
Lycée Clemenceau Jeudi 27 novembre 2025
ECG 2 Durée : 4 heures

Devoir Surveillé de Mathématiques no3

Remarques : Il est toujours permis d’admettre les résultats de questions précédentes pour traiter les questions
suivantes. Chaque réponse doit être démontrée et toutes les étapes des calculs doivent être données. On
attachera un soin tout particulier à la clarté et à la propreté de la rédaction. Les téléphones portables et
les calculatrices, ainsi que tous matériels électroniques sont interdits. Tous les étudiants devront traiter les
exercices d’informatique suivants et auront le choix entre deux sujets, un de type EDHEC/ECRICOME et un
autre de type parisienne. Ils indiqueront lisiblement sur leur première copie le sujet qu’ils auront choisi, et
ne pourront traiter que les questions de ce sujet. Si un(e) étudiant(e) traite une question du sujet qu’il/elle
n’a pas indiqué en début de copie, cette question ne sera pas corrigée.

Exercice 1. Ecrire une fonction en Python qui, étant donné un vecteur u = (u1, ..., un) de réels de taille
n > 0 quelconque, calcule l’écart absolu moyen de u1, ..., un, c’est-à-dire le réel s(u) donné par :

s(u) =
1

n

n∑
k=1

|uk −m(u)|, où : m(u) =
1

n

n∑
k=1

uk.

Exercice 2. Ecrire une fonction en Python qui, étant donné un réel r ∈
]
0,

1

5

[
, détermine le plus petit entier

n > 0 tel que : un =
1

n5

n−1∑
k=0

k4 ≥ r.

Exercice 3. Ecrire une fonction en Python qui, étant donné un entier n ≥ 2, crée la matrice carrée A = (ai,j)
de taille n telle que :

ai,j =

{
0 si i = j

i+ j − 1 si i ̸= j
.

1. Sujet type EDHEC-ECRICOME

Exercice 4. Soit (x, y) ∈ (R∗
+)

2. Un commerçant se fournit auprès d’un grossiste pour constituer son stock
au début de la saison 2025, lequel consiste en un certain nombre d’unités d’un produit de consommation.
Chaque unité vendue par ce commerçant lui rapporte un bénéfice net de x euros alors que chaque unité
invendue à la fin de la saison engendre une perte nette de y euros. Ce commerçant doit constituer son stock
au début de la saison et désire déterminer la taille n de ce stock afin de maximiser son espérance de gain.
On admet que le nombre d’unités qui seront commandées à ce commerçant pendant la saison 2025 est une
variable aléatoire X à valeurs dans N. On note Yn la variable aléatoire égale au gain (positif ou négatif) de
ce commerçant à la fin de la saison 2025. De plus, on désigne par U la variable aléatoire qui vaut 1 si X ≤ n
et qui vaut 0 si X > n. Enfin, on admet que toutes ces variables aléatoires sont définies sur un même espace
probabilisé (Ω,A, P ).

(1) En distinguant deux cas selon la valeur de U , montrer que : Yn = (xX − (n−X)y)U + nx(1− U).
(2) (a) Vérifier que la variable aléatoire XU est à valeurs dans {0, 1, ..., n}.

(b) Exprimer sous forme de somme l’espérance de XU à l’aide de la loi de X.
(c) Montrer enfin que : E(Yn) = (x+ y)

∑n
k=0(k − n)P ([X = k]) + nx.

Par la suite, on suppose que P ([X = 0]) <
x

x+ y
.

(3) (a) Exprimer E(Yn+1)− E(Yn) en fonction de x, y,
∑n

k=0 P ([X = k]).
(b) On admet le résultat suivant : ”toute partie non vide et majorée de N admet un plus grand

élément”. Montrer qu’il existe un unique entier naturel n0 tel que :

n0∑
k=0

P ([X = k]) <
x

x+ y
et

n0+1∑
k=0

P ([X = k]) ≥ x

x+ y
.

(c) En déduire que ce commerçant est sûr de maximiser son espérance de gain en constituant un
stock de taille n1 = n0 + 1.

(4) Une étude statistique faite au cours des saisons précédentes permet d’affirmer que : X ↪→ P(l).
(a) Exprimer P ([X = k + 1]) en fonction de P ([X = k]).
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(b) Utiliser ce résultat pour écrire une fonction en Python, de paramètres d’entrée x, y, l, permettant
de calculer et d’afficher l’entier n1.

Exercice 5. Soit n un entier ≥ 2. On dispose d’une urne contenant 2n boules numérotées de 1 à n, chaque
numéro apparaissant deux fois. On effectue au hasard une succession de tirages simultanés de deux boules de
cette urne selon le protocole suivant : si les deux boules tirées simultanément portent le même numéro, on ne
les remet pas dans l’urne et on dit qu’une paire est constituée, et sinon on les remet dans l’urne. Pour tout
i ∈ {1, ..., n} et tout k ∈ N∗, on pose Ti = k si k tirages exactement sont nécessaires pour constituer i paires.
On admet qu’il existe un espace probabilisé (Ω,A, P ) permettant de modéliser cette expérience et que, pour
tout i ∈ {1, ..., n}, Ti est une variable aléatoire définie sur cet espace.

(1) (a) Déterminer la loi de T1.
(b) Donner sans calcul la valeur de E(T1).

(2) On pose X1 = T1 et pour tout i ∈ {2, ..., n} : Xi = Ti − Ti−1.
(a) Que représente la variable Xi?
(b) Déterminer pour tout i ∈ {1, ..., n} la loi et l’espérance de Xi.
(c) En déduire que Tn admet une espérance et que : E(Tn) = n2.

(3) Soit Sn le nombre de paires constituées lors des n premiers tirages.
(a) Calculer la valeur de P ([Sn = 0]).
(b) Déterminer limn→+∞ P ([Sn = 0]).

(c) Montrer que P ([Sn = n]) = n!2n

(2n)! .

Problème 1. On effectue une succession infinie de lancers indépendants d’une pièce donnant pile avec la
probabilité p ∈]0, 1[, et face avec la probabilité q = 1− p. Dans ce problème, on s’intéresse aux successions de
lancers amenant un même côté. On dit que la première série est de longueur n ≥ 1 si les n premiers lancers
ont amené le même côté de la pièce et le (n+ 1)-ème l’autre côté. De même, la deuxième série commence au
lancer suivant la fin de la première série et se termine (si elle se termine) au lancer précédant un changement
de côté. De la même façon, on définit les séries suivantes. On désigne par Ω l’ensemble des successions infinies
de pile ou face. Enfin, pour tout i ∈ N, on désigne par Pi l’événement ”le i-ème lancer amène un pile” et par
Fi l’événement contraire.

(1) Partie I : étude des longueurs de séries.

Soit L1 la longueur de la première série, et soit L2 la longueur de la deuxième série.

(a) Exprimer l’événement [L1 = n] à l’aide des Pi et Fi.
(b) En déduire que P ([L1 = n]) = pnq + qnp.

(c) Vérifier que l’on a :
∑+∞

n=1 P ([L1 = n]) = 1.
(d) Exprimer l’événement [L1 = n] ∩ [L2 = k] à l’aide des Pi et Fi.
(e) Calculer la probabilité de l’événement [L1 = n] ∩ [L2 = k].
(f) En déduire que, pour tout k ∈ N∗, on a : P ([L2 = k]) = p2qk−1 + q2pk−1.

(g) On admet que
∑+∞

k=1 P ([L2 = k]) = 1. Montrer que L2 admet une espérance égale à 2.

(2) Partie II : étude du nombre de séries lors des n premiers lancers.

Dans cette partie, on considère que la pièce est équilibrée, c’est-à-dire p = 1
2 . On désigne par Nn le

nombre de séries lors des n premiers lancers. Ainsi, la première série est de longueur k < n si les k
premiers lancers ont amené le même côté de la pièce et le (k + 1)-ème l’autre côté, et de longueur n
si les n premiers lancers ont amené le même côté de la pièce. De plus, la dernière série se termine
nécessairement au n-ème lancer. Par exemple, si les lancers successifs donnent FFPPPPFFPPP...,
où F désigne face et P pile, alors on a pour une telle succession ω que :

N1(ω) = N2(ω) = 1, N3(ω) = ... = N6(ω) = 2,
N7(ω) = N8(ω) = 3, N9(ω) = ... = N11(ω) = 4,

les données précédentes ne permettant évidemment pas de calculer N12(ω). Par la suite, on admettra
que Nn est une variable aléatoire sur (Ω,A, P ). Enfin, pour tout n ∈ N∗, on définit la fonction
génératrice Gn de Nn comme suit. Pour tout s ∈ [0, 1], on pose :

Gn(s) =

n∑
k=1

P ([Nn = k])sk.

(a) Déterminer les lois de N1, N2, N3 et donner leurs espérances.
(b) Déterminer l’ensemble Nn(Ω) des valeurs prises par Nn, pour tout n ∈ N∗.
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(c) Calculer les valeurs de P ([Nn = 1]) et P ([Nn = n]) en fonction de n ∈ N∗.
(d) Pour tout s ∈ [0, 1], comparer l’espérance de la variable aléatoire sNn avec Gn(s).
(e) Que représente G′

n(1)? Justifier.
(f) Montrer que, pour tout n ≥ 2 et tout k ∈ {1, ..., n}, on a :

P ([Nn = k] ∩ Pn) =
1

2
P ([Nn−1 = k] ∩ Pn−1) +

1

2
P ([Nn−1 = k − 1] ∩ Fn−1)

P ([Nn = k] ∩ Fn) =
1

2
P ([Nn−1 = k] ∩ Fn−1) +

1

2
P ([Nn−1 = k − 1] ∩ Pn−1)

.

(g) En déduire que, pour tout n ≥ 2 et tout k ∈ {1, ..., n}, on a :

P ([Nn = k]) =
1

2
P ([Nn−1 = k]) +

1

2
P ([Nn−1 = k − 1]).

(h) Montrer que, pour tout n ≥ 2, on a : Gn(s) =
(
1+s
2

)
Gn−1(s).

(i) Calculer l’expression de G1(s), et en déduire que, pour tout n ≥ 2, on a :

Gn(s) =

(
1 + s

2

)n−1

s.

(j) Déterminer le nombre moyen de séries dans les n premiers lancers.

(3) Partie III : probabilité d’avoir une infinité de fois deux piles consécutifs.

(a) Montrer que, pour tout x ∈ R, on a : 1− x ≤ e−x.
(b) Dans cette question, on considère une suite (Ai)i∈N∗ d’événements indépendants. On suppose

que la série
∑

i P (Ai) diverge. Soit k ∈ N∗ un entier fixé. Pour tout n ≥ k, on pose :

Cn =
⋃

k≤i≤n

Ai = Ak ∪ ... ∪An.

(i) Justifier que limn→+∞
∑n

i=k P (Ai) = +∞.
(ii) Montrer que, pour tout n ≥ k, on a :

P (Cn) = 1−
n∏

i=k

P
(
Ai

)
.

(iii) A l’aide de la question (3)(a), en déduire que, pour tout n ≥ k :

P (Cn) ≥ 1− exp

(
−

n∑
i=k

P (Ai)

)
.

(iv) En déduire que limn→+∞ P (Cn) = 1.
(v) Comparer les événements Cn et Cn+1 pour l’inclusion.
(vi) Que peut-on en déduire pour P (∪+∞

i=kCi)?

(vii) Justifier que ∪+∞
i=kAi = ∪+∞

n=kCn, et en déduire que : P (∪+∞
i=kAi) = 1.

(c) En considérant les événements An : ”on obtient pile au (2n)-ème et au (2n + 1)-ème lancers”,
montrer que la probabilité d’avoir deux piles consécutifs, après n’importe quel lancer, vaut 1.
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2. Sujet type HEC-ESSEC

Problème 2. Lorsque r est un réel > 0, on note :

A(r) =
{
(an)n∈N ∈ RN telle que : ∀k ∈ N, la série

∑
nk|an|rn converge

}
,

B(r) =
{
(an)n∈N ∈ RN telle que la suite (anr

n)n∈N converge vers 0
}
.

A toute suite a = (an)n∈N de B(r), on associe, sous réserve d’existence, la fonction fa : x 7−→
+∞∑
n=0

anx
n.

Dans la première partie, on étudie quelques propriétés des ensembles A(r) et B(r).

Dans la seconde, on étudie les propriétés de régularité des fonctions fa.

Dans la troisième partie, on obtient, dans le cas où r > 1, sous certaines hypothèses, une formule de réciprocité

donnant la suite a en fonction de la suite
(
f
(n)
a (1)

)
n∈N

.

Enfin, dans la dernière partie, on utilise les résultats obtenus pour l’étude de variables aléatoires discrètes.

Partie I : Premières propriétés et premiers exemples.

(1) Soit r un réel > 0 et soit (an)n∈N une suite de A(r). Montrer que, pour tout x ∈ [−r, r] et pour

tout k ∈ N, la série
∑

nk|an||x|n converge. En déduire que, pour tout réel r′ tel que r ≤ r′, on a :

A(r′) ⊂ A(r).
(2) Vérifier également que : 0 < r ≤ r′ =⇒ B(r′) ⊂ B(r) et A(r) ⊂ B(r).
(3) Montrer que, pour tout réel r > 0, A(r) est un sous-espace vectoriel de l’espace vectoriel des suites

réelles.
(4) Exemples :

(a) On souhaite montrer que, pour tout réel r > 0, la suite α =

(
1

n!

)
n∈N

appartient à A(r). Pour

cela, on pose pour tout k ∈ N :

un(k) =
nk+2rn

n!
.

En considérant le quotient
un+1(k)

un(k)
, montrer que la suite (un(k))n∈N converge vers 0. Conclure

alors que : α =

(
1

n!

)
n∈N

∈ A(r).

(b) Pour tout réel λ > 0, on note β(λ) la suite (λn)n∈N. Déterminer l’ensemble des réels r > 0 pour
lesquels la suite β(λ) appartient à B(r). Déterminer ensuite l’ensemble des réels r > 0 pour
lesquels la suite β(λ) appartient à A(r).

(5) Soit ρ un réel > 0 et soit (an)n∈N une suite de B(ρ). Montrer que, pour tout r ∈]0, ρ[, la suite (an)n∈N
appartient à A(r). Pour ce faire, on pourra penser à écrire :

nk|an|rn = |an|ρnnk

(
r

ρ

)n

.

Partie II : Régularité de la fonction fa.

Dans cette partie, R désigne un réel > 0 et a = (an)n∈N une suite de B(R).

(1) A l’aide de la question précédente, vérifier que fa : x 7−→
+∞∑
n=0

anx
n est définie sur ]−R,R[.

(2) Continuité de fa :
(a) Soient r ∈]0, R[, x ∈ [−r, r] et h un réel tel que : x+h ∈ [−r, r]. Montrer que, pour tout n ∈ N :

|(x+ h)n − xn| ≤ nrn−1|h|.

(b) Justifier alors soigneusement que : |fa(x+ h)− fa(x)| ≤
1

r

(
+∞∑
n=0

n|an|rn
)
|h|.

(c) Montrer alors que fa est continue sur [−r, r], puis sur ]−R,R[.
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(3) Caractère C1 de fa :

On considère ici un réel r ∈]0, R[ et un réel x ∈ [−r, r]. Pour tout n ∈ N , on pose Sn(x) =

n∑
k=0

akx
k

et, sous réserve d’existence : ga : x 7−→
+∞∑
n=1

nanx
n−1.

(a) Soit ρ ∈ [r,R[. Justifier que la suite (nan)n∈N appartient à B(ρ). En déduire que ga est définie
et continue sur ]−R,R[.

(b) Vérifier que, pour tout n ∈ N∗, on a : Sn(x) = a0 +

∫ x

0

S′
n(t)dt.

(c) Montrer que, pour tout n ∈ N∗, on a :

∣∣∣∣∫ x

0

(ga(t)− S′
n(t))dt

∣∣∣∣ ≤ +∞∑
k=n+1

k|ak|rk.

(d) En déduire que : fa(x) = a0 +

∫ x

0

ga(t)dt.

(e) Montrer alors que fa est de classe C1 sur ]−R,R[ et que : f ′
a = ga.

(4) Caractère C∞ de fa :

(a) Soit r ∈]0, R[. Montrer que la suite (an)n∈N appartient à A(r) si et seulement si, pour tout

k ∈ N, la série
∑
n≥k

(
n

k

)
|an|rn−k converge.

(b) Montrer que fa est de classe C∞ sur ]−R,R[ et que, pour tout x ∈]−R,R[ et pour tout k ∈ N,
on a :

f (k)
a (x) = k!

(
+∞∑
n=k

(
n

k

)
anx

n−k

)
.

(c) Pour tout n ∈ N, exprimer an en fonction de f
(n)
a (0).

(5) Exemples :

(a) On pose α =

(
1

n!

)
n∈N

et fα : x 7−→
+∞∑
n=0

xn

n!
. Donner une expression de fα(x) pour tout x ∈ R.

Pour tout k ∈ N, calculer f (k)
α (1).

(b) Soit λ un réel > 0, soit β la suite (λn)n∈N et soit fβ : x 7−→
+∞∑
n=0

λnxn. Donner une expression de

fβ(x) pour tout x ∈
]
− 1

λ
,
1

λ

[
. En déduire que, pour tout k ∈ N et pour tout x ∈

]
− 1

λ
,
1

λ

[
, la

série
∑
n≥k

(
n

k

)
(λx)n−k converge et :

+∞∑
n=k

(
n

k

)
(λx)n−k =

1

(1− λx)k+1
.

Partie III : Une formule de réciprocité.

Dans cette partie, R désigne un réel > 1 et a = (an)n∈N est une suite de B(R) telle que : ∀n ∈ N,

an ≥ 0. Pour tout n ∈ N, on note bn =
f
(n)
a (1)

n!
et on fait l’hypothèse (H) qu’il existe un réel ρ > 1 tel que la

suite (bnρ
n)n∈N converge vers 0.

(1) Expression de a0 :

(a) Montrer que : ∀N ∈ N, fa(0) =
N∑

p=0

(−1)pbp + (−1)N+1

∫ 1

0

tN

N !
f (N+1)
a (t)dt.

(b) Démontrer que : lim
N→+∞

∫ 1

0

tN

N !
f (N+1)
a (t)dt = 0.

(c) En déduire que la série
∑
p≥0

(−1)pbp converge et que : a0 =

+∞∑
p=0

(−1)pbp.

(2) Généralisation : On considère ici un entier naturel s fixé.
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(a) Montrer que : ∀N ∈ N, f (s)
a (0) =

N∑
p=0

(−1)p
f
(p+s)
a (1)

p!
+ (−1)N+1

∫ 1

0

tN

N !
f (N+s+1)
a (t)dt.

(b) Vérifier que : ∀N ∈ N,
∣∣∣∣∫ 1

0

tN

N !
f (N+s+1)
a (t)dt

∣∣∣∣ ≤ f
(N+s+1)
a (1)

(N + s+ 1)!
ρN+s+1 (N + s+ 1)!

(N + 1)!

1

ρN+s+1
.

(c) Déterminer lim
N→+∞

∫ 1

0

tN

N !
f (N+s+1)
a (t)dt.

(d) Montrer alors que la série
∑
p≥0

(−1)p
(
p+ s

s

)
bp+s converge et que : as =

+∞∑
n=s

(−1)n−s

(
n

s

)
bn.

(3) Cas particulier : On suppose dans cette question que a = (an)n∈N est une suite de réels positifs pour
laquelle il existe un entier naturel d tel que : ∀n ∈ N, n ≥ d+ 1 =⇒ an = 0.
(a) Que peut-on dire de la fonction fa?

(b) Montrer que la condition (H) est vérifiée.

(c) En déduire que, pour tout s ∈ J0, dK, on a : as =

d∑
n=s

(−1)n−s

(
n

s

)
bn.

Partie IV : Applications aux variables aléatoires discrètes.

Dans cette partie, les variables aléatoires seront discrètes, définies sur un espace probabilisé (Ω,A, P ), à
valeurs dans N. Pour une telle variable aléatoire X, on pourra utiliser, sans les rappeler, les notations
suivantes :

∀n ∈ N, an = P (X = n) et GX : x 7−→
+∞∑
n=0

anx
n, autrement dit : GX = fa.

(1) Premiers résultats :
(a) Justifier que la suite a appartient à B(1).
(b) En déduire qu’il existe un réel R ≥ 1 tel que GX soit définie et de classe C∞ sur ]−R,R[.

(2) Premier exemple :
(a) On suppose tout d’abord que X suit la loi de Poisson de paramètre 1. Déterminer la fonction

GX , vérifier qu’elle est bien de classe C∞ sur R et calculer G
(s)
X (1) pour tout s ∈ N.

(b) On suppose maintenant que X est une variable aléatoire discrète définie sur un espace probabilisé
(Ω,A, P ), telle que X(Ω) = N et vérifiant la conditions suivantes : GX = fa est définie sur R,
de classe C∞ sur R et f

(s)
a (1) = 1 pour tout s ∈ N. Justifier que l’hypothèse (H) de la partie III

est réalisée et déterminer an pour tout n ∈ N. Quelle est la loi de X?

(3) Deuxième exemple : On considère ici un réel p ∈]0, 1[ et on note q = 1− p.
(a) On suppose que X + 1 suit la loi géométrique de paramètre p. Déterminer la suite a = (an)n∈N

puis la fonction GX . Vérifier que GX est de classe C∞ sur

]
−1

q
,
1

q

[
, puis calculer G

(s)
X (1) pour

tout s ∈ N.
(b) On suppose maintenant que : p >

1

2
. Vérifier que :

q

p
< 1.

On considère une variable aléatoire discrète X définie sur un espace probabilisé (Ω,A, P ), telle

que X(Ω) = N. On suppose de plus que GX = fa est définie sur

]
−1

q
,
1

q

[
, de classe C∞ sur]

−1

q
,
1

q

[
et que

f
(s)
a (1)

s!
=

(
q

p

)s

pour tout s ∈ N. Justifier que l’hypothèse (H) de la partie III

est réalisée et déterminer an pour tout n ∈ N. Quelle est la loi de X + 1?

(4) Cas où X est une variable aléatoire ne prenant qu’un nombre fini de valeurs :
On suppose dans cette question que X(Ω) est inclus dans J0, dK, où d ∈ N∗. On note Pold le sous-
espace vectoriel des fonctions polynomiales de R dans R et de degré ≤ d. Pour tout s ∈ J0, dK, on
note es la fonction x 7−→ xs et on rappelle que (es)s∈J0,dK est une base de Pold. Enfin, on définit les
fonctions de Pold :

H0 : x 7−→ 1 et ∀s ∈ J1, dK, Hs : x 7−→ x(x− 1)...(x− s+ 1)

s!
=

1

s!

s−1∏
k=0

(x− k).

Enfin, on considère l’application ∆ définie pour tout P ∈ Pold par : ∆(P ) : x 7−→ P (x+ 1)− P (x).
(a) Montrer que la famille (Hs)s∈J0,dK est une base de Pold.
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(b) Vérifier que ∆ est un endomorphisme de Pold.

(c) Montrer que ∆(H0) = 0, puis que : ∀s ∈ J1, dK, ∆(Hs) = Hs−1 et Hs(0) = 0.

(d) Montrer que : ∀P ∈ Pold, ∀x ∈ R, P (x) =

d∑
s=0

[(∆s(P ))(0)]Hs(x).

(e) En déduire que, pour tout k ∈ J0, dK et pour tout n ∈ N :

nk =

d∑
s=0

[(∆s(ek))(0)]Hs(n).

(f) Montrer alors que, pour tout k ∈ J0, dK, l’espérance de Xk est donnée par :

E(Xk) =

d∑
s=0

[(∆s(ek))(0)] bs, où : bs =
f
(s)
a (1)

s!
.

(g) Exemple : on suppose ici que d = 2, E(X) = 1 et E(X2) =
3

2
. Déterminer b0, b1, b2, puis

a0, a1, a2. Reconnâıtre la loi de X.


