-\infty}^{+\infty} t^{2p+1} e^{-t^2} dt.$$

Notons que la fonction $f:t\longmapsto t^{2p+1}e^{-t^2}$ est impaire sur $\mathbb R$. En effet, pour tout $t\in\mathbb R$, on a :

$$f(-t) = (-t)^{2p+1}e^{-(-t)^2} = (-1)^{2p+1}t^{2p+1}e^{-t^2} = -t^{2p+1}e^{-t^2} = -f(t).$$

Dès lors, il s'ensuit que, pour tout $p \in \mathbb{N}$:

$$I_{2p+1} = \int_{-\infty}^{+\infty} f(t)dt = 0.$$

Par conséquent, on en déduit que, pour tout $p \in \mathbb{N}$:

$$I_{2p+1} = 0.$$

(c) Montrons par récurrence la propriété \mathcal{P} définie pour tout $p \in \mathbb{N}$ par :

$$\mathcal{P}(p)$$
: " $I_{2p} = \frac{(2p)!}{2^{2p}p!}\sqrt{\pi}$."

Tout d'abord, on voit que $\mathcal{P}(0)$ est vraie, car :

$$I_0 = \int_{-\infty}^{+\infty} t^0 e^{-t^2} dt = \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi} = \frac{(0)!}{2^0 0!} \sqrt{\pi}.$$

A présent, supposons que $\mathcal{P}(p)$ soit vraie, et montrons que $\mathcal{P}(p+1)$ l'est aussi. Par hypothèse de récurrence, on sait que :

$$I_{2p} = \frac{(2p)!}{2^{2p}p!} \sqrt{\pi}.$$

D'après la question (2)(a), on trouve alors que :

$$I_{2p} = \left(\frac{2p+1}{2}\right)I_{2p}$$

$$= \left(\frac{2p+1}{2}\right)\frac{(2p)!}{2^{2p}p!}\sqrt{\pi}$$

$$= \left(\frac{(2p+1)(2p+2)}{2(2p+2)}\right)\frac{(2p)!}{2^{2p}p!}\sqrt{\pi}$$

$$= \left(\frac{(2p+1)(2p+2)}{2^{2}(p+1)}\right)\frac{(2p)!}{2^{2p}p!}\sqrt{\pi}$$

$$= \frac{(2p+2)(2p+1)(2p)!}{2^{2}\times 2^{2p}(p+1)p!}\sqrt{\pi}$$

$$= \frac{(2p+2)!}{2^{2p+2}(p+1)!}\sqrt{\pi}$$

$$= \frac{(2(p+1))!}{2^{2(p+1)}(p+1)!}\sqrt{\pi},$$

et donc $\mathcal{P}(p+1)$ est vraie. D'après le principe de récurrence, la propriété \mathcal{P} est vraie à tout ordre $p \in \mathbb{N}$. En d'autres termes, on vient de montrer que, pour tout $p \in \mathbb{N}$:

$$I_{2p} = \frac{(2p)!}{2^{2p}p!} \sqrt{\pi}.$$

I. Calculs d'intégrales dépendant d'un paramètre :

(1) Montrons que, pour tout $x \in \mathbb{R}$, les intégrales $\int_0^{+\infty} \sin(xt)e^{-t^2}dt$ et $\int_0^{+\infty} t\cos(xt)e^{-t^2}dt$ convergent. Pour ce faire, considérons la première intégrale. Comme la fonction $t \longmapsto \sin(xt)e^{-t^2}$ est continue sur $[0, +\infty[$, l'intégrale $\int_0^{+\infty} \sin(xt)e^{-t^2}dt$ présente une impropreté en $+\infty$. De plus, comme $|\sin(xt)| \le 1$ pour tout $t \in [0, +\infty[$, on obtient que, pour tout $t \in [0, +\infty[$:

$$\left|\sin(xt)e^{-t^2}\right| \le e^{-t^2}.$$

Dès lors, comme l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ converge d'après l'énoncé, et que les fonctions $t \longmapsto |\sin(xt)e^{-t^2}|$ et $t \longmapsto e^{-t^2}$ sont positives sur $[0, +\infty[$, l'intégrale $\int_0^{+\infty} |\sin(xt)e^{-t^2}| dt$ converge d'après le critère de comparaison des intégrales de fonctions positives. En particulier, l'intégrale $\int_0^{+\infty} \sin(xt)e^{-t^2} dt$ converge absolument, et donc :

l'intégrale
$$\int_0^{+\infty} \sin(xt)e^{-t^2}dt$$
 converge.

A présent, considérons la deuxième intégrale. Comme la fonction $t\longmapsto t\cos(xt)e^{-t^2}$ est continue sur $[0,+\infty[$, l'intégrale $\int_0^{+\infty}t\cos(xt)e^{-t^2}dt$ présente une impropreté en $+\infty$. De plus, comme $|\cos(xt)|\leq 1$ pour tout $t\in[0,+\infty[$, on obtient que, pour tout $t\in[0,+\infty[$:

$$\left| t \cos(xt) e^{-t^2} \right| \le t e^{-t^2}.$$

Dès lors, comme l'intégrale $\int_0^{+\infty} te^{-t^2} dt$ converge d'après la question (1)(b), et que les fonctions $t \mapsto |t\cos(xt)e^{-t^2}|$ et $t \mapsto te^{-t^2}$ sont positives sur $[0,+\infty[$, l'intégrale $\int_0^{+\infty} |t\cos(xt)e^{-t^2}| dt$ converge d'après le critère de comparaison des intégrales de fonctions positives. En d'autres termes, on voit que l'intégrale $\int_0^{+\infty} t\cos(xt)e^{-t^2} dt$ converge absolument, et donc :

l'intégrale
$$\int_0^{+\infty} t \cos(xt) e^{-t^2} dt$$
 converge.

(2) On considère à présent les fonctions S et C définies pour tout $x \in \mathbb{R}$ par :

$$S(x) = \int_0^{+\infty} \sin(xt)e^{-t^2}dt$$
 et $C(x) = \int_0^{+\infty} t\cos(xt)e^{-t^2}dt$.

(a) Montrons que, pour tout $(a, \lambda) \in \mathbb{R}^2$, on a :

$$|\sin(a+\lambda) - \sin(a) - \lambda\cos(a)| \le \frac{\lambda^2}{2}.$$

Pour ce faire, on peut remarquer que la fonction $f=\sin$ est de classe \mathcal{C}^2 sur \mathbb{R} , et que de plus $\sin'(x)=\cos(x)$ et $\sin''(x)=-\sin(x)$ pour tout $x\in\mathbb{R}$. Dès lors, d'après l'inégalité de Taylor-Lagrange appliquée à la fonction f sur l'intervalle I d'extrémités a et $a+\lambda$, on a :

$$|\sin(a+\lambda) - \sin(a) - \lambda\cos(a)| \le \sup_{x \in I} |f''|(x)\frac{\lambda^2}{2}.$$

Mais comme $|f''(x)| = |\sin(x)| \le 1$ pour tout $x \in I$, on voit que $\sup_{x \in I} |f''(x)| \le 1$, et donc :

$$|\sin(a+\lambda) - \sin(a) - \lambda \cos(a)| \le \frac{\lambda^2}{2}.$$

(b) Montrons que, pour tout $x \in \mathbb{R}$, on a :

$$\lim_{h \to 0} \frac{S(x+h) - S(x)}{h} - C(x) = 0.$$

Pour ce faire, partant de la question précédente où l'on remplace a par xt et λ par th, on obtient que, pour tout $(x, h, t) \in \mathbb{R}^2$:

$$|\sin((x+h)t) - \sin(xt) - th\cos(xt)| \le \frac{t^2h^2}{2}.$$

Si l'on multiplie cette inégalité par e^{-t^2} , alors on trouve que, pour tout $(x, h, t) \in \mathbb{R}^2$:

$$|\sin((x+h)t)e^{-t^2} - \sin(xt)e^{-t^2} - th\cos(xt)e^{-t^2}| \le \frac{t^2h^2e^{-t^2}}{2}.$$

Si l'on intègre cette inégalité entre 0 et un réel α avec $\alpha > 0$, alors on obtient avec l'intégalité triangulaire et par linéarité de l'intégrale que, pour tout $(x, h, t) \in \mathbb{R}^2$:

$$\left| \int_0^\alpha \sin((x+h)t)e^{-t^2}dt - \int_0^\alpha \sin(xt)e^{-t^2}dt - \int_0^\alpha th\cos(xt)e^{-t^2}dt \right|$$

$$\leq \int_0^\alpha |\sin((x+h)t)e^{-t^2} - \sin(xt)e^{-t^2} - th\cos(xt)e^{-t^2}|dt$$

$$\leq \int_0^\alpha \frac{t^2h^2e^{-t^2}}{2}dt.$$

Comme les intégrales $S(x+h), S(x), C(x), \int_0^{+\infty} t^2 e^{-t^2} dt$ convergent d'après les questions précédentes, il s'ensuit par passage à la limite quand α tend vers $+\infty$ que, pour tout $(x,h) \in \mathbb{R}^2$:

$$\left| \int_0^{+\infty} \sin((x+h)t)e^{-t^2}dt - \int_0^{+\infty} \sin(xt)e^{-t^2}dt - \int_0^{+\infty} th\cos(xt)e^{-t^2}dt \right| \le \int_0^{+\infty} \frac{t^2h^2e^{-t^2}}{2}dt,$$

ce qui se retraduit à l'aide des fonctions S,C et de l'intégrale I_2 sous la forme :

$$|S(x+h) - S(x) - hC(x)| \le \frac{I_2}{2}h^2.$$

En divisant par |h|, on obtient que, pour tout $x \in \mathbb{R}$ et tout $h \in \mathbb{R}^*$:

$$0 \le \left| \frac{S(x+h) - S(x)}{h} - C(x) \right| \le \frac{I_2}{2} |h|.$$

Mais comme $\frac{I_2}{2}|h|$ tend vers 0 quand h tend vers 0, le théorème des gendarmes entraine que, pour tout $x \in \mathbb{R}$:

$$\left| \frac{S(x+h) - S(x)}{h} - C(x) \right| \underset{h \to 0}{\longrightarrow} 0,$$

d'où l'on déduit que, pour tout $x \in \mathbb{R}$:

$$\lim_{h \to 0} \frac{S(x+h) - S(x)}{h} - C(x) = 0.$$

(c) Montrons que S est dérivable sur \mathbb{R} , et que S'=C. D'après la question précédente, on voit que, pour tout $x\in\mathbb{R}$:

$$\lim_{h \to 0} \frac{S(x+h) - S(x)}{h} = C(x).$$

Mais ceci signifie exactement que S est dérivable en x pour tout $x \in \mathbb{R}$, et que de plus S'(x) = C(x). Par conséquent :

la fonction
$$S$$
 est dérivable sur $\mathbb R$ et de plus : $S'=C.$

(3) (a) Etablissons que, pour tout $x \in \mathbb{R}$:

$$C(x) = \frac{1}{2} - \frac{x}{2}S(x).$$

Pour ce faire, fixons un réel $\alpha > 0$, puis posons $u(t) = \frac{1}{2}\cos(xt)$ et $v(t) = -e^{t^2}$ pour tout $t \in [0, \alpha]$. Alors les fonctions u et v sont de classe \mathcal{C}^1 sur $[0, \alpha]$, et de plus $u'(t) = -\frac{1}{2}x\sin(xt)$ et $v'(t) = 2te^{-t^2}$ pour tout $t \in [0, \alpha]$. Dès lors, par intégration par parties, on obtient que :

$$\int_0^{\alpha} t \cos(xt) e^{-t^2} dt = \int_0^{\alpha} u(t) v'(t) dt$$

$$= [u(t)v(t)]_0^{\alpha} - \int_0^{\alpha} u'(t)v(t) dt$$

$$= \left[-\frac{\cos(xt)e^{-t^2}}{2} \right]_0^{\alpha} - \int_0^{\alpha} \left(-\frac{1}{2}x \sin(xt) \right) \times \left(-e^{-t^2} \right) dt$$

$$= -\frac{\cos(x\alpha)e^{-\alpha^2}}{2} + \frac{1}{2} - \frac{1}{2}x \int_0^{\alpha} \sin(xt)e^{-t^2} dt.$$

Comme $|\cos(x\alpha)| \le 1$ pour tout $\alpha > 0$, on voit que $\cos(x\alpha)e^{-\alpha^2}$ tend vers 0 quand α tend vers $+\infty$. Dès lors, il s'ensuit par passage à la limite quand α tend vers $+\infty$ que :

$$\int_{0}^{+\infty} t \cos(xt) e^{-t^2} dt = \frac{1}{2} - \frac{1}{2} x \int_{0}^{+\infty} \sin(xt) e^{-t^2} dt.$$

Par conséquent, on en déduit que, pour tout $x \in \mathbb{R}$:

$$C(x) = \frac{1}{2} - \frac{x}{2}S(x).$$

(b) Montrons que, pour tout $x \in \mathbb{R}$, on a :

$$2e^{\frac{x^2}{4}}S(x) = \int_0^x e^{\frac{t^2}{4}}dt.$$

Pour ce faire, on pose $f(x) = 2e^{\frac{x^2}{4}}S(x)$ pour tout $x \in \mathbb{R}$. Alors la fonction f est dérivable sur \mathbb{R} comme produit de fonctions dérivables (vu que S est dérivable d'après la question (2)(c)). De plus, pour tout $x \in \mathbb{R}$, on trouve avec les questions (2)(c) et (3)(a) que :

$$f'(x) = \left(2e^{\frac{x^2}{4}}S(x)\right)'$$

$$= 2\left(\frac{x}{2}\right)e^{\frac{x^2}{4}}S(x) + 2e^{\frac{x^2}{4}}S'(x)$$

$$= xe^{\frac{x^2}{4}}S(x) + 2e^{\frac{x^2}{4}}C(x)$$

$$= xe^{\frac{x^2}{4}}S(x) + 2e^{\frac{x^2}{4}}\left(\frac{1}{2} - \frac{x}{2}S(x)\right)$$

$$= xe^{\frac{x^2}{4}}S(x) + e^{\frac{x^2}{4}} - xe^{\frac{x^2}{4}}S(x) = e^{\frac{x^2}{4}}.$$

Dès lors, comme les fonctions f' et $x \mapsto e^{\frac{x^2}{4}}$ sont égales sur \mathbb{R} , leurs primitives sont aussi égales sur \mathbb{R} à une constante additive près. En particulier, il existe un réel C_0 tel que, pour tout $x \in \mathbb{R}$:

$$f(x) = 2e^{\frac{x^2}{4}}S(x) = \int_0^x e^{\frac{t^2}{4}}dt + C_0.$$

Mais comme sin(0) = 0, on obtient par définition de S que :

$$S(0) = \int_0^{+\infty} \sin(x.0)e^{-t^2}dt = \int_0^{+\infty} 0.dt = 0.$$

En particulier, il s'ensuit que :

$$f(0) = 2e^{\frac{0^2}{4}}S(0) = 0 = \int_0^0 e^{\frac{t^2}{4}}dt + C_0 = C_0,$$

d'où l'on déduit que $C_0=0$. Par conséquent, on a pour tout $x\in\mathbb{R}$:

$$2e^{\frac{x^2}{4}}S(x) = \int_0^x e^{\frac{t^2}{4}}dt.$$

(c) D'après la question précédente, on obtient que, pour tout $x \in \mathbb{R}$:

$$S(x) = \frac{1}{2e^{\frac{x^2}{4}}} \int_0^x e^{\frac{t^2}{4}} dt = \frac{1}{2} e^{-\frac{x^2}{4}} \int_0^x e^{\frac{t^2}{4}} dt.$$

Comme de plus $C(x) = \frac{1}{2} - \frac{x}{2}S(x)$ pour tout $x \in \mathbb{R}$ (et ce d'après la question (3)(a)), on trouve que, pour tout $x \in \mathbb{R}$:

$$C(x) = \frac{1}{2} - \frac{x}{2} \cdot \frac{1}{4} e^{-\frac{x^2}{4}} \int_0^x e^{\frac{t^2}{4}} dt = \frac{1}{2} - \frac{x}{4} e^{-\frac{x^2}{4}} \int_0^x e^{\frac{t^2}{4}} dt.$$

Par conséquent, on en déduit que, pour tout $x \in \mathbb{R}$

$$S(x) = \frac{1}{2}e^{-\frac{x^2}{4}} \int_0^x e^{\frac{t^2}{4}} dt \text{ et } C(x) = \frac{1}{2} - \frac{x}{4}e^{-\frac{x^2}{4}} \int_0^x e^{\frac{t^2}{4}} dt.$$

II. Obtention d'un développement limité

(1) Montrons que, pour tout $x \in \mathbb{R}$, l'intégrale $g(x) = \int_{-\infty}^{+\infty} \frac{1}{1+x^2t^2} e^{-t^2} dt$ converge. Tout d'abord, on peut remarquer que la fonction $t \longmapsto \frac{1}{1+x^2t^2} e^{-t^2}$ est paire sur \mathbb{R} , et donc il suffit d'établir la convergence de l'intégrale $\int_0^{+\infty} \frac{1}{1+x^2t^2} e^{-t^2} dt$. De plus, comme la fonction $t \longmapsto \frac{1}{1+x^2t^2} e^{-t^2}$ est continue sur $[0, +\infty[$, l'intégrale $\int_0^{+\infty} \frac{1}{1+x^2t^2} e^{-t^2} dt$ présente juste une impropreté en $+\infty$. Enfin, comme $1+x^2t^2 \ge 1$ pour tout $t \in [0, +\infty[$, on trouve que, pour tout $t \in [0, +\infty[$:

$$0 \le \frac{1}{1 + x^2 t^2} e^{-t^2} \le e^{-t^2}.$$

D'après la question (1)(b) des préliminaires, on sait que l'intégrale $\int_{-\infty}^{+\infty} t^{2p} e^{-t^2} dt$ converge pour tout $p \in \mathbb{N}$, et donc $\int_0^{+\infty} t^{2p} e^{-t^2} dt$ converge aussi pour tout $p \in \mathbb{N}$. En particulier, on voit en prenant p = 0 que l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ converge. Dès lors, l'intégrale $\int_0^{+\infty} \frac{1}{1+x^2t^2} e^{-t^2} dt$ converge d'après le critère de comparaison des intégrales de fonctions positives. Par conséquent, comme la fonction $t \longmapsto \frac{1}{1+x^2t^2} e^{-t^2}$ est paire sur \mathbb{R} , on en déduit que, pour tout $x \in \mathbb{R}$:

l'intégrale
$$g(x) = \int_{-\infty}^{+\infty} \frac{1}{1 + x^2 t^2} e^{-t^2} dt$$
 converge.

(2) (a) Montrons que, pour tout $u \ge 0$, on a :

$$0 \le (1 - u + u^2) - \frac{1}{1 + u} \le u^3.$$

Par des calculs simples, on trouve que, pour tout $u \ge 0$:

$$1 - u + u^{2} - \frac{1}{1+u} = \frac{(1+u)(1-u+u^{2}) - 1}{1+u}$$

$$= \frac{1 - u + u^{2} + u - u^{2} + u^{3} - 1}{1+u}$$

$$= \frac{u^{3}}{1+u}.$$

Comme $u \ge 0$, on voit que $1 + u \ge 1$, et donc $0 \le \frac{u^3}{1+u} \le u^3$. Par conséquent, on en déduit que, pour tout $u \ge 0$:

$$0 \le (1 - u + u^2) - \frac{1}{1 + u} \le u^3.$$

(b) Montrons que, pour tout $x \in \mathbb{R}$, on a :

$$0 \le \int_{-\infty}^{+\infty} (1 - x^2 t^2 + x^4 t^4) e^{-t^2} dt - g(x) \le \frac{15\sqrt{\pi}}{8} x^6.$$

D'après la question précédente, on sait que, pour tout $u \ge 0$:

$$0 \le (1 - u + u^2) - \frac{1}{1 + u} \le u^3.$$

En remplaçant u par x^2t^2 , on obtient que, pour tous $x, t \in \mathbb{R}$:

$$0 \le 1 - x^2 t^2 + x^4 t^4 - \frac{1}{1 + x^2 t^2} \le x^6 t^6.$$

En multipliant le tout par e^{-t^2} , on trouve que, pour tous $x, t \in \mathbb{R}$:

$$0 \le (1 - x^2 t^2 + x^4 t^4) e^{-t^2} - \frac{1}{1 + x^2 t^2} e^{-t^2} \le x^6 t^6 e^{-t^2}.$$

D'après la question (1)(b) des préliminaires, on sait que l'intégrale $\int_{-\infty}^{+\infty} t^6 e^{-t^2} dt$ converge, et donc l'intégrale $\int_{-\infty}^{+\infty} x^6 t^6 e^{-t^2} dt$ converge par linéarité. D'après le critère de comparaison des intégrales de fonctions positives, on obtient que l'intégrale $\int_{-\infty}^{+\infty} [(1-x^2t^2+x^4t^4)e^{-t^2}-\frac{1}{1+x^2t^2}e^{-t^2}]dt$ converge. Dès lors, il s'ensuit par croissance de l'intégrale que, pour tout $x \in \mathbb{R}$:

$$0 \le \int_{-\infty}^{+\infty} \left[(1 - x^2 t^2 + x^4 t^4) e^{-t^2} - \frac{1}{1 + x^2 t^2} e^{-t^2} \right] dt \le \int_{-\infty}^{+\infty} x^6 t^6 e^{-t^2} dt.$$

Comme l'intégrale $\int_{-\infty}^{+\infty} (1-x^2t^2+x^4t^4)e^{-t^2}dt$ converge d'après la question (1)(c) des préliminaires et que l'intégrale $g(x)=\int_{-\infty}^{+\infty} \frac{1}{1+x^2t^2}e^{-t^2}dt$ converge d'après la question (1) de la partie III, on obtient par linéarité de l'intégrale que, pour tout $x\in\mathbb{R}$:

$$0 \le \int_{-\infty}^{+\infty} (1 - x^2 t^2 + x^4 t^4) e^{-t^2} dt - \int_{-\infty}^{+\infty} \frac{1}{1 + x^2 t^2} e^{-t^2} dt \le \int_{-\infty}^{+\infty} x^6 t^6 e^{-t^2} dt.$$

Toujours par linéarité de l'intégrale, ceci entraine que, pour tout $x \in \mathbb{R}$:

$$0 \le \int_{-\infty}^{+\infty} (1 - x^2 t^2 + x^4 t^4) e^{-t^2} dt - \int_{-\infty}^{+\infty} \frac{1}{1 + x^2 t^2} e^{-t^2} dt \le x^6 \int_{-\infty}^{+\infty} t^6 e^{-t^2} dt.$$

Comme $I_6 = \int_{-\infty}^{+\infty} t^6 e^{-t^2} dt$, on voit avec la question (2)(c) des préliminaires que :

$$I_6 = \frac{(2 \times 3)!}{2^{2 \times 3} 3!} \sqrt{\pi} = \frac{6 \times 5 \times 4 \times 3 \times 2}{2^6 \times 3 \times 2} \sqrt{\pi} = \frac{15}{8} \sqrt{\pi}.$$

En reportant ceci dans l'encadrement ci-dessus, on obtient que, pour tout $x \in \mathbb{R}$:

$$0 \le \int_{-\infty}^{+\infty} (1 - x^2 t^2 + x^4 t^4) e^{-t^2} dt - \int_{-\infty}^{+\infty} \frac{1}{1 + x^2 t^2} e^{-t^2} dt \le \frac{15}{8} \sqrt{\pi} x^6.$$

Mais par définition de g, on en déduit que, pour tout $x \in \mathbb{R}$

$$0 \le \int_{-\infty}^{+\infty} (1 - x^2 t^2 + x^4 t^4) e^{-t^2} dt - g(x) \le \frac{15}{8} \sqrt{\pi} x^6.$$

(3) Montrons que g admet un développement limité à l'ordre 5 en 0 et donnons ce développement limité. D'après la question précédente, on sait que, pour tout $x \in \mathbb{R}$:

$$0 \le \int_{-\infty}^{+\infty} (1 - x^2 t^2 + x^4 t^4) e^{-t^2} dt - g(x) \le \frac{15}{8} \sqrt{\pi} x^6.$$

D'après la question (1)(b) des préliminaires, on sait que l'intégrale $\int_{-\infty}^{+\infty} t^{2p} e^{-t^2} dt$ converge pour tout $p \in \mathbb{N}$. Par linéarité de l'intégrale, on trouve que, pour tout $x \in \mathbb{R}$:

$$0 \le \int_{-\infty}^{+\infty} e^{-t^2} dt - x^2 \int_{-\infty}^{+\infty} t^2 e^{-t^2} dt + x^4 \int_{-\infty}^{+\infty} t^4 e^{-t^2} dt - g(x) \le \frac{15}{8} \sqrt{\pi} x^6.$$

Par définition de I_n , ceci entraine que, pour tout $x \in \mathbb{R}$

$$0 \le I_0 - I_2 x^2 + I_4 x^4 - g(x) \le \frac{15}{8} \sqrt{\pi} x^6.$$
 (*)

A noter que $I_0 = \sqrt{\pi}$ d'après la question (2)(c) des préliminaires. De plus, on voit d'après la même question que :

$$I_2 = \frac{(2 \times 1)!}{2^{2 \times 1} 1!} \sqrt{\pi} = \frac{2}{4} \sqrt{\pi} = \frac{1}{2} \sqrt{\pi}.$$

Par ailleurs, on trouve avec la même question que :

$$I_4 = \frac{(2 \times 2)!}{2^{2 \times 2} 2!} \sqrt{\pi} = \frac{4 \times 3 \times 2}{32} \sqrt{\pi} = \frac{3}{4} \sqrt{\pi}.$$

En particulier, l'inégalité (*) se réécrit sous la forme suivante, pour tout $x \in \mathbb{R}$:

$$0 \le \sqrt{\pi} - \frac{1}{2}\sqrt{\pi}x^2 + \frac{3}{4}\sqrt{\pi}x^4 - g(x) \le \frac{15}{8}\sqrt{\pi}x^6. \quad (**)$$

Considérons alors la fonction $\varepsilon: \mathbb{R} \longrightarrow \mathbb{R}$, définie par $\varepsilon(0) = 0$ et pour tout $x \in \mathbb{R}^*$ par :

$$\varepsilon(x) = \frac{\sqrt{\pi} - \frac{1}{2}\sqrt{\pi}x^2 + \frac{3}{4}\sqrt{\pi}x^4 - g(x)}{x^5}.$$

D'après l'encadrement (**), on voit que, pour tout x > 0:

$$0 \le \varepsilon(x) \le \frac{15}{8} \sqrt{\pi} x.$$

De même, toujours d'après (**), on constate que, pour tout x < 0:

$$\frac{15}{9}\sqrt{\pi}x \le \varepsilon(x) \le 0.$$

Dans tous les cas, ceci nous donne que, pour tout $x \in \mathbb{R}^*$:

$$-\frac{15}{8}\sqrt{\pi}|x| \le \varepsilon(x) \le \frac{15}{8}\sqrt{\pi}|x|.$$

D'après le théorème des gendarmes, il s'ensuit que $\varepsilon(x)$ tend vers 0 quand x tend vers 0. Par ailleurs, on sait par construction de la fonction ε que, pour tout $x \in \mathbb{R}$:

$$g(x) = \sqrt{\pi} - \frac{1}{2}\sqrt{\pi}x^2 + \frac{3}{4}\sqrt{\pi}x^4 - x^5\varepsilon(x).$$

Par conséquent, on en déduit que g admet un développement limité à l'ordre 5 en 0 donné par :

$$g(x) \underset{x \to 0}{=} \sqrt{\pi} - \frac{1}{2}\sqrt{\pi}x^2 + \frac{3}{4}\sqrt{\pi}x^4 + o(x^5).$$

III. Nature d'une série :

(1) Montrons que, pour tout $p \in \mathbb{N}$, l'intégrale $u_p = \int_{-\infty}^{+\infty} \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} dt$ converge. Tout d'abord, on peut remarquer que la fonction $t \longmapsto \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2}$ est paire sur \mathbb{R} , et donc il suffit d'établir la convergence de l'intégrale $\int_0^{+\infty} \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} dt$. De plus, comme la fonction $t \longmapsto \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2}$ est continue sur $[0, +\infty[$, l'intégrale $\int_0^{+\infty} \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} dt$ présente juste une impropreté en $+\infty$. Enfin, comme $t^2 + (2p)! \ge (2p)!$ pour tout $t \in [0, +\infty[$, on trouve que, pour tout $t \in [0, +\infty[$:

$$0 \le \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} \le \frac{t^{2p}}{(2p)!} e^{-t^2}.$$

D'après la question (1)(b), on sait que l'intégrale $\int_{-\infty}^{+\infty} t^{2p} e^{-t^2} dt$ converge, et donc $\int_{0}^{+\infty} t^{2p} e^{-t^2} dt$ converge aussi. Dès lors, l'intégrale $\int_{0}^{+\infty} \frac{t^{2p}}{(2p)!} e^{-t^2} dt$ converge par linéarité, ce qui entraine que l'intégrale $\int_{0}^{+\infty} \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} dt$ converge d'après le critère de comparaison des intégrales de fonctions positives. Par conséquent, on en déduit que, pour tout $p \in \mathbb{N}$:

l'intégrale
$$u_p = \int_{-\infty}^{+\infty} \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} dt$$
 converge.

(2) Montrons que, pour tout $p \in \mathbb{N}$, on a : $0 \le u_p \le \frac{I_{2p}}{(2p)!}$. Comme à la question précédente, on voit que, pour tout $t \in \mathbb{R}$:

$$0 \le \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} \le \frac{t^{2p}}{(2p)!} e^{-t^2}.$$

Par croissance de l'intégrale, ceci entraine que

$$\int_{-\infty}^{+\infty} 0.dt \leq \int_{-\infty}^{+\infty} \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} dt \leq \int_{-\infty}^{+\infty} \frac{t^{2p}}{(2p)!} e^{-t^2} dt,$$

vu que toutes les intégrales en question convergent d'après les questions précédentes. Dès lors, par linéarité de l'intégrale, il s'ensuit que :

$$0 \le \int_{-\infty}^{+\infty} \frac{t^{2p}}{t^2 + (2p)!} e^{-t^2} dt \le \frac{1}{(2p)!} \int_{-\infty}^{+\infty} t^{2p} e^{-t^2} dt.$$

Par définition de u_p et I_{2p} , on en déduit que, pour tout $p \in \mathbb{N}$:

$$0 \le u_p \le \frac{I_{2p}}{(2p)!}.$$

(3) Montrons que la série $\sum u_p$ converge. Tout d'abord, on voit que $\sum u_p$ est une série à termes positifs d'après la question précédente. De plus, d'après la question ci-dessus et la question (2)(c) de la première partie, on trouve que, pour tout $p \in \mathbb{N}$:

$$u_p \le \frac{I_{2p}}{(2p)!} = \frac{(2p)!}{2^{2p}p!} \sqrt{\pi} \times \frac{1}{(2p)!} = \frac{1}{2^{2p}p!} \sqrt{\pi} = \frac{\left(\frac{1}{4}\right)^p}{p!} \sqrt{\pi}.$$

D'après le cours, on sait que la série exponentielle $\sum \frac{\left(\frac{1}{4}\right)^p}{p!}$ converge, et donc la série $\sum \sqrt{\pi} \frac{\left(\frac{1}{4}\right)^p}{p!}$ converge aussi par linéarité. Dès lors, la série $\sum u_p$ converge d'après le critère de comparaison des séries à termes positifs, et donc :

la série
$$\sum u_p$$
 converge.

2. Sujet type ESSEC

Corrigé du problème 2.

Notations et objectifs :

Dans tout le problème, E désigne l'espace vectoriel réel des fonctions continues sur le segment [0,1] et à valeurs réelles. Sous réserve d'existence, on note :

$$\varphi: x \longmapsto \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2} \quad \text{et} \quad \psi: x \longmapsto \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x}{n^2 - x^2}.$$

Le but du problème est d'obtenir, à l'aide des fonctions φ et ψ , des expressions des fonctions $\sin, \frac{1}{\sin}, \frac{\cos}{\sin}$ comme somme de séries ou produit infini (On parle de développements eulériens). Plus précisément, dans la partie I, on étudie les premières propriétés de la fonction φ ; dans la seconde partie, on introduit et on étudie l'opérateur T défini sur E par :

$$\forall f \in E, \quad \forall x \in [0, 1], \quad [T(f)](x) = f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right).$$

On en déduit une expression de la fonction $\frac{\cos}{\sin}$ puis, dans la partie III, de la fonction sinus. Enfin, dans la partie IV, l'étude de la fonction ψ permet d'obtenir une expression de $\frac{1}{\sin}$. Rappelons pour terminer les égalités suivantes pour tout $(a,b) \in \mathbb{R}^2$:

$$\begin{cases} \cos(a+b) &= \cos(a)\cos(b)-\sin(a)\sin(b) & \text{(formule d'addition pour cos)} \\ \sin(a+b) &= \sin(a)\cos(b)+\cos(a)\sin(b) & \text{(formule d'addition pour sin)} \\ \cos(2a) &= 2\cos^2(a)-1 & \text{(formule de duplication d'angle pour cos)} \\ \sin(2a) &= 2\sin(a)\cos(a) & \text{(formule de duplication d'angle pour sin)} \end{cases}$$

- (1) Partie I : Etude de la fonction φ
 - (a) Montrer que, pour tout réel x qui n'est pas un entier relatif, la série de terme général $u_n(x) = \frac{2x}{n^2 x^2}$ est convergente. Comme x n'est pas un entier relatif, on voit que $x \neq 0$, et donc :

$$u_n(x) = \frac{2x}{n^2 - x^2} \underset{n \to +\infty}{\sim} \frac{2x}{n^2}.$$

En particulier, la série $\sum \frac{2x}{n^2}$ converge comme multiple d'une série de Riemann convergente. Comme de plus $\frac{2x}{n^2}$ est du signe de x (et donc de signe constant) pour tout $n \geq 1$, on en déduit par équivalence de séries à termes positifs que :

la série
$$\sum u_n(x)$$
 converge pour tout réel x qui n'est pas un entier relatif.

Dans la suite, on notera D l'ensemble des nombres réels qui ne sont pas des entiers relatifs. La fonction φ est donc définie sur D.

- (b) Imparité et périodicité de φ :
 - (i) Justifions que la fonction φ est impaire. Pour tout $x \in D$, on voit que -x appartient aussi à D (car -x n'est pas un entier relatif vu que x ne l'est pas) et de plus, on a par linéarité de la somme que :

$$\varphi(-x) = \frac{1}{-x} - \sum_{n=1}^{+\infty} \frac{2(-x)}{n^2 - (-x)^2} = -\frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2} = -\varphi(x).$$

Par conséquent, on en déduit que :

la fonction
$$\varphi$$
 est impaire.

(ii) Vérifions que, pour tout $x \in D$, on a : $\frac{2x}{n^2-x^2} = \frac{1}{n-x} - \frac{1}{n+x}$. Par des calculs simples, on trouve que, pour tout $x \in D$:

$$\frac{2x}{n^2 - x^2} = \frac{2x}{(n - x)(n + x)} = \frac{n + x - (n - x)}{(n - x)(n + x)} = \frac{n + x}{(n - x)(n + x)} - \frac{n - x}{(n - x)(n + x)} = \frac{1}{n - x} - \frac{1}{n + x}.$$

Par conséquent, on en déduit que pour tout $x \in D$:

$$\frac{2x}{n^2 - x^2} = \frac{1}{n - x} - \frac{1}{n + x}.$$

(iii) Montrons que, pour tout $x \in D$, on a : $\varphi(x+1) = \varphi(x)$. Pour ce faire, fixons un entier $p \ge 2$. Pour tout $x \in D$, on voit avec la question précédente et par linéarité de la somme que :

$$\sum_{n=1}^{p} \frac{2(x+1)}{n^2 - (x+1)^2} = \sum_{n=1}^{p} \frac{1}{n - (x+1)} - \frac{1}{n+x+1}$$

$$= \sum_{n=1}^{p} \frac{1}{n-1-x} - \frac{1}{n+1+x}$$

$$= \sum_{n=1}^{p} \frac{1}{n-1-x} - \sum_{n=1}^{p} \frac{1}{n+1+x}.$$

En effectuant les changements d'indices k = n - 1 dans la première somme de droite et k = n + 1 dans la deuxième, puis en utilisant la linéarité de la somme, on trouve que :

$$\sum_{n=1}^{p} \frac{2(x+1)}{n^2 - (x+1)^2} = \sum_{n=1}^{p} \frac{1}{n-1-x} - \sum_{n=1}^{p} \frac{1}{n+1+x}$$

$$= \sum_{k=0}^{p-1} \frac{1}{k-x} - \sum_{k=2}^{p+1} \frac{1}{k+x}$$

$$= -\frac{1}{x} - \frac{1}{p-x} + \sum_{k=1}^{p} \frac{1}{k-x} + \frac{1}{1+x} - \frac{1}{p+1+x} - \sum_{k=1}^{p} \frac{1}{k-x} - \sum_{k=1}^{p} \frac{1}{k+x}$$

$$= -\frac{1}{x} - \frac{1}{p-x} + \frac{1}{1+x} - \frac{1}{p+1+x} + \sum_{k=1}^{p} \frac{1}{k-x} - \sum_{k=1}^{p} \frac{1}{k+x}$$

$$= -\frac{1}{x} - \frac{1}{p-x} + \frac{1}{1+x} - \frac{1}{p+1+x} + \sum_{k=1}^{p} \frac{2x}{k^2 - x^2}.$$

Par passage à la limite quand p tend vers $+\infty$ dans l'égalité ci-dessus, on obtient que :

$$\sum_{n=1}^{+\infty} \frac{2(x+1)}{n^2 - (x+1)^2} = -\frac{1}{x} + \frac{1}{1+x} + \sum_{k=1}^{+\infty} \frac{2x}{k^2 - x^2},$$

ce qui redonne après réarrangement que :

$$\frac{1}{1+x} - \sum_{n=1}^{+\infty} \frac{2(x+1)}{n^2 - (x+1)^2} = \frac{1}{x} - \sum_{k=1}^{+\infty} \frac{2x}{k^2 - x^2}.$$

Par conséquent, on en déduit que, pour tout $x \in D$:

$$\varphi(x+1) = \varphi(x).$$

La fonction φ est donc périodique de période 1.

- (c) Continuité de φ :
 - (i) Justifions, pour tout $x \in D \cup \{0, 1\}$, l'existence de :

$$g(x) = \sum_{n=2}^{+\infty} \frac{2x}{n^2 - x^2} = \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} - \frac{1}{n+x} \right).$$

Pour ce faire, on distingue deux cas. Si x=0, alors on voit que $u_n(0)=0$ pour tout $n\geq 2$, et donc la série $\sum_{n\geq 2}u_n(0)$ converge. Si maintenant $x\in D\cup\{1\}$, alors on constate que $u_n(x)$ est

bien définie pour tout $n \ge 2$, et de plus :

$$u_n(x) = \frac{2x}{n^2 - x^2} \underset{n \to +\infty}{\sim} \frac{2x}{n^2}.$$

En particulier, la série $\sum \frac{2x}{n^2}$ converge comme multiple d'une série de Riemann convergente. Comme de plus $\frac{2x}{n^2}$ est du signe de x (et donc de signe constant) pour tout $n \geq 2$, la série $\sum_{n \geq 2} u_n(x)$ converge par équivalence de séries à termes positifs. Par conséquent, on en déduit que la série $\sum_{n \geq 2} u_n(x)$ converge pour tout $x \in D \cup \{0,1\}$, et donc :

l'expression
$$g(x) = \sum_{n=2}^{+\infty} \frac{2x}{n^2 - x^2}$$
 est bien définie pour tout $x \in D \cup \{0, 1\}$.

(ii) Vérifions que, pour tout $x \in D$, on a : $\varphi(x) = \frac{1}{x} - \frac{1}{1-x} + \frac{1}{1+x} - g(x)$. Pour tout $x \in D$, on trouve par définition de φ et g, et d'après la question (1)(b)(ii) que :

$$\varphi(x) = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}$$

$$= \frac{1}{x} - \frac{2x}{1^2 - x^2} - \sum_{n=2}^{+\infty} \frac{2x}{n^2 - x^2}$$

$$= \frac{1}{x} - \frac{1}{1 - x} + \frac{1}{1 + x} - \sum_{n=2}^{+\infty} \frac{2x}{n^2 - x^2}$$

$$= \frac{1}{x} - \frac{1}{1 - x} + \frac{1}{1 + x} - g(x).$$

Par conséquent, on en déduit que, pour tout $x \in D$

$$\varphi(x) = \frac{1}{x} - \frac{1}{1-x} + \frac{1}{1+x} - g(x).$$

(iii) Soit $h \in \left] -\frac{1}{2}, \frac{1}{2} \right[$. Montrons que :

$$\forall x \in [0,1], \quad |g(x+h) - g(x)| \le C|h|, \quad \text{avec} : C = \sum_{n=2}^{+\infty} \frac{2}{(n-1)\left(n-\frac{3}{2}\right)}.$$

Pour ce faire, fixons tout d'abord un entier $n \ge 2$. D'après la question (1)(b)(ii), on trouve que :

$$u_n(x+h) - u_n(x) = \frac{2(x+h)}{n^2 - (x+h)^2} - \frac{2x}{n^2 - x^2}$$

$$= \frac{1}{n-x-h} - \frac{1}{n+x-h} - \frac{1}{n-x} + \frac{1}{n+x}$$

$$= \left(\frac{1}{n-x-h} - \frac{1}{n-x}\right) - \left(\frac{1}{n+x-h} - \frac{1}{n+x}\right)$$

$$= \frac{h}{(n-x-h)(n-x)} - \frac{h}{(n+x-h)(n+x)}.$$

D'après l'inégalité triangulaire, ceci nous donne que

$$|u_n(x+h) - u_n(x)| \le \left| \frac{h}{(n-x-h)(n-x)} \right| + \left| \frac{h}{(n+x-h)(n+x)} \right|.$$
 (*)

Comme x appartient à [0,1] et que h appartient à $]-\frac{1}{2},\frac{1}{2}[$, on voit que :

$$n-\frac{3}{2} \leq n-x-h, \quad n-1 \leq n-x, \quad n-\frac{1}{2} \leq n+x-h, \quad n \leq n+x.$$

En particulier, ceci entraine que :

$$\left(n-\frac{3}{2}\right)(n-1) \leq (n-x-h)(n-x) \quad \text{et} \quad \left(n-\frac{3}{2}\right)(n-1) \leq \left(n-\frac{1}{2}\right)n \leq (n+x-h)(n+x).$$

Dès lors, il s'ensuit à partir de la relation (*) que :

$$|u_n(x+h) - u_n(x)| \le \frac{|h|}{(n-3/2)(n-1)} + \frac{|h|}{(n-3/2)(n-1)} = \frac{2|h|}{(n-3/2)(n-1)}. \quad (**)$$

A noter que la série $\sum_{n\geq 2}\frac{1}{(n-3/2)(n-1)}$ converge par équivalence de séries à termes positifs, car son terme général est équivalent à celui d'une série de Riemann convergente. D'après l'inégalité triangulaire, par linéarité de la somme et avec l'inégalité (**), il s'ensuit que :

$$|g(x+h) - g(x)| = \left| \sum_{n=2}^{+\infty} u_n(x+h) - \sum_{n=2}^{+\infty} u_n(x) \right|$$

$$= \left| \sum_{n=2}^{+\infty} (u_n(x+h) - u_n(x)) \right|$$

$$\leq \sum_{n=2}^{+\infty} |u_n(x+h) - u_n(x)|$$

$$\leq \sum_{n=2}^{+\infty} \frac{2|h|}{(n-3/2)(n-1)}$$

$$\leq |h| \sum_{n=2}^{+\infty} \frac{2}{(n-3/2)(n-1)}.$$

Par conséquent, on en déduit en posant $C = \sum_{n=2}^{+\infty} \frac{2}{(n-3/2)(n-1)}$ que, pour tout $x \in [0,1]$ et pour tout $h \in]-\frac{1}{2},\frac{1}{2}[$:

$$|g(x+h) - g(x)| \le C|h|.$$

(iv) Montrons tout d'abord que g est continue sur [0,1]. D'après la question précédente, il existe une constante C>0 telle que, pour tout $x\in[0,1]$ et pour tout $h\in]-\frac{1}{2},\frac{1}{2}[$, on ait :

$$0 \le |g(x+h) - g(x)| \le C|h|.$$

Fixons alors un réel $x \in [0, 1]$. Par encadrement, on voit que :

$$\lim_{h \to 0} |g(x+h) - g(x)| = 0,$$

ce qui entraine que :

$$\lim_{h \to 0} g(x+h) = g(x).$$

En particulier, la fonction g est continue en x. Mais comme ceci est vrai pour tout $x \in [0,1]$, on en déduit que :

la fonction
$$g$$
 est continue sur $[0,1]$.

Montrons à présent que φ est continue sur]0,1[. D'après la question (1)(c)(ii), on sait que, pour tout $x \in]0,1[$:

$$\varphi(x) = \frac{1}{x} - \frac{1}{1-x} + \frac{1}{1+x} - g(x).$$

Comme φ est une combinaison linéaire de fonctions continues sur]0,1[(dont certaines sont continues sur]0,1[en tant qu'inverses de fonctions continues sur]0,1[, dont le dénominateur ne s'annule pas sur]0,1[), on en déduit que :

la fonction
$$\varphi$$
 est continue sur]0,1[.

La fonction φ est donc continue sur D.

- (d) Etude de φ en 0 et en 1 :
 - (i) Montrons tout d'abord que $\varphi(x) \sim \frac{1}{x \to 0} \frac{1}{x}$. D'après la question (1)(c)(ii), on a pour tout $x \in D$:

$$\varphi(x) = \frac{1}{x} - \frac{1}{1-x} + \frac{1}{1+x} - g(x).$$

En particulier, ceci nous donne que, pour tout $x \in D$:

$$x\varphi(x) = 1 - \frac{x}{1-x} + \frac{x}{1+x} - xg(x).$$
 (*)

Comme la fonction g est continue sur [0,1] d'après la question précédente, on voit que les fonctions $x \longmapsto \frac{x}{1-x}, \ x \longmapsto \frac{x}{1+x}$ et $x \longmapsto xg(x)$ sont continues à droite en 0. Dès lors, on trouve par passage à la limite dans la relation (*) que :

$$\lim_{x \to 0^+} x \varphi(x) = \lim_{x \to 0^+} 1 - \frac{x}{1-x} + \frac{x}{1+x} - xg(x) = 1 - 0 - 0 - 0 = 1.$$

De plus, comme la fonction φ est impaire d'après la question (1)(b)(i), on obtient que :

$$\lim_{x \to 0^{-}} x \varphi(x) = \lim_{x \to 0^{+}} (-x)\varphi(-x) = \lim_{x \to 0^{+}} (-x)(-\varphi(x)) = \lim_{x \to 0^{+}} x \varphi(x) = 1.$$

En particulier, il s'ensuit que :

$$\lim_{x \to 0} x \varphi(x) = 1.$$

Par conséquent, on en déduit que :

$$\varphi(x) \underset{x \to 0}{\sim} \frac{1}{x}.$$

A présent, montrons que $\lim_{x\to 0} \left(\varphi(x) - \frac{1}{x}\right) = 0$. Toujours d'après la question (1)(c)(ii), on voit que, pour tout $x \in D$:

$$\varphi(x) = \frac{1}{x} - \frac{1}{1-x} + \frac{1}{1+x} - g(x).$$

En particulier, ceci nous donne que, pour tout $x \in D$:

$$\varphi(x) - \frac{1}{x} = -\frac{1}{1-x} + \frac{1}{1+x} - g(x).$$
 (**)

Comme la fonction g est continue sur [0,1] d'après la question précédente, et que les fonctions $x \longmapsto \frac{1}{1-x}$ et $x \longmapsto \frac{1}{1+x}$ sont continues en 0, on obtient par passage à la limite dans la relation (**) que :

$$\lim_{x \to 0^+} \varphi(x) - \frac{1}{x} = \lim_{x \to 0^+} -\frac{1}{1-x} + \frac{1}{1+x} - g(x) = -1 + 1 - g(0) = -g(0).$$

En particulier, on voit par définition de g que :

$$\lim_{x \to 0^+} \varphi(x) - \frac{1}{x} = -g(0) = \sum_{n=2}^{+\infty} \frac{2 \cdot 0}{n^2 - 0^2} = 0.$$

De plus, comme la fonction φ est impaire d'après la question (1)(b)(i), on trouve que :

$$\lim_{x \to 0^-} \varphi(x) - \frac{1}{x} = \lim_{x \to 0^+} \varphi(-x) - \frac{1}{-x} = \lim_{x \to 0^+} - \left(\varphi(x) - \frac{1}{x}\right) = -0 = 0.$$

En particulier, il s'ensuit que :

$$\lim_{x \to 0} \varphi(x) - \frac{1}{x} = 0.$$

Par conséquent, on en déduit que :

$$\lim_{x \to 0} \varphi(x) - \frac{1}{x} = 0.$$

(ii) Obtenons des résultats similaires lorsque x tend vers 1. Montrons tout d'abord que $\varphi(x) \underset{x \to 1}{\sim} \frac{1}{x-1}$. Comme φ est 1-périodique sur D d'après la question (1)(b)(iii), on sait que $\varphi(x) = \varphi(x-1)$ pour tout $x \in D$. Dès lors, comme x-1 tend vers 0 quand x tend vers 1 et que $\varphi(x) \underset{x \to 0}{\sim} \frac{1}{x}$, on obtient par substitution que :

$$\varphi(x) = \varphi(x-1) \underset{x \to 1}{\sim} \frac{1}{x-1}.$$

Par conséquent, on en déduit que :

$$\varphi(x) \underset{x \to 1}{\sim} \frac{1}{x - 1}.$$

A présent, montrons que $\lim_{x\to 1} \left(\varphi(x) - \frac{1}{x-1}\right) = 0$. Toujours d'après la question (1)(b)(iii), on sait que $\varphi(x) = \varphi(x-1)$ pour tout $x \in D$. Dès lors, comme x-1 tend vers 0 quand x tend vers 1 et que $\lim_{x\to 0} \varphi(x) - \frac{1}{x} = 0$, on obtient par composition des limites que :

$$\lim_{x \to 1} \varphi(x) - \frac{1}{x - 1} = \lim_{x \to 1} \varphi(x - 1) - \frac{1}{x - 1} = \lim_{x \to 0} \varphi(x) - \frac{1}{x} = 0.$$

Par conséquent, on en déduit que :

$$\lim_{x \to 1} \varphi(x) - \frac{1}{x - 1} = 0.$$

(2) Partie II : Etude de l'opérateur T

On rappelle que E désigne l'espace vectoriel réel des fonctions continues sur le segment [0,1] et à valeurs réelles. De plus, T est l'application définie sur E par :

$$\forall f \in E, \quad \forall x \in [0,1], \quad [T(f)](x) = f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right).$$

On note, pour tout $k \in \mathbb{N}$, e_k l'élément de E défini par : $\forall x \in [0,1]$, $e_k(x) = x^k$. De plus, pour tout $n \in \mathbb{N}$, on note F_n le sous-espace vectoriel de E dont une base est $\mathcal{B}_n = (e_k)_{k \in [0,n]}$.

(a) Vérifions que T est un endomorphisme de E. Tout d'abord, considérons un élément f de E. Alors f est une fonction continue de [0,1] dans \mathbb{R} . Dès lors, comme :

$$T(f): x \longmapsto f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right),$$

on voit que T(f) est continue sur [0,1] comme somme de composées de fonctions continues sur [0,1]. En particulier, l'application T va de E dans E. Reste à vérifier que T est linéaire. Pour ce faire, considérons deux éléments f et g de E, et soient λ, μ des réels. Pour tout $x \in [0,1]$, on voit que :

$$T(\lambda f + \mu g)(x) = (\lambda f + \mu g) \left(\frac{x}{2}\right) + (\lambda f + \mu g) \left(\frac{x+1}{2}\right)$$

$$= \lambda f\left(\frac{x}{2}\right) + \mu g\left(\frac{x}{2}\right) + \lambda f\left(\frac{x+1}{2}\right) + \mu g\left(\frac{x+1}{2}\right)$$

$$= \lambda \left[f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right)\right] + \mu \left[g\left(\frac{x}{2}\right) + g\left(\frac{x+1}{2}\right)\right]$$

$$= \lambda T(f)(x) + \mu T(g)(x).$$

En particulier, ceci signifie que $T(\lambda f + \mu g) = \lambda T(f) + \mu T(g)$, et donc T est linéaire. Par conséquent, on en déduit que :

$$T$$
 est un endomorphisme de E .

- (b) Etude de $T \operatorname{sur} F_n$:
 - (i) Vérifions que, pour tout $f \in F_n$, la fonction T(f) appartient à F_n . Pour tout $f \in F_n$, on sait que $\deg(f) \leq n$. D'après les propriétés des polynômes, on sait que la somme et la composée de deux polynômes est toujours un polynôme, et donc $T(f): x \longmapsto f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right)$ est un polynôme. De plus, d'après les propriétés du degré, on voit que :

$$\deg\left(x\longmapsto f\left(\frac{x}{2}\right)\right) = \deg\left(x\longmapsto \frac{x}{2}\right)\deg(f) \le 1 \times n = n.$$

De même, on voit que :

$$\deg\left(x\longmapsto f\left(\frac{x+1}{2}\right)\right)=\deg\left(x\longmapsto \frac{x+1}{2}\right)\deg(f)\leq 1\times n=n.$$

Par somme, ceci nous donne que:

$$\deg(T(f)) \le \max\left\{\deg\left(x \longmapsto f\left(\frac{x}{2}\right)\right), \deg\left(x \longmapsto f\left(\frac{x+1}{2}\right)\right)\right\} \le \max\{n, n\} = n.$$

En particulier, il s'ensuit que T(f) appartient à F_n . Par conséquent, on en déduit que :

$$\forall f \in F_n, \ T(f) \in F_n.$$

On note T_n l'endomorphisme de F_n défini par : $\forall f \in F_n, T_n(f) = T(f)$.

(ii) Déterminons la matrice de T_n dans la base \mathcal{B}_n . Pour tout $k \in \mathbb{N}$, on trouve avec la formule du binôme que, pour tout $x \in \mathbb{R}$:

$$T_n(e_k)(x) = e_k \left(\frac{x}{2}\right) + e_k \left(\frac{x+1}{2}\right)$$

$$= \left(\frac{x}{2}\right)^k + \left(\frac{x+1}{2}\right)^k$$

$$= \frac{x^k}{2^k} + \frac{(x+1)^k}{2^k}$$

$$= \frac{x^k}{2^k} + \frac{1}{2^k} \sum_{i=0}^k \binom{k}{i} x^i \cdot 1^{k-i}$$

$$= \frac{x^k}{2^k} + \frac{1}{2^k} \sum_{i=0}^k \binom{k}{i} x^i.$$

En particulier, ceci nous donne que, pour tout $x \in \mathbb{R}$:

$$T_n(e_0)(x) = 2$$
 et : $\forall k \in [1, n], T_n(e_k)(x) = \frac{1}{2^k} \sum_{i=0}^{k-1} {k \choose i} x^i + \frac{2x^k}{2^k}.$

A noter que ceci se retraduit sous la forme suivante :

$$T_n(e_0) = 2e_0$$
 et : $\forall k \in [1, n], T(e_k) = \frac{1}{2^k} \sum_{i=0}^{k-1} {k \choose i} e_i + \frac{2}{2^k} e_k$.

Par conséquent, on en déduit que :

$$\max_{\mathcal{B}_n}(T_n) = \begin{pmatrix} 2 & 1/2 & 1/4 & \cdots & \cdots & \binom{n}{0}(1/2^n) \\ 0 & 1 & 1/2 & \ddots & & \vdots \\ \vdots & \ddots & 1/2 & \ddots & \ddots & \binom{n}{n-3}(1/2^n) \\ \vdots & & \ddots & \ddots & \ddots & \binom{n}{n-2}(1/2^n) \\ \vdots & & & \ddots & \ddots & \binom{n}{n-1}(1/2^n) \\ 0 & \cdots & \cdots & 0 & 1/2^{n-1} \end{pmatrix}.$$

- (c) Etude du novau de l'endomorphisme $(T 2Id_E)$:
 - (i) Montrons que $\ker(T-2\mathrm{Id}_E)$ n'est pas réduit à $\{0_E\}$. D'après la question précédente, on sait que $T_n(e_0)=2e_0$. En particulier, si f_0 est la fonction de [0,1] dans \mathbb{R} , constante égale à 1, alors on voit que $T(f_0)=2f_0$, ce qui entraine que $T(f_0)-2f_0=0$, et donc f_0 appartient à $\ker(T-2\mathrm{Id}_E)$. Mais comme f_0 n'est pas la fonction nulle, on en déduit que :

$$\ker(T - 2\mathrm{Id}_E) \neq \{0_E\}.$$

Soit f un élément de $\ker(T - 2\operatorname{Id}_E)$. On note $m = \min_{x \in [0,1]} f(x)$ et $M = \max_{x \in [0,1]} f(x)$. On fixe x_0 dans [0,1] tel que $m = f(x_0)$ et x_1 dans [0,1] tel que $M = f(x_1)$.

(ii) Montrons que $f\left(\frac{x_0}{2}\right) = m$. Comme f appartient à $\ker(T - 2\mathrm{Id}_E)$, on voit que T(f) - 2f = 0, et donc T(f) = 2f. Dès lors, ceci signifie que, pour tout $x \in [0, 1]$:

$$T(f)(x) = f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) = 2f(x).$$

En particulier, ceci entraine que:

$$f\left(\frac{x_0}{2}\right) + f\left(\frac{x_0+1}{2}\right) = 2f(x_0),$$

ce que l'on peut réécrire sous la forme

$$\left[f\left(\frac{x_0}{2}\right) - f(x_0) \right] + \left[f\left(\frac{x_0 + 1}{2}\right) - f(x_0) \right] = 0. \quad (*)$$

Comme $f(x_0) = m$ est le minimum de f sur [0,1], on voit que :

$$f\left(\frac{x_0}{2}\right) \ge f(x_0)$$
 et $f\left(\frac{x_0+1}{2}\right) \ge f(x_0)$.

En particulier, les deux crochets dans l'égalité (*) sont positifs. Comme une somme de réels positifs est nulle si et seulement si chacun des réels est nul, il s'ensuit que :

$$f\left(\frac{x_0}{2}\right) - f(x_0) = 0$$
 et $f\left(\frac{x_0 + 1}{2}\right) - f(x_0) = 0$.

Mais comme $f(x_0) = m$, on en déduit que :

$$f\left(\frac{x_0}{2}\right) = m.$$

(iii) Montrons par récurrence la propriété $\mathcal P$ définie pour tout $n\in\mathbb N$ par :

$$\mathcal{P}(n): "f\left(\frac{x_0}{2^n}\right) = m".$$

Tout d'abord, on voit que $\mathcal{P}(0)$ est vraie, car on sait par définition que :

$$f\left(\frac{x_0}{2^0}\right) = f(x_0) = m.$$

A présent, supposons la propriété $\mathcal{P}(n)$ vraie pour un certain entier $n \in \mathbb{N}$, et montrons que $\mathcal{P}(n+1)$ l'est aussi. Par hypothèse de récurrence, on sait que $f\left(\frac{x_0}{2^n}\right) = m$. Dès lors, comme $\frac{x_0}{2^n}$ est un élément de [0,1] en lequel le minimum de f est atteint, on sait d'après la question précédente (et en remplaçant x_0 par $\frac{x_0}{2^n}$) que :

$$f\left(\frac{\frac{x_0}{2^n}}{2}\right) = m.$$

En particulier, ceci entraine que $f\left(\frac{x_0}{2^{n+1}}\right)=m$, et donc $\mathcal{P}(n+1)$ est vraie. D'après le principe de récurrence, la propriété \mathcal{P} est vraie à tout ordre $n\in\mathbb{N}$, et donc on vient de montrer que :

$$\forall n \in \mathbb{N}, \ f\left(\frac{x_0}{2^n}\right) = m.$$

(iv) Montrons que m = f(0). D'après la question précédente, on sait que, pour tout $n \in \mathbb{N}$:

$$f\left(\frac{x_0}{2^n}\right) = m.$$

Comme la suite géométrique $\left(\frac{x_0}{2^n}\right)_{n\geq 0}$ a une raison < 1 en valeur absolue, elle converge vers 0. Dès lors, comme la fonction f est continue en 0, on obtient par passage à la limite quand n tend vers $+\infty$ dans l'égalité ci-dessus que :

$$f(0) = \lim_{n \to +\infty} f\left(\frac{x_0}{2^n}\right) = m.$$

Par conséquent, on en déduit que :

$$f(0) = m.$$

(v) Effectuons une étude similaire pour M. Pour ce faire, on commence par montrer que $f\left(\frac{x_1}{2}\right) = M$. Comme f appartient à $\ker(T - 2\operatorname{Id}_E)$, on voit que T(f) - 2f = 0, et donc T(f) = 2f. Dès lors, ceci signifie que, pour tout $x \in [0,1]$:

$$T(f)(x) = f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) = 2f(x).$$

En particulier, ceci entraine que :

$$f\left(\frac{x_1}{2}\right) + f\left(\frac{x_1+1}{2}\right) = 2f(x_1),$$

ce que l'on peut réécrire sous la forme :

$$\left[f\left(\frac{x_1}{2}\right) - f(x_1) \right] + \left[f\left(\frac{x_1+1}{2}\right) - f(x_1) \right] = 0. \quad (*)$$

Comme $f(x_1) = M$ est le maximum de f sur [0, 1], on voit que :

$$f\left(\frac{x_1}{2}\right) \le f(x_1)$$
 et $f\left(\frac{x_1+1}{2}\right) \le f(x_1)$.

En particulier, les deux crochets dans l'égalité (*) sont négatifs. Comme une somme de réels négatifs est nulle si et seulement si chacun des réels est nul, il s'ensuit que :

$$f\left(\frac{x_1}{2}\right) - f(x_1) = 0$$
 et $f\left(\frac{x_1+1}{2}\right) - f(x_1) = 0$.

Mais comme $f(x_1) = M$, on en déduit que :

$$f\left(\frac{x_1}{2}\right) = M.$$

Par une récurrence analogue à celle de la question (2)(c)(iii), on montre alors que :

$$\forall n \in \mathbb{N}, \ f\left(\frac{x_1}{2^n}\right) = M.$$

Comme la suite géométrique $\left(\frac{x_1}{2^n}\right)_{n\geq 0}$ a une raison < 1 en valeur absolue, elle converge vers 0. Dès lors, comme la fonction f est continue en 0, on obtient par passage à la limite quand n tend vers $+\infty$ dans l'égalité encadrée ci-dessus que :

$$f(0) = \lim_{n \to +\infty} f\left(\frac{x_1}{2^n}\right) = M.$$

Par conséquent, on en déduit que :

$$f(0) = M.$$

(vi) Montrons que f est constante. Comme $m = \min_{x \in [0,1]} f(x)$ et $M = \max_{x \in [0,1]} f(x)$, on voit que $m \le f(x) \le M$ pour tout $x \in [0,1]$. Mais comme f(0) = m = M d'après les questions précédentes, il s'ensuit que f(x) = f(0) pour tout $x \in [0,1]$. Par conséquent, on en déduit que :

la fonction
$$f$$
 est constante.

(d) Etude de la fonction cot:

Pour tout
$$x \in D$$
, on note : $\cot(x) = \pi \frac{\cos(\pi x)}{\sin(\pi x)}$.

(i) Vérifions que cot est définie et continue sur D, impaire et périodique de période 1. Tout d'abord, on voit que l'expression $\cot(x)$ est définie si et seulement si $\sin(\pi x) \neq 0$, c'est-à-dire si πx n'est pas un multiple entier de π , ou en d'autres termes si x n'est pas un entier, et donc D est bien le domaine de définition de cot. De plus, la fonction cot est continue sur D comme quotient de fonctions continues sur D, dont le dénominateur ne s'annule pas sur D. En outre, pour tout $x \in D$, on voit que -x appartient à D (car -x n'est pas un entier si et seulement si x n'en est pas un). Dès lors, comme la fonction cos est paire et que la fonction sin est impaire, on a :

$$\cot(-x) = \pi \frac{\cos(-\pi x)}{\sin(-\pi x)} = \pi \frac{\cos(\pi x)}{-\sin(\pi x)} = -\pi \frac{\cos(\pi x)}{\sin(\pi x)} = -\cot(x).$$

Dès lors, il s'ensuit que la fonction cot est impaire. Par ailleurs, pour tout $x \in D$, on voit que x+1 appartient à D (car x+1 n'est pas un entier si et seulement si x n'en est pas un). En particulier, d'après les propriétés des fonctions cos et sin, on a :

$$\cot(x+1) = \pi \frac{\cos(\pi(x+1))}{\sin(\pi(x+1))} = \pi \frac{\cos(\pi x + \pi)}{\sin(\pi x + \pi)} = \pi \frac{-\cos(\pi x)}{-\sin(\pi x)} = \pi \frac{\cos(\pi x)}{\sin(\pi x)} = \cot(x).$$

Par conséquent, on en déduit que :

la fonction cot est définie, continue, impaire et périodique de période 1 sur ${\cal D}.$

(ii) Montrons tout d'abord que $\cot(x) \sim \frac{1}{x}$. Comme la fonction cos est continue et que πx tend vers 0 quand x tend vers 0, on obtient par composition des limites que :

$$\lim_{x \to 0} \cos(\pi x) = \cos(0) = 1.$$

En particulier, ceci nous donne que $\cos(\pi x) \sim 1$. En outre, comme $\sin(x) \sim x$ et que πx tend vers 0 quand x tend vers 0, on obtient par substitution que :

$$\sin(\pi x) \underset{x\to 0}{\sim} \pi x.$$

D'après les règles de calcul des équivalents, il s'ensuit que :

$$\cot(x) = \pi \frac{\cos(\pi x)}{\sin(\pi x)} \underset{x \to 0}{\sim} \frac{\pi.1}{\pi x} \underset{x \to 0}{\sim} \frac{1}{x}.$$

Par conséquent, on en déduit que :

$$\cot(x) \underset{x \to 0}{\sim} \frac{1}{x}.$$

A présent, montrons que $\cot(x) - \frac{1}{x} \underset{x \to 0}{\sim} -\frac{\pi^2 x}{3}$. D'après le cours, on sait que :

$$\cos(x) = 1 - \frac{x^2}{2} + o(x^2)$$
 et $\sin(x) = x - \frac{x^3}{6} + o(x^3)$.

Comme πx tend vers 0 quand x tend vers 0, on obtient par substitution que :

$$\cos(\pi x) = 1 - \frac{\pi^2 x^2}{2} + o(x^2) \quad \text{et} \quad \sin(\pi x) = \pi x - \frac{\pi^3 x^3}{6} + o(x^3).$$

Dès lors, ceci entraine que :

$$\pi x \cos(\pi x) - \sin(\pi x) = \pi x \left(1 - \frac{\pi^2 x^2}{2} + o(x^2)\right) - \pi x + \frac{\pi^3 x^3}{6} + o(x^3)$$

$$= \pi x - \frac{\pi^3 x^3}{2} + o(x^3) - \pi x + \frac{\pi^3 x^3}{6} + o(x^3)$$

$$= -\frac{\pi^3 x^3}{3} + o(x^3).$$

En particulier, on voit que :

$$\pi x \cos(\pi x) - \sin(\pi x) \underset{x \to 0}{\sim} -\frac{\pi^3 x^3}{3}.$$
 (*)

Par ailleurs, comme $\sin(\pi x) \underset{x \to 0}{\sim} \pi x$ d'après ce qui précède, on obtient que :

$$x\sin(\pi x) \sim \pi x^2$$
. (**)

Dès lors, ceci entraine par définition de la fonction cot que :

$$\cot(x) - \frac{1}{x} = \pi \frac{\cos(\pi x)}{\sin(\pi x)} - \frac{1}{x} = \frac{\pi x \cos(\pi x) - \sin(\pi x)}{x \sin(\pi x)} \underset{x \to 0}{\sim} \frac{-\frac{\pi^3 x^3}{3}}{\pi x^2} \underset{x \to 0}{\sim} \frac{-\pi^2 x}{3}.$$

Par conséquent, on en déduit que :

$$\cot(x) - \frac{1}{x} \underset{x \to 0}{\sim} -\frac{\pi^2 x}{3}.$$

(iii) Obtenons des résultats similaires lorsque x tend vers 1. Comme la fonction cot est périodique de période 1 d'après la question (2)(d)(i), on sait que $\cot(x-1)=\cot(x)$ pour tout $x\in D$. Dès lors, comme $\cot(x)\underset{x\to 0}{\sim}\frac{1}{x}$ d'après la question précédente et que x-1 tend vers 0 quand x tend vers 1, on obtient par substitution que :

$$\cot(x) = \cot(x-1) \underset{x \to 1}{\sim} \frac{1}{x-1}.$$

Par conséquent, on en déduit que :

$$\cot(x) \underset{x \to 1}{\sim} \frac{1}{x - 1}.$$

De plus, comme $\cot(x) - \frac{1}{x} \underset{x \to 0}{\sim} -\frac{\pi^2 x}{3}$ d'après la question précédente et que x-1 tend vers 0 quand x tend vers 1, on obtient par substitution que :

$$\cot(x-1) - \frac{1}{x-1} \underset{x \to 1}{\sim} - \frac{\pi^2(x-1)}{3}.$$

Mais comme la fonction cot est périodique de période 1 d'après la question (2)(d)(i), on sait que $\cot(x-1) = \cot(x)$ pour tout $x \in D$, et donc :

$$\cot(x) - \frac{1}{x-1} = \cot(x-1) - \frac{1}{x-1} \underset{x \to 1}{\sim} - \frac{\pi^2(x-1)}{3}.$$

Par conséquent, on en déduit que :

$$\cot(x) - \frac{1}{x-1} \underset{x \to 1}{\sim} - \frac{\pi^2(x-1)}{3}.$$

(iv) Démontrons que, pour tout $x \in D$, on a :

$$\frac{x}{2} \in D$$
, $\frac{x+1}{2} \in D$ et $\cot\left(\frac{x}{2}\right) + \cot\left(\frac{x+1}{2}\right) = 2\cot(x)$.

Pour ce faire, considérons un élément x de D. Si $\frac{x}{2}$ n'appartenait pas à D, alors $\frac{x}{2}$ serait un entier, et donc $x=2\frac{x}{2}$ le serait aussi, ce qui est impossible car x appartient à D, et donc $\frac{x}{2}$ appartient à D. De même, si $\frac{x+1}{2}$ n'appartenait pas à D, alors $\frac{x+1}{2}$ serait un entier, et donc $x=2\frac{x+1}{2}-1$ le serait aussi, ce qui est impossible car x appartient à D, et donc $\frac{x+1}{2}$ appartient à D. De plus, d'après les formules d'addition et de duplication d'angle pour cos et sin, on a :

$$\cot\left(\frac{x}{2}\right) + \cot\left(\frac{x+1}{2}\right) = \pi \frac{\cos(\pi x/2)}{\sin(\pi x/2)} + \pi \frac{\cos(\pi x/2 + \pi/2)}{\sin(\pi x/2 + \pi/2)}$$

$$= \pi \frac{\cos(\pi x/2)}{\sin(\pi x/2)} + \pi \frac{\cos(\pi x/2)\cos(\pi/2) - \sin(\pi x/2)\sin(\pi/2)}{\sin(\pi x/2)\cos(\pi/2) + \cos(\pi x/2)\sin(\pi/2)}$$

$$= \pi \frac{\cos(\pi x/2)}{\sin(\pi x/2)} + \pi \frac{\cos(\pi x/2).0 - \sin(\pi x/2).1}{\sin(\pi x/2).0 + \cos(\pi x/2).1}$$

$$= \pi \frac{\cos(\pi x/2)}{\sin(\pi x/2)} + \pi \frac{-\sin(\pi x/2)}{\cos(\pi x/2)}$$

$$= \pi \left(\frac{\cos(\pi x/2)\cos(\pi x/2) - \sin(\pi x/2)\sin(\pi x/2)}{\sin(\pi x/2)\cos(\pi x/2)}\right)$$

$$= 2\pi \left(\frac{\cos(\pi x/2)\cos(\pi x/2) - \sin(\pi x/2)\sin(\pi x/2)}{2\sin(\pi x/2)\cos(\pi x/2)}\right)$$

$$= 2\pi \left(\frac{\cos(\pi x/2)\cos(\pi x/2) - \sin(\pi x/2)\sin(\pi x/2)}{2\sin(\pi x/2)\cos(\pi x/2)}\right)$$

$$= 2\pi \left(\frac{\cos(\pi x/2) + \pi x/2}{\sin(\pi x/2)}\right)$$

$$= 2\pi \frac{\cos(\pi x/2)}{\sin(\pi x/2)}.$$

Par conséquent, on en déduit que, pour tout $x \in D$, on a :

$$\left| \frac{x}{2} \in D, \right| \frac{x+1}{2} \in D \text{ et } \cot\left(\frac{x}{2}\right) + \cot\left(\frac{x+1}{2}\right) = 2\cot(x).$$

- (e) Calcul de φ :
 - (i) Vérifions que, pour tout $x \in D$, on a $\varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) = 2\varphi(x)$. Pour ce faire, fixons un entier $p \ge 2$ et un élément x de D, et posons :

$$S_p(x) = \sum_{n=1}^p \frac{2(x/2)}{n^2 - (x/2)^2} + \sum_{n=1}^p \frac{2((x+1)/2)}{n^2 - ((x+1)/2)^2}.$$

Alors, on trouve par linéarité de la somme et d'après la question (1)(b)(ii) que :

$$S_p(x) = \sum_{n=1}^p \frac{2(x/2)}{n^2 - (x/2)^2} + \sum_{n=1}^p \frac{2((x+1)/2)}{n^2 - ((x+1)/2)^2}$$

$$= \sum_{n=1}^p \left(\frac{1}{n - (x/2)} - \frac{1}{n + (x/2)}\right) + \sum_{n=1}^p \left(\frac{1}{n - ((x+1)/2)} - \frac{1}{n + ((x+1)/2)}\right)$$

$$= \sum_{n=1}^p \left(\frac{2}{2n - x} - \frac{2}{2n + x}\right) + \sum_{n=1}^p \left(\frac{2}{2n - 1 - x} - \frac{2}{2n + 1 + x}\right)$$

$$= 2\sum_{n=1}^p \left(\frac{1}{2n - x} - \frac{1}{2n + x}\right) + 2\sum_{n=1}^p \frac{1}{2n - 1 - x} - 2\sum_{n=1}^p \frac{1}{2n + 1 + x}.$$

En effectuant les changements d'indices k = n dans la troisième somme de droite et k = n + 1 dans la quatrième, puis en utilisant la linéarité de la somme, on trouve que :

$$S_{p}(x) = 2\sum_{n=1}^{p} \left(\frac{1}{2n-x} - \frac{1}{2n+x}\right) + 2\sum_{k=1}^{p} \frac{1}{2k-1-x} - 2\sum_{k=2}^{p+1} \frac{1}{2(k-1)+1+x}$$

$$= 2\sum_{n=1}^{p} \left(\frac{1}{2n-x} - \frac{1}{2n+x}\right) + 2\sum_{k=1}^{p} \frac{1}{2k-1-x} - 2\sum_{k=2}^{p+1} \frac{1}{2k-1+x}$$

$$= 2\sum_{n=1}^{p} \left(\frac{1}{2n-x} - \frac{1}{2n+x}\right) + 2\sum_{k=1}^{p} \frac{1}{2k-1-x} - 2\sum_{k=1}^{p} \frac{1}{2k-1+x} + \frac{2}{1+x} - \frac{2}{2p+1+x}$$

$$= 2\sum_{n=1}^{p} \left(\frac{1}{2n-x} - \frac{1}{2n+x}\right) + 2\sum_{k=1}^{p} \left(\frac{1}{2k-1-x} - \frac{1}{2k-1+x}\right) + \frac{2}{1+x} - \frac{2}{2p+1+x}.$$

En particulier, l'égalité précédente peut se réécrire sous la forme :

$$S_p(x) = 2 \sum_{\substack{1 \le m \le 2p \\ m \text{ pair}}} \left(\frac{1}{m-x} - \frac{1}{m+x} \right) + 2 \sum_{\substack{1 \le m \le 2p \\ m \text{ impair}}} \left(\frac{1}{m-x} - \frac{1}{m+x} \right) + \frac{2}{1+x} - \frac{2}{2p+1+x}$$

$$= 2 \sum_{m=1}^{2p} \left(\frac{1}{m-x} - \frac{1}{m+x} \right) + \frac{2}{1+x} - \frac{2}{2p+1+x}$$

$$= 2 \sum_{m=1}^{2p} \frac{2x}{m^2 - x^2} + \frac{2}{1+x} - \frac{2}{2p+1+x}.$$

En d'autres termes, on vient de trouver que :

$$\sum_{n=1}^{p} \frac{2(x/2)}{n^2 - (x/2)^2} + \sum_{n=1}^{p} \frac{2((x+1)/2)}{n^2 - ((x+1)/2)^2} = 2\sum_{m=1}^{2p} \frac{2x}{m^2 - x^2} + \frac{2}{1+x} - \frac{2}{2p+1+x}. \quad (*)$$

Par passage à la limite quand p tend vers $+\infty$ dans l'égalité (*), on trouve que :

$$\sum_{n=1}^{+\infty} \frac{2(x/2)}{n^2 - (x/2)^2} + \sum_{n=1}^{+\infty} \frac{2((x+1)/2)}{n^2 - ((x+1)/2)^2} = 2\sum_{m=1}^{+\infty} \frac{2x}{m^2 - x^2} + \frac{2}{1+x}. \quad (**)$$

Par définition de la fonction φ , ceci nous donne avec l'égalité (**) que, pour tout $x \in D$:

$$\varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) = \frac{1}{x/2} - \sum_{n=1}^{+\infty} \frac{2(x/2)}{n^2 - (x/2)^2} + \frac{1}{(x+1)/2} - \sum_{n=1}^{+\infty} \frac{2((x+1)/2)}{n^2 - ((x+1)/2)^2}$$

$$= \frac{2}{x} + \frac{2}{x+1} - \left[\sum_{n=1}^{+\infty} \frac{2(x/2)}{n^2 - (x/2)^2} + \sum_{n=1}^{+\infty} \frac{2((x+1)/2)}{n^2 - ((x+1)/2)^2}\right]$$

$$= \frac{2}{x} + \frac{2}{x+1} - \left[2\sum_{m=1}^{+\infty} \frac{2x}{m^2 - x^2} + \frac{2}{1+x}\right]$$

$$= 2\left(\frac{1}{x} - \sum_{m=1}^{+\infty} \frac{2x}{m^2 - x^2}\right)$$

$$= 2\varphi(x).$$

Par conséquent, on en déduit que, pour tout $x \in D$:

$$\varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) = 2\varphi(x).$$

(ii) Montrons que la fonction φ – cot se prolonge par continuité sur [0,1]. D'après les questions (1)(c)(iv) et (2)(d)(i), on sait déjà que les fonctions φ et cot sont continues sur]0,1[, et donc la fonction φ – cot est continue sur]0,1[comme différence de fonctions continues. De plus, d'après les questions (1)(d)(i) et (2)(d)(ii), on sait aussi que :

$$\lim_{x \to 0} \varphi(x) - \frac{1}{x} = 0 \quad \text{et} \quad \cot(x) - \frac{1}{x} \underset{x \to 0}{\sim} - \frac{\pi^2 x}{3}.$$

En particulier, la deuxième relation ci-dessus entraine que :

$$\lim_{x \to 0} \cot(x) - \frac{1}{x} = 0$$

Dès lors, il s'ensuit par différence que :

$$\lim_{x\to 0}\varphi(x)-\cot(x)=\lim_{x\to 0}\left(\varphi(x)-\frac{1}{x}\right)-\left(\cot(x)-\frac{1}{x}\right)=0-0=0.$$

En particulier, la fonction φ – cot est prolongeable par continuité en 0. En outre, d'après les questions (1)(d)(ii) et (2)(d)(iii), on sait aussi que :

$$\lim_{x\to 1}\varphi(x)-\frac{1}{x-1}=0\quad \text{et}\quad \cot(x)-\frac{1}{x-1}\underset{x\to 1}{\sim}-\frac{\pi^2(x-1)}{3}.$$

En particulier, la deuxième relation ci-dessus entraine que :

$$\lim_{x \to 1} \cot(x) - \frac{1}{x - 1} = 0.$$

Dès lors, il s'ensuit par différence que :

$$\lim_{x\to 1}\varphi(x)-\cot(x)=\lim_{x\to 1}\left(\varphi(x)-\frac{1}{x-1}\right)-\left(\cot(x)-\frac{1}{x-1}\right)=0-0=0.$$

En particulier, la fonction φ – cot est prolongeable par continuité en 1. Par conséquent, on en déduit que :

la fonction
$$\varphi$$
 – cot est prolongeable par continuité sur $[0,1]$.

(iii) Démontrons que $\varphi = \cot$. Pour ce faire, on désigne par f le prolongement par continuité de la fonction $\varphi - \cot$ à l'intervalle [0,1] (lequel prolongement existe d'après la question précédente). Par construction, la fonction f est continue de [0,1] dans \mathbb{R} , et donc elle appartient à E. De plus, d'après les questions (2)(d)(iv) et (2)(e)(i), on sait que, pour tout $x \in D$:

$$\cot\left(\frac{x}{2}\right) + \cot\left(\frac{x+1}{2}\right) = 2\cot(x)$$
 et $\varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) = 2\varphi(x)$

Par différence, ceci entraine que, pour tout $x \in]0,1[$:

$$T(f)(x) = f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right)$$

$$= (\varphi - \cot)\left(\frac{x}{2}\right) + (\varphi - \cot)\left(\frac{x+1}{2}\right)$$

$$= \varphi\left(\frac{x}{2}\right) + \varphi\left(\frac{x+1}{2}\right) - \cot\left(\frac{x}{2}\right) - \cot\left(\frac{x+1}{2}\right)$$

$$= 2\varphi(x) - 2\cot(x)$$

$$= 2f(x). \quad (*)$$

Comme les fonctions T(f) et 2f sont continues sur [0,1], il vient avec la relation (*) que :

$$T(f)(0) = \lim_{x \to 0} T(f)(x) = \lim_{x \to 0} 2f(x) = 2f(0)$$
 et $T(f)(1) = \lim_{x \to 1} T(f)(x) = \lim_{x \to 1} 2f(x) = 2f(1)$.

Dès lors, ceci entraine que T(f)(x)=2f(x) pour tout $x\in[0,1]$, et donc T(f)=2f. D'après la question (2)(c)(vi), il s'ensuit que la fonction f est constante sur [0,1]. Mais comme f(x) tend vers 0 quand x tend vers 0 d'après les calculs de la question (2)(e)(ii), on en déduit que f est la fonction nulle sur [0,1], et donc $\varphi(x)=\cot(x)$ pour tout $x\in]0,1[$. A noter enfin que, d'après les questions (1)(b)(iii) et (2)(d)(i), les fonctions φ et cot sont 1-périodiques sur D, et donc leur différence φ – cot l'est aussi sur D. Mais comme φ – cot est nulle sur]0,1[, on en déduit que φ – cot est la fonction nulle sur D, et donc :

$$\varphi = \cot$$
.

Autrement dit:
$$\forall x \in D, \ \pi \frac{\cos(\pi x)}{\sin(\pi x)} = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}$$

- (f) Première application:
 - (i) Déterminons $\lim_{x\to 0} \frac{1-x\cot(x)}{2x^2}$. D'après la question (2)(d)(ii), on sait que :

$$\cot(x) - \frac{1}{x} \sim_{x \to 0} - \frac{\pi^2 x}{3}.$$

ce qui signifie que $\cot(x) - \frac{1}{x} \underset{x \to 0}{=} -\frac{\pi^2 x}{3} + o(x)$, et donc :

$$\cot(x) = \frac{1}{x \to 0} \frac{1}{x} - \frac{\pi^2 x}{3} + o(x).$$

Dès lors, ceci nous donne après calculs que :

$$\frac{1 - x \cot(x)}{2x^2} \underset{x \to 0}{=} \frac{1 - x \left(\frac{1}{x} - \frac{\pi^2 x}{3} + o(x)\right)}{2x^2} \underset{x \to 0}{=} \frac{\frac{\pi^2 x^2}{3} + o(x^2)}{2x^2} \underset{x \to 0}{=} \frac{\pi^2}{6} + o(1).$$

Par conséquent, on en déduit que :

$$\lim_{x \to 0} \frac{1 - x \cot(x)}{2x^2} = \frac{\pi^2}{6}.$$

Pour tout $x \in]0,1[$, on pose : $\delta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} - \sum_{n=1}^{+\infty} \frac{1}{n^2}$.

(ii) Vérifions que, pour tout $x \in]0,1[$, on a :

$$\left| \delta(x) - \frac{x^2}{1 - x^2} \right| \le x^2 \sum_{n=2}^{+\infty} \frac{1}{n^2(n^2 - 1)}.$$

Par linéarité de la somme, on trouve que, pour tout $x \in]0,1[$:

$$\begin{split} \left| \delta(x) - \frac{x^2}{1 - x^2} \right| &= \left| \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} - \sum_{n=1}^{+\infty} \frac{1}{n^2} - \frac{x^2}{1 - x^2} \right| \\ &= \left| \sum_{n=2}^{+\infty} \frac{1}{n^2 - x^2} - \sum_{n=2}^{+\infty} \frac{1}{n^2} + \frac{1}{1^2 - x^2} - \frac{1}{1^2} - \frac{x^2}{1 - x^2} \right| \\ &= \left| \sum_{n=2}^{+\infty} \frac{1}{n^2 - x^2} - \sum_{n=2}^{+\infty} \frac{1}{n^2} + \frac{1}{1 - x^2} - \frac{1 - x^2}{1 - x^2} - \frac{x^2}{1 - x^2} \right| \\ &= \left| \sum_{n=2}^{+\infty} \frac{1}{n^2 - x^2} - \sum_{n=2}^{+\infty} \frac{1}{n^2} + \frac{1 - 1 + x^2 - x^2}{1 - x^2} \right| \\ &= \left| \sum_{n=2}^{+\infty} \frac{1}{n^2 - x^2} - \sum_{n=2}^{+\infty} \frac{1}{n^2} \right| \\ &= \left| \sum_{n=2}^{+\infty} \left(\frac{1}{n^2 - x^2} - \frac{1}{n^2} \right) \right| \\ &= \left| \sum_{n=2}^{+\infty} \frac{n^2 - (n^2 - x^2)}{(n^2 - x^2)n^2} \right| \\ &= \left| \sum_{n=2}^{+\infty} \frac{x^2}{(n^2 - x^2)n^2} \right| \\ &= \left| x^2 \sum_{n=2}^{+\infty} \frac{1}{(n^2 - x^2)n^2} \right|. \end{split}$$

D'après l'inégalité triangulaire, on obtient que, pour tout $x \in]0,1[$:

$$\left| \delta(x) - \frac{x^2}{1 - x^2} \right| \le x^2 \sum_{n=2}^{+\infty} \left| \frac{1}{(n^2 - x^2)n^2} \right|.$$

Comme x appartient à]0,1[, on voit que $n^2(n^2-x^2) \ge n^2(n^2-1) > 0$ pour tout $n \ge 2$, et donc :

$$\left| \delta(x) - \frac{x^2}{1 - x^2} \right| \le x^2 \sum_{n=2}^{+\infty} \frac{1}{(n^2 - 1)n^2}.$$

Par conséquent, on en déduit que, pour tout $x \in]0,1[$:

$$\left| \delta(x) - \frac{x^2}{1 - x^2} \right| \le x^2 \sum_{n=2}^{+\infty} \frac{1}{n^2(n^2 - 1)}.$$

(iii) Montrons que : $\lim_{x\to 0} \sum_{n=1}^{+\infty} \frac{1}{n^2-x^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2}$. D'après la question précédente, on sait que, pour tout $x \in]0,1[$:

$$0 \le \left| \delta(x) - \frac{x^2}{1 - x^2} \right| \le x^2 \sum_{n=2}^{+\infty} \frac{1}{n^2(n^2 - 1)}.$$

Par encadrement, ceci entraine que $\lim_{x\to 0} \left| \delta(x) - \frac{x^2}{1-x^2} \right| = 0$, et donc :

$$\lim_{x \to 0} \delta(x) - \frac{x^2}{1 - x^2} = 0.$$

Comme $\lim_{x\to 0}\frac{x^2}{1-x^2}=0,$ il s'ensuit par somme des limites que :

$$\lim_{x \to 0} \delta(x) = 0 + 0 = 0,$$

ce que l'on peut réécrire sous la forme :

$$\lim_{x \to 0} \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} - \sum_{n=1}^{+\infty} \frac{1}{n^2} = 0.$$

Par conséquent, on en déduit que :

$$\lim_{x \to 0} \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2}.$$

(iv) Déterminons $\sum_{n=1}^{+\infty} \frac{1}{n^2}$. D'après la question (2)(e)(iii), on sait que $\varphi(x)=\cot(x)$ pour tout $x\in]0,1[$, et donc :

$$\cot(x) = \frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}.$$

Dès lors, ceci nous donne par linéarité de la somme et après simplification que, pour tout $x \in]0,1[$:

$$\frac{1 - x \cot(x)}{2x^2} = \frac{1 - x\varphi(x)}{2x^2} = \frac{1 - x\left(\frac{1}{x} - \sum_{n=1}^{+\infty} \frac{2x}{n^2 - x^2}\right)}{2x^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2}.$$

D'après les questions (2)(f)(i) et (2)(f)(ii), il s'ensuit par unicité de la limite que :

$$\lim_{x \to 0} \frac{1 - x \cot(x)}{2x^2} = \frac{\pi^2}{6} = \lim_{x \to 0} \sum_{n=1}^{+\infty} \frac{1}{n^2 - x^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2}.$$

Par conséquent, on en déduit que :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

(3) Partie III : Développement eulérien de la fonction sinus

Pour tout
$$n \in \mathbb{N}^*$$
 et pour tout $x \in [0, 1[$, on pose $\alpha_n(x) = \ln\left(1 - \frac{x^2}{n^2}\right)$ et $\beta_n(x) = \sum_{k=1}^n \alpha_k(x)$.

(a) Montrons que, pour tout $x \in [0,1[$, la série $\sum_{k\geq 1} \alpha_k(x)$ converge. Pour ce faire, fixons $x\in [0,1[$. Si x=0, alors on voit que $\alpha_n(0)=\ln(1)=0$ pour tout $n\in \mathbb{N}^*$, et donc la série $\sum_{k\geq 1} \alpha_k(0)$ converge. Supposons maintenant que $x\neq 0$. Comme $\ln(1+y)\underset{y\to 0}{\sim} y$ et que $-\frac{x^2}{n^2}$ tend vers 0 quand n tend vers $+\infty$, on obtient par substitution que :

$$\alpha_n(x) = \ln\left(1 - \frac{x^2}{n^2}\right) \underset{n \to +\infty}{\sim} -\frac{x^2}{n^2}.$$

La série $\sum -\frac{x^2}{k^2}$ converge comme multiple d'une série de Riemann convergente, et elle est à termes négatifs. D'après le critère d'équivalence, il s'ensuit que la série $\sum_{k\geq 1} \alpha_k(x)$ converge. Par conséquent, on en déduit que, pour tout $x\in [0,1[$:

la série
$$\sum_{k\geq 1} \alpha_k(x)$$
 converge.

On note alors
$$\beta(x) = \sum_{k=1}^{+\infty} \alpha_k(x)$$
.

(b) Explicitation de β : on fixe un réel $x \in]0,1[$.

(i) Pour tout $N \in \mathbb{N}^*$, calculons $\int_0^x \left(\sum_{n=1}^N \frac{-2t}{n^2-t^2}\right) dt$ en fonction de $\beta_N(x)$. Par linéarité de l'intégrale, on obtient que :

$$\int_{0}^{x} \left(\sum_{n=1}^{N} \frac{-2t}{n^{2} - t^{2}} \right) dt = \sum_{n=1}^{N} \int_{0}^{x} \frac{-2t}{n^{2} - t^{2}} dt$$

$$= \sum_{n=1}^{N} \left[\ln(n^{2} - t^{2}) \right]_{0}^{x}$$

$$= \sum_{n=1}^{N} \ln(n^{2} - x^{2}) - \ln(n^{2})$$

$$= \sum_{n=1}^{N} \ln\left(\frac{n^{2} - x^{2}}{n^{2}}\right)$$

$$= \sum_{n=1}^{N} \ln\left(1 - \frac{x^{2}}{n^{2}}\right)$$

$$= \sum_{n=1}^{N} \alpha_{n}(x).$$

Par conséquent, on en déduit par définition de $\beta_N(x)$ que :

$$\int_0^x \left(\sum_{n=1}^N \frac{-2t}{n^2 - t^2} \right) dt = \beta_N(x).$$

(ii) Justifions l'existence de $\int_0^x \left(\varphi(t) - \frac{1}{t}\right) dt$. Comme la fonction φ est continue sur]0,1[d'après la question (1)(c)(iv), et que $x \in [0,1[$, on voit que l'intégrale $\int_0^x \left(\varphi(t) - \frac{1}{t}\right) dt$ est impropre en 0. De plus, on sait d'après la question (1)(d)(i) que la fonction $t \longmapsto \varphi(t) - \frac{1}{t}$ tend vers 0 quand t tend vers 0. En particulier, l'intégrale $\int_0^x \left(\varphi(t) - \frac{1}{t}\right) dt$ est faussement impropre en 0, et donc :

l'intégrale
$$\int_0^x \left(\varphi(t) - \frac{1}{t}\right) dt$$
 converge.

(iii) Montrons que : $\left| \int_0^x \left(\varphi(t) - \frac{1}{t} \right) dt - \int_0^x \left(\sum_{n=1}^N \frac{-2t}{n^2 - t^2} \right) dt \right| \le \sum_{n=N+1}^{+\infty} \frac{1}{n^2 - 1}$. Par définition de φ et par linéarité de l'intégrale, on trouve que :

$$\int_0^x \left(\varphi(t) - \frac{1}{t} \right) dt - \int_0^x \left(\sum_{n=1}^N \frac{-2t}{n^2 - t^2} \right) dt = \int_0^x \left(\varphi(t) - \frac{1}{t} + \sum_{n=1}^N \frac{2t}{n^2 - t^2} \right) dt$$

$$= \int_0^x \left(\frac{1}{t} - \sum_{n=1}^{+\infty} \frac{2t}{n^2 - t^2} - \frac{1}{t} + \sum_{n=1}^N \frac{2t}{n^2 - t^2} \right) dt$$

$$= \int_0^x \left(-\sum_{n=N+1}^{+\infty} \frac{2t}{n^2 - t^2} \right) dt.$$

Comme t appartient à [0, x] et que x appartient à [0, 1[, on voit que $n^2 - t^2 \ge n^2 - 1 > 0$ pour tout $n \ge N + 1$, et donc on a pour tout $t \in [0, x]$:

$$0 \le \frac{2t}{n^2 - t^2} \le \frac{2t}{n^2 - 1}.$$

Par sommation, puis par linéarité de la somme, on obtient que, pour tout $t \in [0,x]$:

$$0 \le \sum_{n=N+1}^{+\infty} \frac{2t}{n^2 - t^2} \le \sum_{n=N+1}^{+\infty} \frac{2t}{n^2 - 1} = 2t \sum_{n=N+1}^{+\infty} \frac{1}{n^2 - 1}.$$

D'après l'inégalité triangulaire, puis par croissance et linéarité de l'intégrale, on trouve que :

$$\left| \int_{0}^{x} \left(\varphi(t) - \frac{1}{t} \right) dt - \int_{0}^{x} \left(\sum_{n=1}^{N} \frac{-2t}{n^{2} - t^{2}} \right) dt \right| = \left| \int_{0}^{x} \left(-\sum_{n=N+1}^{+\infty} \frac{2t}{n^{2} - t^{2}} \right) dt \right|$$

$$\leq \int_{0}^{x} \left| -\sum_{n=N+1}^{+\infty} \frac{2t}{n^{2} - t^{2}} \right| dt$$

$$\leq \int_{0}^{x} \sum_{n=N+1}^{+\infty} \frac{2t}{n^{2} - t^{2}} dt$$

$$\leq \int_{0}^{x} 2t \sum_{n=N+1}^{+\infty} \frac{1}{n^{2} - 1} dt$$

$$\leq \left(\sum_{n=N+1}^{+\infty} \frac{1}{n^{2} - 1} \right) \int_{0}^{x} 2t dt$$

$$\leq \left(\sum_{n=N+1}^{+\infty} \frac{1}{n^{2} - 1} \right) [t^{2}]_{0}^{x}$$

$$\leq \left(\sum_{n=N+1}^{+\infty} \frac{1}{n^{2} - 1} \right) x^{2}.$$

Mais comme x appartient à [0,1], on voit que $x^2 \le 1$. Par conséquent, on en déduit que :

$$\left| \left| \int_0^x \left(\varphi(t) - \frac{1}{t} \right) dt - \int_0^x \left(\sum_{n=1}^N \frac{-2t}{n^2 - t^2} \right) dt \right| \le \sum_{n=N+1}^{+\infty} \frac{1}{n^2 - 1}.$$

(iv) Montrons que : $\beta(x) = \int_0^x \left(\varphi(t) - \frac{1}{t}\right) dt$. D'après la question (3)(b)(i), on a pour tout $N \in \mathbb{N}^*$:

$$\beta_N(x) = \int_0^x \left(\sum_{n=1}^N \frac{-2t}{n^2 - t^2} \right) dt.$$

Dès lors, l'inégalité de la question précédente se réécrit sous la forme :

$$0 \le \left| \int_0^x \left(\varphi(t) - \frac{1}{t} \right) dt - \beta_N(x) \right| \le \sum_{n=N+1}^{+\infty} \frac{1}{n^2 - 1}.$$

Comme la série $\sum \frac{1}{n^2-1}$ converge (ce que l'on peut voir par équivalence avec une série de Riemann convergente à termes positifs), son reste tend vers 0 quand N tend vers $+\infty$. Par encadrement, ceci entraine que :

$$\lim_{N \to +\infty} \left| \int_0^x \left(\varphi(t) - \frac{1}{t} \right) dt - \beta_N(x) \right| = 0,$$

ce qui signifie aussi que :

$$\lim_{N \to +\infty} \int_0^x \left(\varphi(t) - \frac{1}{t} \right) dt - \beta_N(x) = 0.$$

Mais comme $\beta(x)$ est la somme de la série $\sum_{k\geq 1} \alpha_k(x)$, $\beta(x)$ est la limite de la suite $(\beta_N(x))$ de ses sommes partielles, et donc :

$$\beta(x) = \lim_{N \to +\infty} \beta_N(x) = \int_0^x \left(\varphi(t) - \frac{1}{t} \right) dt.$$

Par conséquent, on en déduit que :

$$\beta(x) = \int_0^x \left(\varphi(t) - \frac{1}{t}\right) dt.$$

(v) Montrons que, pour tout $x \in]0,1[$, on a $\beta(x) = \ln\left(\frac{\sin(\pi x)}{\pi x}\right)$. D'après la question (2)(e)(iii), on sait que, pour tout $x \in]0,1[$:

$$\varphi(x) = \pi \frac{\cos(\pi x)}{\sin(\pi x)}.$$

Dès lors, une primitive de φ est donnée par la fonction $\Phi: x \longmapsto \ln(\sin(\pi x))$. D'après la question précédente, ceci nous donne que :

$$\beta(x) = \int_0^x \left(\varphi(t) - \frac{1}{t}\right) dt$$

$$= \lim_{a \to 0} \int_a^x \left(\varphi(t) - \frac{1}{t}\right) dt$$

$$= \lim_{a \to 0} \left[\ln(\sin(\pi t)) - \ln(t)\right]_a^x$$

$$= \lim_{a \to 0} \left[\ln\left(\frac{\sin(\pi t)}{t}\right)\right]_a^x$$

$$= \lim_{a \to 0} \ln\left(\frac{\sin(\pi x)}{x}\right) - \ln\left(\frac{\sin(\pi a)}{a}\right). \quad (*)$$

Comme $\sin(u) \underset{u \to 0}{\sim} u$ et que πa tend vers 0 quand a tend vers 0, on a par substitution que :

$$\sin(\pi a) \underset{a\to 0}{\sim} \pi a.$$

En particulier, ceci entraine que $\frac{\sin(\pi a)}{a} \underset{a \to 0}{\sim} \pi$, et donc :

$$\frac{\sin(\pi a)}{a} \xrightarrow[a \to 0]{} \pi$$

Comme la fonction ln est continue en π , on obtient par composition des limites que :

$$\ln\left(\frac{\sin(\pi a)}{a}\right) \xrightarrow[a \to 0]{} \ln(\pi).$$

Dès lors, il s'ensuit avec la relation (*) que :

$$\beta(x) = \lim_{a \to 0} \ln \left(\frac{\sin(\pi x)}{x} \right) - \ln \left(\frac{\sin(\pi a)}{a} \right) = \ln \left(\frac{\sin(\pi x)}{x} \right) - \ln \left(\pi \right).$$

Par conséquent, on en déduit avec les propriétés du logarithme que :

$$\beta(x) = \ln\left(\frac{\sin(\pi x)}{\pi x}\right).$$

- (c) Pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{N}^*$, on pose : $P_n(x) = \pi x \prod_{k=1}^n \left(1 \frac{x^2}{k^2}\right)$.
 - (i) Montrons que, pour tout $x \in [0,1[$, la suite $(P_n(x))_{n \in \mathbb{N}^*}$ est convergente. On distingue alors deux cas. Si x=0, alors on voit que $P_n(0)=0$ pour tout $n \geq 1$, et donc la suite $(P_n(0))_{n \in \mathbb{N}^*}$ converge. Supposons maintenant que 0 < x < 1. Par passage au logarithme et par définition de la suite $(\beta_n(x))_{n \geq 1}$, on voit que, pour tout $n \geq 1$:

$$\ln(P_n(x)) = \ln\left(\pi x \prod_{k=1}^n \left(1 - \frac{x^2}{k^2}\right)\right)$$
$$= \ln(\pi x) + \sum_{k=1}^n \ln\left(1 - \frac{x^2}{k^2}\right)$$
$$= \ln(\pi x) + \beta_n(x). \quad (*)$$

Comme $\beta(x)$ est la somme de la série $\sum_{k\geq 1} \alpha_k(x)$, $\beta(x)$ est la limite de la suite $(\beta_n(x))_{n\geq 1}$ de ses sommes partielles, et en particulier la suite $(\beta_n(x))_{n\geq 1}$ converge. D'après la relation (*), on obtient que la suite $(\ln(P_n(x)))_{n\geq 1}$ converge. Mais comme l'exponentielle est continue sur \mathbb{R} , on

obtient par composition que la suite $(\exp(\ln(P_n(x))))_{n\geq 1}$ converge, et donc la suite $(P_n(x))_{n\geq 1}$ converge. Par conséquent, on en déduit que, pour tout $x\in [0,1[$:

la suite
$$(P_n(x))_{n\in\mathbb{N}^*}$$
 est convergente.

Dans la suite on pose $P(x) = \lim_{n \to +\infty} P_n(x)$ et on note : $P(x) = \pi x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2}\right)$.

(ii) Vérifions que, pour tout $x \in [0,1[$, on a : $P(x) = \pi x \exp(\beta(x)) = \sin(\pi x)$. D'après la question (3)(c)(i), on sait que, pour tout $x \in [0,1[$ et pour tout $n \ge 1$:

$$ln(P_n(x)) = ln(\pi x) + \beta_n(x).$$

Comme la fonction ln est continue sur \mathbb{R}_+^* , on obtient par passage à la limite quand n tend vers $+\infty$ dans l'égalité ci-dessus et d'après la question (3)(b)(v) que, pour tout $x \in]0,1[$:

$$\ln(P(x)) = \ln(\pi x) + \beta(x) = \ln(\pi x \beta(x)) = \ln(\pi x) + \ln\left(\frac{\sin(\pi x)}{\pi x}\right) = \ln\left(\sin(\pi x)\right).$$

Par composition avec l'exponentielle, ceci entraine que, pour tout $x \in]0,1[$:

$$P(x) = \pi x \beta(x) = \sin(\pi x).$$

A noter que cette égalité est encore vraie pour x=0, car $P(0)=\lim_{n\to+\infty}P_n(0)=0$ par définition de la suite $(P_n(x))_{n\in\mathbb{N}^*}$, et de plus on a $\sin(\pi.0)=0$. Par conséquent, on en déduit que, pour tout $x\in[0,1[$:

$$P(x) = \pi x \beta(x) = \sin(\pi x).$$

(iii) Montrons que la suite $(P_n(x))_{n\in\mathbb{N}^*}$ est en fait convergente pour tout $x\in\mathbb{R}$. Pour ce faire, fixons un réel x quelconque, ainsi qu'un entier $n_0>|x|+1$. Par la suite, on supposera que $x\neq 0$, le cas "x=0" ayant déjà été traité dans la question (3)(c)(i). On pose alors pour tout $n\geq n_0$:

$$Q_n(x) = \prod_{k=n_0}^n \left(1 - \frac{x^2}{k^2}\right).$$

Par passage au logarithme, on voit que, pour tout $n \geq 1$:

$$\ln(Q_n(x)) = \ln\left(\prod_{k=n_0}^n \left(1 - \frac{x^2}{k^2}\right)\right) = \sum_{k=n_0}^n \ln\left(1 - \frac{x^2}{k^2}\right).$$

Comme la série $\sum_{n\geq 1}\ln(1-\frac{x^2}{n^2})$ converge d'après la question (3)(a), la série $\sum_{n\geq n_0}\ln(1-\frac{x^2}{n^2})$ converge aussi, et donc sa suite des sommes partielles (qui apparaît à droite de l'égalité ci-dessus) converge également. En particulier, la suite $(\ln(Q_n(x)))_{n\geq n_0}$ converge. Comme l'exponentielle est continue sur \mathbb{R} , on obtient par composition que la suite $(Q_n(x))_{n\geq n_0}$ converge. Or, on constate par construction que, pour tout $n\geq n_0$:

$$P_n(x) = \pi x \prod_{k=1}^n \left(1 - \frac{x^2}{k^2} \right) = \pi x \prod_{k=1}^{n_0 - 1} \left(1 - \frac{x^2}{k^2} \right) \prod_{k=n_0}^n \left(1 - \frac{x^2}{k^2} \right) = \pi x \prod_{k=1}^{n_0 - 1} \left(1 - \frac{x^2}{k^2} \right) Q_n(x).$$

Comme la suite $(Q_n(x))_{n\geq n_0}$ converge et que le produit $\pi x\prod_{k=1}^{n_0-1}\left(1-\frac{x^2}{k^2}\right)$ est bien défini et indépendant de n, il s'ensuit par produit que la suite $(P_n(x))_{n\in\mathbb{N}^*}$ converge. Par conséquent, on en déduit que, pour tout $x\in\mathbb{R}$:

la suite
$$(P_n(x))_{n\in\mathbb{N}^*}$$
 est convergente.

On note encore $P(x) = \lim_{n \to +\infty} P_n(x)$.

(iv) Soit $n \in \mathbb{N}^*$ et soit $x \in]-n, n[$. Montrons que : $P_n(x+1) = -\left(\frac{n+1+x}{n-x}\right)P_n(x)$. Par des calculs simples, on trouve que ;

$$P_n(x+1) = \pi(x+1) \prod_{k=1}^n \left(1 - \frac{(x+1)^2}{k^2}\right)$$

$$= \pi(x+1) \prod_{k=1}^n \frac{1}{k^2} \prod_{k=1}^n \left(k^2 - (x+1)^2\right)$$

$$= \pi(x+1) \prod_{k=1}^n \frac{1}{k^2} \prod_{k=1}^n \left(k + (x+1)\right) \prod_{k=1}^n \left(k - (x+1)\right)$$

$$= \pi(x+1) \prod_{k=1}^n \frac{1}{k^2} \prod_{k=1}^n \left(k + 1 + x\right) \prod_{k=1}^n \left(k - 1 - x\right).$$

En effectuant les changements d'indices l=k dans le premier produit de droite, l=k+1 dans le deuxième et l=k-1 dans le troisième, on obtient que :

$$\begin{split} P_n(x+1) &= \pi(x+1) \prod_{l=1}^n \frac{1}{l^2} \prod_{l=2}^{n+1} (l+x) \prod_{l=0}^{n-1} (l-x) \\ &= \pi(x+1) \prod_{l=1}^n \frac{1}{l^2} \left(\prod_{l=1}^n (l+x) \right) \cdot \frac{n+1+x}{1+x} \cdot \left(\prod_{l=1}^n (l-x) \right) \cdot \frac{-x}{n-x} \\ &= \pi(x+1) \prod_{l=1}^n \frac{1}{l^2} \left(\prod_{l=1}^n (l+x) \right) \left(\prod_{l=1}^n (l-x) \right) \cdot \frac{n+1+x}{1+x} \cdot \frac{-x}{n-x} \\ &= \pi(x+1) \left(\prod_{l=1}^n \frac{1}{l^2} (l+x) (l-x) \right) \cdot \frac{n+1+x}{1+x} \cdot \frac{-x}{n-x} \\ &= \pi(x+1) \prod_{l=1}^n \left(\frac{l^2-x^2}{l^2} \right) \cdot \frac{n+1+x}{1+x} \cdot \frac{-x}{n-x} \\ &= \pi(x+1) \prod_{l=1}^n \left(1 - \frac{x^2}{l^2} \right) \cdot \frac{n+1+x}{1+x} \cdot \frac{-x}{n-x} \\ &= (x+1)\pi x \prod_{l=1}^n \left(1 - \frac{x^2}{l^2} \right) \cdot \frac{n+1+x}{1+x} \cdot \frac{-1}{n-x} \\ &= (x+1)P_n(x) \cdot \frac{n+1+x}{1+x} \cdot \frac{-1}{n-x} \\ &= -P_n(x) \frac{n+1+x}{n-x} \cdot . \end{split}$$

Par conséquent, on en déduit que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in]-n, n[$:

$$P_n(x+1) = -\left(\frac{n+1+x}{n-x}\right)P_n(x).$$

(v) Montrons tout d'abord que, pour tout $x \in \mathbb{R}$, on a : P(x+1) = -P(x). Pour ce faire, fixons un réel x quelconque. D'après la question précédente, on sait que, pour tout n > |x| :

$$P_n(x+1) = -\left(\frac{n+1+x}{n-x}\right)P_n(x).$$
 (*)

Comme $\frac{n+1+x}{n-x}$ tend vers 1 quand n tend vers $+\infty$, il s'ensuit par passage à la limite quand n tend vers $+\infty$ dans l'égalité (*) que :

$$P(x+1) = -P(x).$$

Vérifions alors que P est 2-périodique sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, on trouve avec la relation précédente que :

$$P(x+2) = -P(x+1) = -(-P(x)) = P(x).$$

Par conséquent, on en déduit que :

la fonction
$$P$$
 est 2-périodique sur \mathbb{R} .

(vi) Montrons que, pour tout $x \in \mathbb{R}$, on a : $P(x) = \sin(\pi x)$. D'après la question (3)(c)(ii), on sait déjà que $P(x) = \sin(\pi x)$ pour tout $x \in [0, 1[$. Fixons alors un réel $x \in [1, 2[$. Comme $x - 1 \in [0, 1[$, on voit d'après la question précédente et la question (3)(c)(ii) que :

$$P(x) = -P(x-1) = -\sin(\pi(x-1)) = -\sin(\pi x - \pi) = -(-\sin(\pi x)) = \sin(\pi x).$$

En particulier, ceci nous donne que $P(x) = \sin(\pi x)$ pour tout $x \in [0, 2[$. Mais comme les fonctions P et $x \longmapsto \sin(\pi x)$ sont 2-périodiques, on en déduit que, pour tout $x \in \mathbb{R}$:

$$P(x) = \sin(\pi x).$$

Finalement, on obtient ainsi : $\forall x \in \mathbb{R}$, $\sin(\pi x) = \pi x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2}\right)$.

(4) Partie IV: Un autre développement du sinus

Dans cette partie, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in D \cup \{0\}$, on pose $\lambda_n(x) = \int_0^{\pi} \cos(xt) \cos(nt) dt$ et $\nu_n(x) = (-1)^{n-1} \frac{x}{n^2 - x^2}$.

(a) Montrons que, pour tout $x \in D \cup \{0\}$, la série de terme général $\nu_n(x)$ est convergente. Pour ce faire, on distingue deux cas. Si x = 0, alors on voit que $\nu_n(0) = 0$ pour tout $n \ge 1$, et donc la série $\sum_{n \ge 1} \nu_n(0)$ converge. Si maintenant $x \in D$, alors on constate que :

$$|\nu_n(x)| = \frac{|x|}{|n^2 - x^2|} \underset{n \to +\infty}{\sim} \frac{|x|}{n^2}.$$

En particulier, la série $\sum \frac{|x|}{n^2}$ converge comme multiple d'une série de Riemann convergente. Comme de plus $\frac{|x|}{n^2}$ est positif pour tout $n \geq 1$, la série $\sum_{n \geq 1} |\nu_n(x)|$ converge par équivalence. En particulier, la série $\sum_{n \geq 1} \nu_n(x)$ converge absolument, et donc elle converge pour tout $x \in D$. Par conséquent, on en déduit que :

la série
$$\sum_{n\geq 1} \nu_n(x)$$
 converge pour tout $x\in D\cup\{0\}$.

La fonction ψ est donc définie sur $D \cup \{0\}$.

(b) Montrons que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in D \cup \{0\}$, on a :

$$\lambda_n(x) = \frac{(-1)^{n-1}x\sin(\pi x)}{n^2 - x^2} = \sin(\pi x)\nu_n(x).$$

Partant de la formule trigonométrique " $\cos(a)\cos(b) = \frac{1}{2}\left(\cos(a+b) + \cos(a-b)\right)$ " valable pour tout $(a,b) \in \mathbb{R}^2$, on trouve que :

$$\lambda_n(x) = \int_0^{\pi} \cos(xt) \cos(nt) dt$$
$$= \int_0^{\pi} \frac{1}{2} (\cos(xt + nt) + \cos(xt - nt)) dt.$$

Par linéarité de l'intégrale, ceci entraine que :

$$\lambda_n(x) = \frac{1}{2} \left(\int_0^{\pi} \cos((x+n)t)dt + \int_0^{\pi} \cos((x-n)t)dt \right)$$

$$= \frac{1}{2} \left(\left[\frac{\sin((x+n)t)}{x+n} \right]_0^{\pi} + \left[\frac{\sin((x-n)t)}{x-n} \right]_0^{\pi} \right)$$

$$= \frac{1}{2} \left(\frac{\sin((x+n)\pi)}{x+n} - 0 + \frac{\sin((x-n)\pi)}{x-n} - 0 \right)$$

$$= \frac{1}{2} \left(\frac{\sin((x+n)\pi)}{x+n} + \frac{\sin((x-n)\pi)}{x-n} \right).$$

D'après les formules d'addition pour sin, on obtient que :

$$\lambda_{n}(x) = \frac{1}{2} \left(\frac{\sin((x+n)\pi)}{x+n} + \frac{\sin((x-n)\pi)}{x-n} \right)$$

$$= \frac{1}{2} \left(\frac{\sin(\pi x)\cos(n\pi) + \sin(n\pi)\cos(\pi x)}{x+n} + \frac{\sin(\pi x)\cos(-n\pi) + \sin(-n\pi)\cos(\pi x)}{x-n} \right)$$

$$= \frac{1}{2} \left(\frac{\sin(\pi x)(-1)^{n} + 0.\cos(\pi x)}{x+n} + \frac{\sin(\pi x)(-1)^{n} + 0.\cos(\pi x)}{x-n} \right)$$

$$= \frac{1}{2} \left(\frac{\sin(\pi x)(-1)^{n}}{x+n} + \frac{\sin(\pi x)(-1)^{n}}{x-n} \right)$$

$$= \frac{\sin(\pi x)(-1)^{n}}{2} \left(\frac{1}{x+n} + \frac{1}{x-n} \right)$$

$$= \frac{\sin(\pi x)(-1)^{n}}{2} \left(\frac{x-n+x+n}{(x+n)(x-n)} \right)$$

$$= \frac{\sin(\pi x)(-1)^{n}}{2} \left(\frac{2x}{(x+n)(x-n)} \right)$$

$$= \sin(\pi x)(-1)^{n} \left(\frac{x}{x^{2}-n^{2}} \right)$$

$$= -\sin(\pi x)(-1)^{n} \left(\frac{x}{n^{2}-x^{2}} \right).$$

Par conséquent, on en déduit que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in D \cup \{0\}$:

$$\lambda_n(x) = \frac{(-1)^{n-1}x\sin(\pi x)}{n^2 - x^2} = \sin(\pi x)\nu_n(x).$$

- (c) Pour tout $t \in \mathbb{R}$ et pour tout $n \in \mathbb{N}^*$, on pose : $C_n(t) = \sum_{k=1}^n \cos(kt)$.
 - (i) Soit t un réel qui n'est pas de la forme $2p\pi$ avec $p \in \mathbb{Z}$. Montrons par récurrence la propriété \mathcal{P} définie pour tout $n \in \mathbb{N}^*$ par :

$$\mathcal{P}(n)$$
: " $C_n(t) = -\frac{1}{2} + \frac{1}{2} \frac{\sin((2n+1)\frac{t}{2})}{\sin(\frac{t}{2})}$ ".

Tout d'abord, on voit que $\mathcal{P}(1)$ est vraie, car $C_1(t) = \cos(t)$ par définition et de plus, on a d'après les formules d'addition pour cos et de duplication d'angle pour cos et sin :

$$-\frac{1}{2} + \frac{1}{2} \frac{\sin\left((2+1)\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)} = -\frac{1}{2} + \frac{1}{2} \frac{\sin(t)\cos(\frac{t}{2}) + \cos(t)\sin(\frac{t}{2})}{\sin(\frac{t}{2})}$$

$$= -\frac{1}{2} + \frac{1}{2} \frac{\sin(t)\cos(\frac{t}{2})}{\sin(\frac{t}{2})} + \frac{1}{2}\cos(t)$$

$$= -\frac{1}{2} + \frac{1}{2} \frac{2\sin(\frac{t}{2})\cos(\frac{t}{2})\cos(\frac{t}{2})}{\sin(\frac{t}{2})} + \frac{1}{2}\cos(t)$$

$$= -\frac{1}{2} + \cos^{2}\left(\frac{t}{2}\right) + \frac{1}{2}\cos(t)$$

$$= -\frac{1}{2} + \cos^{2}\left(\frac{t}{2}\right) + \frac{1}{2}\left(2\cos^{2}\left(\frac{t}{2}\right) - 1\right)$$

$$= 2\cos^{2}\left(\frac{t}{2}\right) - 1$$

$$= \cos(t).$$

A présent, supposons la propriété $\mathcal{P}(n)$ vraie pour un certain entier $n \in \mathbb{N}^*$, et montrons que $\mathcal{P}(n+1)$ l'est aussi. Par hypothèse de récurrence et d'après la formule trigonométrique " $\sin(b)\cos(a) = \frac{1}{2}\left(\sin(a+b) - \sin(a-b)\right)$ ", on obtient que :

$$C_{n+1}(t) = \sum_{k=1}^{n+1} \cos(kt)$$

$$= \sum_{k=1}^{n} \cos(kt) + \cos((n+1)t)$$

$$= C_n(t) + \cos((n+1)t)$$

$$= -\frac{1}{2} + \frac{1}{2} \frac{\sin((2n+1)\frac{t}{2})}{\sin(\frac{t}{2})} + \cos((n+1)t)$$

$$= -\frac{1}{2} + \frac{1}{2} \frac{\sin((2n+1)\frac{t}{2}) + 2\sin(\frac{t}{2})\cos((n+1)t)}{\sin(\frac{t}{2})}$$

$$= -\frac{1}{2} + \frac{1}{2} \frac{\sin((2n+1)\frac{t}{2}) + \sin(\frac{t}{2} + (n+1)t) - \sin((n+1)t - \frac{t}{2})}{\sin(\frac{t}{2})}$$

$$= -\frac{1}{2} + \frac{1}{2} \frac{\sin((2n+1)\frac{t}{2}) + \sin((2n+3)\frac{t}{2}) - \sin((2n+1)\frac{t}{2})}{\sin(\frac{t}{2})}$$

$$= -\frac{1}{2} + \frac{1}{2} \frac{\sin((2n+3)\frac{t}{2})}{\sin(\frac{t}{2})},$$

et donc $\mathcal{P}(n+1)$ est vraie. D'après le principe de récurrence, la propriété \mathcal{P} est vraie à tout ordre $n \in \mathbb{N}^*$, et donc on vient de montrer que :

$$\forall n \in \mathbb{N}^*, \ C_n(t) = -\frac{1}{2} + \frac{1}{2} \frac{\sin\left((2n+1)\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)}.$$

(ii) Explicitons $C_n(t)$ lorsque t s'écrit $2p\pi$ avec $p \in \mathbb{Z}$. Dans ce cas, on constate que :

$$C_n(t) = C_n(2p\pi) = \sum_{k=1}^n \cos(2pk\pi) = \sum_{k=1}^n 1 = n.$$

Par conséquent, on en déduit que, si t est de la forme $2p\pi$ avec $p \in \mathbb{Z}$:

$$C_n(t) = n.$$

(iii) Donnons la valeur de $I_n = \int_0^\pi C_n(t) dt$. Par des calculs simples, on trouve que :

$$I_n = \int_0^{\pi} C_n(t)dt = \int_0^{\pi} \sum_{k=1}^n \cos(kt)dt = \left[\sum_{k=1}^n \frac{\sin(kt)}{k}\right]_0^{\pi}.$$

Après simplification, on obtient que

$$I_n = \sum_{k=1}^n \left(\frac{\sin(k\pi)}{k} - \frac{\sin(0)}{k} \right) = \sum_{k=1}^n (0-0) = 0.$$

Par conséquent, on en déduit que :

$$I_n = 0.$$

(d) Soit F une fonction de classe C^1 sur $[0, \pi]$. Montrons que :

$$\lim_{n \to +\infty} \int_0^{\pi} F(t) \sin\left((2n+1)\frac{t}{2}\right) dt = 0$$

Pour ce faire, on pose u(t) = F(t) et $v(t) = -\frac{2}{2n+1}\cos\left((2n+1)\frac{t}{2}\right)$. Alors les fonctions u et v sont de classe \mathcal{C}^1 sur $[0,\pi]$ et de plus, on a u'(t) = F'(t) et $v'(t) = \sin\left((2n+1)\frac{t}{2}\right)$ pour tout $t \in [0,\pi]$. Par intégration par parties, on obtient que :

$$\int_0^{\pi} F(t) \sin\left((2n+1)\frac{t}{2}\right) dt = \int_0^{\pi} u(t)v'(t)dt$$

$$= \left[u(t)v(t)\right]_0^{\pi} - \int_0^{\pi} u'(t)v(t)dt$$

$$= \left[-\frac{2F(t)}{2n+1}\cos\left((2n+1)\frac{t}{2}\right)\right]_0^{\pi} - \int_0^{\pi} -\frac{2F'(t)}{2n+1}\cos\left((2n+1)\frac{t}{2}\right) dt.$$

Par linéarité de l'intégrale, ceci nous donne que :

$$\int_0^\pi F(t) \sin\left((2n+1)\frac{t}{2}\right) dt = -\frac{2F(\pi)}{2n+1} \cos\left(\frac{2n+1\pi}{2}\right) + \frac{2F(0)}{2n+1} + \frac{2}{2n+1} \int_0^\pi F'(t) \cos\left((2n+1)\frac{t}{2}\right) dt.$$

D'après l'inégalité triangulaire, on trouve que :

$$\left| \int_{0}^{\pi} F(t) \sin\left((2n+1)\frac{t}{2}\right) dt \right| = \left| -\frac{2F(\pi)}{2n+1} \cos\left(\frac{2n+1\pi}{2}\right) + \frac{2F(0)}{2n+1} + \frac{2}{2n+1} \int_{0}^{\pi} F'(t) \cos\left((2n+1)\frac{t}{2}\right) dt \right|$$

$$\leq \left| -\frac{2F(\pi)}{2n+1} \cos\left(\frac{2n+1\pi}{2}\right) \right| + \left| \frac{2F(0)}{2n+1} \right| + \frac{2}{2n+1} \left| \int_{0}^{\pi} F'(t) \cos\left((2n+1)\frac{t}{2}\right) dt \right|$$

$$\leq \left| \frac{2F(\pi)}{2n+1} \cos\left(\frac{2n+1\pi}{2}\right) \right| + \left| \frac{2F(0)}{2n+1} \right| + \frac{2}{2n+1} \int_{0}^{\pi} \left| F'(t) \cos\left((2n+1)\frac{t}{2}\right) \right| dt.$$

Comme $|\cos(x)| \le 1$ pour tout $x \in \mathbb{R}$, on obtient par croissance de l'intégrale que :

$$0 \le \left| \int_0^{\pi} F(t) \sin \left((2n+1) \frac{t}{2} \right) dt \right| \le \left| \frac{2F(\pi)}{2n+1} \right| + \left| \frac{2F(0)}{2n+1} \right| + \frac{2}{2n+1} \int_0^{\pi} |F'(t)| dt.$$

Par encadrement, il s'ensuit que

$$\lim_{n \to +\infty} \left| \int_0^{\pi} F(t) \sin\left((2n+1) \frac{t}{2} \right) dt \right| = 0.$$

Par conséquent, on en déduit que :

$$\lim_{n \to +\infty} \int_0^{\pi} F(t) \sin\left((2n+1)\frac{t}{2}\right) dt = 0.$$

(e) Pour tout $x \in D$, on définit la fonction Φ_x sur $[0, \pi]$ par :

$$\Phi_x(t) = \begin{cases} \frac{\cos(xt) - 1}{\sin\left(\frac{t}{2}\right)} & \text{si} \quad t \in]0, \pi] \\ 0 & \text{si} \quad t = 0 \end{cases}.$$

On admet que la fonction Φ_x est de classe \mathcal{C}^1 sur $[0,\pi]$.

(i) Vérifions que, pour tout $t \in [0, \pi]$, on a :

$$C_n(t) \left(\cos(xt) - 1\right) = -\frac{1}{2} \left(\cos(xt) - 1\right) + \frac{1}{2} \Phi_x(t) \sin\left((2n+1)\frac{t}{2}\right).$$

Pour t = 0, on constate que :

$$C_n(0)(\cos(0) - 1) = 0$$
 et $-\frac{1}{2}(\cos(0) - 1) + \frac{1}{2}\Phi_x(0)\sin(0) = 0$,

d'où l'égalité recherchée pour t=0. Si maintenant $t\in]0,\pi]$, on obtient d'après la question (4)(c)(i) et par définition de la fonction Φ_x que :

$$C_n(t) \left(\cos(xt) - 1\right) = \left(-\frac{1}{2} + \frac{1}{2} \frac{\sin\left((2n+1)\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)}\right) \left(\cos(xt) - 1\right)$$

$$= -\frac{1}{2} \left(\cos(xt) - 1\right) + \frac{1}{2} \sin\left((2n+1)\frac{t}{2}\right) \frac{\left(\cos(xt) - 1\right)}{\sin\left(\frac{t}{2}\right)}$$

$$= -\frac{1}{2} \left(\cos(xt) - 1\right) + \frac{1}{2} \Phi_x(t) \sin\left((2n+1)\frac{t}{2}\right).$$

Par conséquent, on en déduit que, pour tout $t \in [0, \pi]$:

$$C_n(t)(\cos(xt) - 1) = -\frac{1}{2}(\cos(xt) - 1) + \frac{1}{2}\Phi_x(t)\sin\left((2n+1)\frac{t}{2}\right).$$

(ii) Montrons que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in D$, on a :

$$\sum_{k=1}^{n} \lambda_k(x) = -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2} + \frac{1}{2} \int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2}\right) dt + I_n.$$

Par définition des λ_k et par linéarité de l'intégrale, on trouve que :

$$\sum_{k=1}^{n} \lambda_k(x) = \sum_{k=1}^{n} \int_0^{\pi} \cos(xt) \cos(kt) dt$$

$$= \int_0^{\pi} \cos(xt) \left(\sum_{k=1}^{n} \cos(kt) \right) dt$$

$$= \int_0^{\pi} \cos(xt) C_n(t) dt$$

$$= \int_0^{\pi} (\cos(xt) - 1) C_n(t) dt + \int_0^{\pi} C_n(t) dt.$$

D'après la question (4)(c)(iii), on sait que $I_n = \int_0^\pi C_n(t)dt = 0$. Dès lors, ceci nous donne avec la question précédente que :

$$\sum_{k=1}^{n} \lambda_k(x) = \int_0^{\pi} (\cos(xt) - 1) C_n(t) dt + I_n = \int_0^{\pi} \left(-\frac{1}{2} \left(\cos(xt) - 1 \right) + \frac{1}{2} \Phi_x(t) \sin\left((2n+1) \frac{t}{2} \right) \right) dt + I_n.$$

Toujours par linéarité de l'intégrale, il s'ensuit que :

$$\sum_{k=1}^{n} \lambda_k(x) = \int_0^{\pi} \left(-\frac{1}{2} \left(\cos(xt) - 1 \right) \right) dt + \frac{1}{2} \int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2} \right) dt + I_n$$

$$= \left[-\frac{\sin(xt)}{2x} + \frac{t}{2} \right]_0^{\pi} + \frac{1}{2} \int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2} \right) dt + I_n$$

$$= -\frac{\sin(\pi x)}{2x} + 0 + \frac{\pi}{2} - 0 + \frac{1}{2} \int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2} \right) dt + I_n.$$

Par conséquent, on en déduit que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in D$:

$$\sum_{k=1}^{n} \lambda_k(x) = -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2} + \frac{1}{2} \int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2}\right) dt + I_n.$$

- (f) Application:
 - (i) Démontrons que, pour tout $x \in D$:

$$\psi(x)\sin(\pi x) = -\frac{1}{2}\frac{\sin(\pi x)}{x} + \frac{\pi}{2}.$$

D'après la question précédente, on sait que, pour tout $x \in D$:

$$\sum_{k=1}^{n} \lambda_k(x) = -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2} + \frac{1}{2} \int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2}\right) dt + I_n.$$

D'après la question (4)(c)(iii), on sait aussi que $I_n = 0$, et donc :

$$\sum_{k=1}^{n} \lambda_k(x) = -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2} + \frac{1}{2} \int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2}\right) dt.$$

Comme Φ_x est de classe \mathcal{C}^1 sur $[0,\pi]$ par hypothèse, on voit avec la question (4)(d) que :

$$\int_0^{\pi} \Phi_x(t) \sin\left((2n+1)\frac{t}{2}\right) dt \underset{n \to +\infty}{\longrightarrow} 0.$$

En particulier, ceci implique que:

$$\sum_{k=1}^{n} \lambda_k(x) \underset{n \to +\infty}{\longrightarrow} -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2}.$$

D'après la question (4)(b), on sait que $\lambda_k(x) = \sin(\pi x)\nu_k(x)$ pour tout $k \in \mathbb{N}^*$ et pour tout $x \in D \cup \{0\}$. Dès lors, la limite ci-dessus peut se réécrire sous la forme :

$$\sum_{k=1}^{n} \sin(\pi x) \nu_k(x) \underset{n \to +\infty}{\longrightarrow} -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2}.$$

Par linéarité de la somme, on obtient que, pour tout $x \in D$:

$$\sin(\pi x) \sum_{k=1}^{n} \nu_k(x) \underset{n \to +\infty}{\longrightarrow} -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2}.$$

Mais comme la série $\sum \nu_k(x)$ converge d'après la question (4)(a), et que sa somme est égale à $\psi(x)$ par définition, on en déduit que, pour tout $x \in D$:

$$\sin(\pi x)\psi(x) = -\frac{1}{2}\frac{\sin(\pi x)}{x} + \frac{\pi}{2}.$$

(ii) Montrons que, pour tout $x \in D$, on a :

$$\frac{\pi}{\sin(\pi x)} = \frac{1}{x} + 2x \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2 - x^2}.$$

D'après la question précédente, on sait que, pour tout $x \in D$:

$$\sin(\pi x)\psi(x) = -\frac{1}{2}\frac{\sin(\pi x)}{x} + \frac{\pi}{2}.$$

Par définition de la fonction $\psi(x)$, ceci signifie que, pour tout $x \in D$:

$$\sin(\pi x) \left(\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x}{n^2 - x^2} \right) = -\frac{1}{2} \frac{\sin(\pi x)}{x} + \frac{\pi}{2}.$$

Après division par $\sin(\pi x)$ et multiplication par 2, ceci entraine que, pour tout $x \in D$:

$$2\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x}{n^2 - x^2} = -\frac{1}{x} + \frac{\pi}{\sin(\pi x)}.$$

Par conséquent, on en déduit par linéarité de la somme que, pour tout $x \in D$:

$$\frac{\pi}{\sin(\pi x)} = \frac{1}{x} + 2x \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2 - x^2}.$$