
Programme de colles en Mathématiques
ECG 2 (semaine 15 : 19 janvier 2026)

La colle débutera soit par une démonstration d’un résultat de cours (indiqué par un astérisque),
soit par un exercice de début de colle. Le programme portera sur les formules de Taylor et les
développements limités, ainsi que sur le produit scalaire et les espaces euclidiens, et plus partic-
ulièrement sur les points suivants:

(1) Formules de Taylor - Développements limités (révisions):
Formule de Taylor avec reste intégral - Inégalité de Taylor-Lagrange.
Formule de Taylor-Young à l’ordre n pour une fonction de classe C∞.
Définition du développement limité d’une fonction à l’ordre n en un réel a.
Opérations sur les développements limités (somme, produit, substitution, etc).
Développements limités usuels de ex, ln(1 + x), (1 + x)α, sin(x) et cos(x).
Applications des développements limités : recherche de limites et d’équivalents, allure locale
du graphe d’une fonction au voisinage d’un point.

(2) Produit scalaire - Orthogonalité - Espaces euclidiens:
Définition d’une forme bilinéaire sur un espace vectoriel réel E.
Définition d’une forme bilinéaire symétrique, définie, positive sur E.
Définition d’un produit scalaire ⟨., .⟩ et de la norme euclidienne associée ∥.∥ sur E.
Produits scalaires canoniques et normes euclidiennes associées sur Rn et sur Mn,1(R).
Formule ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩ (*) - Identité de polarisation.
Inégalité de Cauchy-Schwarz (*).
Propriétés de la norme euclidienne - Inégalité triangulaire (*).
Définition de l’orthogonalité de deux vecteurs - Théorème de Pythagore.
Définition d’une famille orthogonale et d’une famille orthonormée de vecteurs.
”Toute famille orthogonale de E ne contenant pas le vecteur nul est libre”.
”Toute famille orthonormée de E est libre”.
Procédé d’orthonormalisation de Schmidt.
Définition de l’orthogonalité de deux sous-espaces vectoriels.
Définition et propriétés de base d’un espace euclidien E de dimension n.
Définition d’une base orthonormée d’un espace euclidien E de dimension n.
Existence d’une base orthonormée pour tout espace euclidien de dimension n > 0.
Théorème de la base incomplète orthonormée.
Expression des coordonnées d’un vecteur dans une base orthonormée.
Expression matricielle du produit scalaire en base orthonormée.
Définition de la matrice du produit scalaire dans une base quelconque.
Expression matricielle du produit scalaire dans une base quelconque.
Définition d’une matrice orthogonale de taille n.
”Toute matrice de passage entre deux bases orthonormées est orthogonale”.
Définition de l’orthogonal F⊥ d’un sous-espace vectoriel F d’un espace euclidien E.
”L’orthogonal de F (dans E) est un sous-espace vectoriel de E”(*).
”Tout sous-espace vectoriel F de E et son orthogonal sont supplémentaires dans E”.
”En dimension finie, pour tout sous-espace vectoriel F de E, on a (F⊥)⊥ = F”.

Exercices de début de colle:

Exercice 1. Soit n ∈ N∗. Soit E l’ensemble des polynômes P ∈ Rn[x] tels que P (0) = P (1) = 0,

et soit φ : E × E 7−→ R l’application définie par : φ(P,Q) = −
∫ 1

0
P (t)Q′′(t)dt.

(1) Montrer que E est un R-espace vectoriel.
(2) Montrer que φ est un produit scalaire sur E.
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Exercice 2. Soit n ∈ N∗. Etablir que : n2 ≤

(
n∑

k=1

√
k

)2

≤ n2(n+ 1)

2
.

Exercice 3. Pour tout x = (x1, x2, x3) ∈ R3, on pose : q(x) = 2x2
1 + x2

2 + 2x2
3 + 2x1x3.

(1) Trouver un produit scalaire φ tel que : ∀x ∈ R3, q(x) = φ(x, x).
(2) A l’aide du procédé de Gram-Schmidt, déterminer une base orthonormée de R3 pour φ.

Exercice 4. Calculer une base de l’orthogonal de F dans E, et ce dans l’un des cas suivants :

(1) E = R3 muni du p.s. canonique et F = Vect((1, 1, 1), (2, 1,−1)).
(2) E = R3 muni du p.s. canonique et F = {(x, y, z) ∈ R3| x− 2y + z = 0}.
(3) E = R3[x] muni du p.s. ⟨P,Q⟩ =

∫ 1

−1
P (t)Q(t)dt et F = Vect(x 7−→ x, x 7−→ x2 + 1).


