Lycée Clemenceau 2025-26
ECG 2

Corrigé du Devoir Maison de Mathématiques n°5

Corrigé de ’exercice 1. Soit f : R — R la fonction définie pour tout = € R par f(z) = In (x +Vv1+ x2>.

(1) (a) Calculons le développement limité de f & Uordre 3 en 0. D’apres le cours, on sait que :
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Si I'on pose y = 22, alors on voit que y tend vers 0 quand z tend vers 0. Des lors, par substitution
puis élimination des termes de degré > 3, on obtient que :

z?2 ozt 328 2

v/ 2 = S A Tt 3y _ - 3

1+ x_>01+2 8+48 +0(m)x_>01+2+0(x).

Posons maintenant z = x + v/ 1 + 22 — 1. D’apres le calcul précédent, on trouve que :
2

z=x+V14+22-1 = x—|—x——|—0(x3).
z—0 2

Comme 1+ z =z + v1 + 22 et que de plus z tend vers 0 quand = tend vers 0, on obtient par
substitution, puis par utilisation de la formule du bindéme et enfin par élimination des termes de
degré > 3 que :
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d’ou il s’ensuit que :

flx) ot % + o(z?).

(b) D’apres le résultat de la question précédente, on en déduit que I’équation de la tangente & la
courbe de f en 0 est donnée par :

Yy =1
x3 x3
De plus, comme f(z) S0t + o(2?), il s’ensuit que f(z) — 0T E + o(z?), et donc :
3
x
fl@) - 50 6

En particulier, le signe de f(z) — x est donné par celui de —x3/6 au voisinage de 0, c’est-a-dire
f(@) —x > 0 pour z < 0 proche de 0, et f(z) — 2z < 0 pour = > 0 proche de 0. En d’autres
termes, si Cy désigne la courbe de f et 7y sa tangente en 0, alors :

Cy est située au dessus de Ty pour x < 0 proche de 0, en dessous de Ty
pour z < 0 proche de 0,et (0,0) est un point d’inflexion de Cy.
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(2) (a) Calculons f'(x) pour tout x € R. D’apres les regles de dérivation classiques, on trouve que :

(x+V1+z22)
T4+ vV1+ 22

f@) = (et vVTva?)
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d’ou il s’ensuit que :

1

VI+a?

De méme, calculons f”(z) pour tout © € R. D’apres les régles de dérivation classiques et
Pexpression de f’(x) trouvée ci-dessus, on obtient que :

() - (e

1
2x X —g X (1 +a22)7 7 = —gp(14a?)78,

Ve eR, f'(z)=

f'(=)

Nlw

d’ou il s’ensuit que :

(b) D’apres la formule de Taylor-Young appliquée & la fonction f & 'ordre 2 en 1, on trouve que :

f@) = fQ -1+

z—1 21

Vz eR, f’(z)=

(= 1) +o((z —1)?)

1 -1
= W+ VI+12)+ ﬁ(m 1)+ m(gg —1)2 +o((x —1)%),

d’ou il s’ensuit que :

1 1
f(x) = In(1+v2) + ﬁ(x— 1) — Wi

(¢) D’apres le résultat de la question précédente, on en déduit que I’équation de la tangente & la
courbe de f en 1 est donnée par :

(x —1)% +o((z —1)%).

y=In(1+Vv2)+ %(az —1).
De plus, d’apres la question (2)(b) et par les mémes arguments qu’a la question (1)(c), on a :
b ~ b

V2 a—=1 44/2
En particulier, le signe de f(z) — In(1 +v/2) — (z — 1)/v/2 est donné par celui de —(z — 1)? au

voisinage de 1, c’est-a-dire f(z) — In(1 + v/2) — (z — 1)/v/2 < 0 pour tout = proche de 1. En
d’autres termes, si 7; désigne la tangente & la courbe de f en 1, alors :

f(x) —In(1 +V?2) (z—1) (x—1)2

Cy est située en dessous de 7; pour tout = proche de 1. ‘

Corrigé de ’exercice 2. A l'aide des développements limités, calculons :

. ze® —In(1 + ) + 322
lim .
z—0 1 — cos(z)




Pour ce faire, on commence par calculer des développements limités a l'ordre 2 en 0 des numérateur et
dénominateur de cette fraction. D’apres les regles de calcul des développements limités, on trouve que :

2 2
ve®* —In(l+2z)+322 = =z (1+x+x+0(x2)> - (m—x—&—o(xQ)) + 322
z—0 2 2
— et D hoe) — o+ L+ ofa?) + 322
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De méme, comme cos(x) o 1- 5 + o(x*), on voit que 1 — cos(x) oD + o(x*), et donc :

ze® —In(1 +a) + 322 % +o(z?)  9+o0(1)
1 — cos(z) 20 “”2—2 +o(z?) 14o0(1)

Comme les termes de la forme ”0(1)” correspondent & des fonctions qui tendent vers 0 quand z tend vers 0,
on en déduit que :

. xe® —In(1 + z) + 322
lim

=9.
=0 1 — cos(z)

Corrigé de ’exercice 3. Soit n un entier > 2. On considére un endomorphisme f de R™, dont la matrice
dans la base canonique de R™ est une matrice M de rang 1. On note C' la premiere colonne de M et on
suppose que C' est non nulle.

(1) Donnons tout d’abord la dimension de ker(f). Comme M est la matrice de f dans la base canonique
de R™, on voit que :

rg(f) =rg(M) =1.

D’apres le théoreme du rang, ceci nous donne que :
dimker(f) =n —rg(f) =n—1.

Des lors, comme n > 2, on voit que dimker(f) =n — 1 > 0. Par conséquent, on en déduit que :

‘dim ker(f) =n —1 et 0 est valeur propre de f. ‘

(2) (a) Montrons qu’il existe une matrice L = (1 Iy .. ln) appartenant & M ,,(R) telle que M =
CL. Comme la matrice M est de rang 1, ses colonnes C1, ..., C, sont colinéaires entre elles. Des
lors, comme C' = (] est non nulle, toutes les colonnes Cs, ..., C,, sont colinéaires a C, et donc il
existe des réels I, ..., 1, tels que C; = [;C pour tout ¢ € [2,n]. En particulier, si ¢y, ..., ¢, sont
les composantes de C, alors la matrice M est de la forme :

C1 lgCl lncl C1
ca lacy ... lpeo C2
M=(C | e | - | LOy=|" " S I Rl TR A A Y

cn locy, ... luen Cn,

C1

C2

Mais comme C' = | . |, on en déduit que :
Cn
il existe une matrice L = (1 loa ... ln) telle que M = CL.

(b) Vérifions que Tr(M) = LC. D’apres la question précédente, on voit que :

C1 1261 lncl

C2 ZQCQ lnCQ
Tr(M) =Tr . . . =c1 + o+ ... + 1.

Ccn locy, ... luen
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En outre, on trouve avec le produit ligne-colonne que :

(1l o )| . | =1xa+lbe+..+le,.

Cn
Par conséquent, on en déduit que :
Tr(M) = LC.

(c) Etablissons 1’égalité M? = Tr(M)M. D’apres la question (2)(a), on voit par associativité du
produit matriciel que :

M? = MM = CLCL = C(LC)L.
Comme LC est un réel, ceci entraine avec la question (2)(b) que :
M? = C(LC)L = (LC)CL = (LC)M = Tr(M)M.

Par conséquent, on en déduit que :

M? = Tr(M)M.

Montrons que Tr(M) est une valeur propre de f. D’aprés la question (2)(c), on sait que M? =
Tr(M)M. Comme f est "'endomorphisme canoniquement associé a M, ceci entraine que f? = Tr(M)f.
A noter que, comme f est de rang 1 d’aprés la question (1), f n’est pas ’endomorphisme nul. En
particulier, il existe un vecteur x € R™ tel que f(x) # 0. Des lors, ceci nous donne que :

f(f(@)) = f2(x) = Te(M) f ().
Comme f(z) # 0, il s’ensuit que f(z) est un vecteur propre de f pour la valeur propre Tr(M). Par
conséquent, on en déduit que :

‘Tr(M ) est une valeur propre de f. ‘

On suppose que Tr(M) = 0. Montrons que f n’est pas diagonalisable. Comme M? = Tr(M)M
d’apres la question (2)(c) et que Tr(M) = 0 par hypothése, on voit que M? = 0, et donc le polynoéme
P : x — 22 est annulateur de M. Comme f est I’endomorphisme canoniquement associé & M,
ceci entraine que P est aussi annulateur de f. En particulier, on obtient que Sp(f) C {0}. De plus,
comme 0 est valeur propre de f d’apres la question (1), il s’ensuit que Sp(f) = {0}. Qui plus est, on
voit avec la question (1) que :

dim Ey(f) = dimker(f) =n — 1 # dimR".

Par conséquent, on en déduit que :

‘Si Tr(M) =0, alors f n’est pas diagonalisable. ‘

On suppose que Tr(M) # 0. Déterminons tout d’abord les valeurs propres de f. D’apres la question
(2)(c), on sait que M? = Tr(M)M. Comme f est 'endomorphisme canoniquement associé & M, ceci
entraine que f2 = Tr(M)f, et donc le polynome P : z — 2% — Tr(M)x est annulateur de f. En
particulier, on obtient que Sp(f) C {0, Tr(M)}. Des lors, comme 0 et Tr(M) sont valeurs propres de
f d’apres les questions (1) et (3), il s’ensuit que :

[Sp(f) = {0, Tr(M)}.
A présent, montrons que f est diagonalisable. D’apres la question (1), on sait déja que :
dim Ey(f) = dimker(f) =n — 1.

De plus, comme Tr(M) est une valeur propre de f, on voit que Eqy(ar)(f) n’est pas réduit a {0}, et
donc dim Ery(p)(f) > 1. En particulier, comme Tr(M) # 0 par hypothese, ceci nous donne que :

dim Eryar)(f) +dim Eo(f) > 14+n—1=n.
Par ailleurs, on sait d’apres le cours que dim Ery(a)(f) + dim Eo(f) < n, et donc :
dim Ery(ar)(f) + dim Eo(f) = n.
Par conséquent, on en déduit que :

‘si Tr(M) # 0, alors f est diagonalisable. ‘
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A présent, on se fixe trois réels a, b, c non nuls, et on considere ’endomorphisme g de R? dont la matrice dans
la base canonique de R? est donnée par :

1 1/a 1/b
A=|a 1 1/c
b ¢ 1

Par la suite, on suppose que A n’est pas inversible.

(1) Ecrivons une fonction en Python qui, étant donnés trois réels a, b, ¢ non nuls, construit et affiche la
matrice A. Pour ce faire, on procede comme suit :

import numpy as np

def matrice(a,b,c):
m=np.array([[1,1/a,1/b],[a,1,1/c],[b,c,11])
return m

(2) (a) Etablissons que ac = b. Pour ce faire, on raisonne par l’absurde et on suppose que ac # b.
Considérons alors le systéeme AX = 0, ou X a pour composantes x,¥, z. Alors ce systéme peut
se réécrire sous la forme :

1 1
r + -y + -z =0
a b
1
ax + y + -z = 0
c
br + cy + 2z = 0
En effectuant les opérations élémentaires Ly <— Lo —alL; et L3 < L3 — bL1, on trouve que :
1 1
T + -y + —z = 0
a b

ST

En effectuant 'opération élémentaire Lo <+ L3, on obtient que :

1 1
r + -y + -z = 0
a b

Comme b et ¢ sont non nuls par hypothese, on trouve en effectuant les opérations élémentaires
Lo < cLy et Lg < bcLs que :

1 1
r + -y + ~ = 0
a b
(ac—b)y = 0
—(b—ac)z = 0

Comme A n’est pas inversible, le systeme AX = 0 admet une solution non nulle, ce qui n’est
possible d’apres ce qui précede que si ac — b = 0. Mais ceci est impossible car ac # b par
hypothese. Par conséquent, on en déduit que :

ac = b.



(b) Déterminons le rang de A. Par définition, on voit que :

1 1/a 1/b
rg(A)=rg|la 1 1/c
b ¢ 1
En effectuant les opérations élémentaires Lo <— Lo — aLq et Lz < L3 — bL, on trouve que :
1 1/a 1/b
rg(A)=1g |0 0 1/c—a/b
0 c—b/a 0
En effectuant 'opération élémentaire Lo <+ L3, on obtient que :
1 1/a 1/b
rg(A)=1g |0 c—b/a 0

0 0 1/c—a/b
Comme b et ¢ sont non nuls par hypothese, on trouve en effectuant les opérations élémentaires

Ly + ¢l et Ly < bcL3 que :

1 1/a 1/b
rg(A)=rg (0 ac—b 0
0 0 b—ac

Comme ac = b d’apres la question précédente, ceci entraine que :

1 1/a 1/b
rg(A)=rg |0 0 0
0 O 0

Comme a et b sont non nuls par hypothese, on trouve en effectuant les opérations élémentaires
CQ<—GCQ—01 et Cg(—ng—Cl que :

rg(A) =1g

oo
coo
c oo
Il
—

Par conséquent, on en déduit que :
rg(A) = 1.
(3) (a) Montrons que g est diagonalisable et donnons ses valeurs propres. Par définition de la matrice
A, on voit que Tr(A) = 3 # 0. Des lors, comme rg(A) = 1 d’apreés la question précédente, que

la premieére colonne de A est non nulle et que g est 'endomorphisme canoniquement associé & A
par définition, on obtient d’apres la question (5) de la premiere partie que :

‘g est diagonalisable et Sp(g) = {0, 3}. ‘

(b) Montrons par récurrence la propriété P définie pour tout n € N* par :
P(n): 7 A" € Vect(A)”.

Tout d’abord, on voit que P(1) est vraie, car A! = A appartient & Vect(A). A présent, supposons
la propriété P vraie a 'ordre n > 1, et montrons-la a 'ordre n+ 1. Par hypothese de récurrence,
on sait que A™ appartient & Vect(A), et donc il existe un réel A, tel que A™ = A\, A. Comme
rg(A) = 1 d’apres la question (2)(b), que la premiere colonne de A est non nulle et que Tr(A) = 3,
on voit que A? = 34 d’apres la question (2)(c) de la premiere partie, et donc :

ATl = A" A = N\, AA = N\, A% = 30\, A,

d’ott il s’ensuit que P(n+ 1) est vraie. D’apres le principe de récurrence, la propriété P est vraie
a tout ordre n > 1. Par conséquent, on en déduit que :

[¥n € N*, A" € Vect(A). |

Corrigé du probleme 1. Soit r un entier > 2. Une urne contient r boules numérotées de 1 a r. On
pioche indéfiniment les boules avec remise, chaque boule pouvant étre piochée de fagcon équiprobable. Pour
tout @ € {1,...,7}, on désigne par Y; le nombre de pioches nécessaires pour obtenir ¢ boules distinctes. Par
convention, on pose Y; = 1. De méme, on désigne par X, le nombre de pioches nécessaires pour obtenir les
r boules numérotées. Il est clair que X, = Y,.. Par exemple, en supposant que r = 4 et si les boules piochées



portent les numéros : 3,3,3,1,1,1,1,2,3,2,4,1,..., alorson voit que : Y1 =1, Y5 =4, Y3 =8, Y, = X, = 11.

(1) Partie I : résultats préliminaires.
On considere la suite (uy,)n>1 définie pour tout n > 1 par : u, = (3;_; ) — In(n).
(a) Ecrivons une fonction en Python qui, étant donné un entier n > 1, calcule et affiche u,,. Pour ce
faire, on procede comme suit :

import numpy as np
def prob(n):

u=np.sum(1/np.arange(1,n+1))-np.log(n)
return u

(b) A Taide d’un développement limité, montrons que u,, — un+1 ~ 2n2 Par des calculs simples

et a I'aide des développements limités de In(1 + z) et de 7— ; 1+ordre 2en0,ona:
"4 n+l
Up — Upy1 = (Z k) —1In(n) — (Z k) +In(n+1)
k=1 k=1
1

= In(n+1) —In(n) —

n+1

Par conséquent, on en déduit que :

Up — Unp+1

~ -
n—-+4oo 2712

(c) Déterminons la nature de la série ) -, (4, — un41). D’apres la question précédente, on a :

1

|u B un+1| n—>+oo o2’

Comme la série de Riemann ) % converge d’apres le cours, la série ) # converge aussi par
linéarité. De plus, comme la série Y -, |un — up41] est & termes positifs, elle est convergente
d’apres le critere d’équivalence des séries & termes positifs. Des lors, la série S (tup — Uny1) est
absolument convergente. Mais comme toute série absolument convergente est convergente, il
s’ensuit que :

la série E — Up41) CONVErge.
n>1

En particulier, la suite des sommes partielles (3 7 _,(ur — ug4+1)) converge. Mais comme par
p n—1 1 . .
télescopage >, _; (ur — Uk4+1) = u1 — Uy , il s’ensuit que la suite (u; — u,) converge, et donc :

‘la suite (uy)n>1 converge. ‘

(2) Partie II : étude de la variable X,.
(a) Etude du cas r = 3.
Dans cette question, on suppose que r = 3, c’est-a-dire que 'urne contient 3 boules numérotées
1,2, 3 pouvant étre piochées avec probabilité % Pour tout n € N*, on désigne par C), I’événement
”les n premieres pioches fournissent des boules portant toutes le méme numéro”.
(i) Comparons les événements [Yz > n] et C,,. Par définition, I'événement [Y2 > n| est réalisé
si et seulement s’il faut > n pioches pour obtenir 2 boules distinctes, c’est-a-dire si les n




(iii)

(iv)

premieéres pioches fournissent des boules portant toutes le méme numéro, ou en d’autres
termes si I’événement C,, est réalisé, et donc :

Yo > n] = C,.

A présent, calculons la probabilité P(C,). Pour tout ¢ € {1,...,n} et tout j € {1,2,3},
on désigne par C; ; I'événement ”On pioche la boule numéro j au i-eme tirage”. Alors C,
est réalisé si et seulement s’il existe j € {1,2,3} tel que l'on tire n fois de suite la boule
numéro 7, et donc on voit que :

C, = (01)1 n...N le) U (CLQ n...N Cnﬁg) U (01,3 Nn...N Cn’g).

Par incompatibilité des événements C11 N ...NCp1,C12N...NCp2,CizN...NCy3, 0n
obtient que :

P(Cn) = P(Cl’l N...N Cn,l) —+ P(CLQ n...N Cn’g) —+ P(Cl_’g N...N Cn’g).
D’apreés la formule des probabilités composées, on trouve que, pour tout j € {1,2,3} :

P(CyjNn..NChy) = P(C;)Pc,;(Coj)...Po, ;n.nCny; (Cnj)

1 1\"
X.X = = =) .
- )

Par conséquent, on en déduit que :

reo- (1)

Déterminons la valeur de P([Y2 > n]). Comme [Y2 > n] = C,,, on en déduit que :

P(Ya > n) = (;)

A présent, donnons la loi de Y5. Par définition, on voit que ’on ne peut obtenir deux boules
distinctes qu’en effectuant au moins 2 tirages, et donc Y5 ne peut prendre que des valeurs
entieres > 2. De plus, pour tout entier n > 2, on voit aisément que P([Y2 > n —1]) =
P([Yz > n]) + P([Y2 = n]), et donc :

Wl

n—2 n—1
1 1
Pl =) = P(a>n-1)- P> = (3) - (3)
Par conséquent, on obtient apres calculs que la loi de Y5 est donnée par :
2 1 n—2
oz Pa=a)=3(3)

Justifions que, pour tout n > 1, on ait : P([Y3—Ys = n]) = 3/ P([V3 = n+k]N[Ys = k]).
Comme Y5 ne peut prendre que des valeurs entieres > 2 d’apres la question précédente,
la famille ([Y2 = k])g>2 est un systéme complet d’événements. Des lors, la formule des
probabilités totales entraine que :

+oo

P(Ys = Vs =nl) = S P([Ys — Y2 = n] N [Ya = K])

k=2
Mais comme [Y3 — Yo = n] N [Ya = k] est réalisé si et seulement si [Y3 =n + k] et [Y2 = k]
sont simultanément réalisés, c’est-a-dire si [Y3 = n + k] N [Ya = k] Dest, il s’ensuit que
[Ys—Yo=n|N[Ya=k]=[Ys=n+k]N[Y2 = k], et donc :

+oo
P([Ys —Ya=n]) =Y _P([Ys =n+klN[Ys =k]).
k=2

Montrons que : Vn > 1, Vk > 2, P([Ys = n+ k] N[Ya = k]) = £+ (2)". Pour ce faire,
supposons que I’événement [Ya = k| soit réalisé. Pour tout ¢ € {k+1,...,n+k}, on désigne
par D; 'événement ” On pioche I'une des deux boules déja piochées au i-eme tirage”. Alors

Y3 = n + k| est réalisé si et seulement si Dyy1,..., Dpig_1, Dpig le sont, et donc :
[ + + +
[Ys=n+kNYo=k=[Yo=klNDgy1N.. N Dpy—1 N Dypig.




D’apres la formule des probabilités composées, on obtient que, pour tout j € {1,2,3} :
P([Yg =n++ ]41] N [}/2 = k]) = P(D/Q = k])P[YZ:k](Dk—H) X ...
o X Pryy—k)nDysrnenDnsi— 1 (Dntk)
2 (1\"? 2 2 1
= —-|= X = X .. X = X =,
3\ 3 3 3 3

Par conséquent, on en déduit apres calculs que, pour tout n > 1 et tout & > 2 :

P([Y3=n+k]ﬂ[Y2:k]):3kll(§> .

D’apres les questions (2)(a)(iii) et (2)(a)(iv), on voit que, pour tout n > 1 :

< e o\
P([Yg—Ygzn]):ZP([Y3=n+k]m[Y2:k]):ZBk1(3) _

k=2 k=2

Par linéarité de la somme, on obtient que, pour tout n > 1 :

n +oo
Pme—nznb=3(;)§j;.
k=2

On reconnait alors & droite la somme des termes d’une suite géométrique de raison .

3
D’apres le cours, il s’ensuit que, pour tout n > 1 :

N\" 1 1 2\"11 1/2\"
P(Vs—Yy=n) =3 (2) 2L _(2) 11 _172"
(s = Yo = nl) 3(3) 321-1 <3> 32 2(3)

Remarquons au passage que Y3 — Y5 ne peut prendre que des valeurs entieres > 1. En
effet, pour tirer une nouvelle boule non déja tirée, il faut effectuer au moins un tirage
supplémentaire par rapport aux précédents. Par conséquent, la loi de la variable aléatoire
Y3 — Y5 est donnée par :

Vn>1, p([ygnn]);@)n.

(b) Loi de Y;11 —Y; pour tout ¢ € {1,...,7 — 1}.

Dans toute la suite du probléme, r désigne un entier > 2.

(i)

Justifions que Y;(Q) = {i,i + 1,...} = N\ {0,1,....,i — 1}. Tout d’abord, pour obtenir i
boules distinctes, il faut avoir effectué au moins ¢ tirages au préalable, et donc Y; > 1.
De plus, pour tout entier k > i, I’événement [Y; = k| est réalisé si on tire (i — 1) boules
distinctes au cours des (i — 1) premiers tirages, si les boules tirées ensuite jusqu’au (k —1)-
eme tirage font partie des boules déja tirées et enfin si I'on tire une nouvelle boule jamais
tirée au cours du k-eme tirage. Des lors, la variable aléatoire Y; peut prendre toute valeur
entiere k > i, et donc :

Vi) = {ii+1,..} =N\ {0,1,..i — 1}.|

Justifions & présent que (Y41 — Y;)(Q2) = N*. Tout d’abord, on peut remarquer que
Yi+1 — Y; ne peut prendre que des valeurs entieres > 1. En effet, pour tirer une nouvelle
boule non déja tirée, il faut effectuer au moins un tirage supplémentaire par rapport aux
précédents. De plus, pour tout k > 1, 'événement [Y;11 — Y; = k| est réalisé si, apres le
i-eme tirage, on tire (k — 1) fois une des boules déja tirées, puis si l'on tire une nouvelle
boule jamais tirée au cours du tirage suivant. Des lors, la variable aléatoire Y; 11 —Y; peut
prendre toute valeur entiere k > 1, et donc :

| (Vi1 = Y)(@) = N*.

Montrons que : Vn > 1, Vk > i, Py,—([Yiq1 = Y: = n]) = (%)n_l (1—1%). Pour ce
faire, supposons que 1’événement [Y; = k] soit réalisé. Pour tout [ € {k+1,...,n+ k}, on
désigne par B; I’événement ”On pioche 'une des boules déja piochées au [-eme tirage”.
Alors [Yi41 — Y; = n] est réalisé si et seulement si [Y;11 = n + k] est réalisé, c’est-a-dire si
les événements By 1, ..., Bnik_1, Bnik sont simultanément réalisés, et donc :

Yigi=n+kN[Y;=k =[Y; =k NBri1N... N Bpyr—1N By



10

D’apres la formule des probabilités composées, on obtient que, pour tout j € {1,2,3} :

P([Yigr =n+ k| N[Y; = k]) P([Y: = k) Pry,=k) (Br+41) X ..
- X P[Yi:k]ﬁBk+1ﬁ.‘.ﬁBn+k—l(Bn+k)

- X ...X =X <1—)
r r r
1
- ) .
r
Par conséquent, on en déduit que, pour tout n > 1 et tout k > 2 :

Pry,—([Yiz1 = Yi=n]) = (;)nl (1 - ;) .

(iii) D’apres la question précédente, on sait que Y; ne peut prendre que des valeurs entieres > 1,
et donc la famille ([Y; = k])x>; est un systéme complet d’événements. D’apres la formule
des probabilités totales, on obtient que :

I
3
=
I
&

I
o)
fam
=
I
x>
=
Y
= | .
N——
3
|
—
/N

+oo
P([Yip1—=Yi=n]) = > P([Yip1—Y;=n]N[Y; =k])
k=1
+oo
= Y P([Yir1 = n+ HN[Y; = k).
k=1

D’apres le résultat de la question précédente, il s’ensuit que :
+o00 i n—1 i
P(iss = Yi =) = 3 P(Y = 4) (2) (-1
Par linéarité de la somme, on obtient que :
P([Yis — ¥ = n) = () (1-3) S PV = ).
r r) e

Mais comme la famille ([Y; = k])x>; est un systéme complet d’événements, la somme de
la série Z;:Oj P([Y; = k]) est égale & 1. Des lors, il s’ensuit que, pour tout n > 1 :

P(Yiar — Y = ] = () (1-3)-

Comme Y;11 — Y; ne peut prendre que des valeurs entieres n > 1, on en déduit que :

Y;H—Yﬁg(l—z).
T

D’apres le cours, on sait qu’alors :

1
1—

i
et V(Yip1 —Yi) = ﬁ

Par conséquent, on en déduit apres simplification que :

E(Yiy1 —Y;) =

<l

T 1
B(Yiy = ¥i) = 1 ot V(¥is =¥ = 2

(¢) Espérance et variance de X,..
(i) Justifions 'égalité X, = 1 + E;:_ll(YT_iH —Y,—;). Comme Y; = 1, on obtient par
télescopage que :

r—1
14+ Vi = Y) =N+ (Y, = Yea) + o+ (Yo = Y1) = V.
=1



11

Mais comme X,. =Y., on en déduit que :

r—1
X,=1+ Z(eri#»l - Y, ).
i=1

Admettons que les variables Y5 — Y7,Y3 — Y5, ..., Y, — Y,._; soient indépendantes. Comme
X, =1+ E::_ll (Yr—it1 — Yr—;) et que les variables aléatoires (Y;_;11 — Y,—;) admettent
toutes une espérance, X, admet aussi un espérance. De plus, par linéarité de I’espérance
et d’apres la question (2)(b)(i4i), on obtient que :

r—1
E (1 + Z(Yrﬂ‘ﬂ - Yri))
i—1

B(X,)

r—1
1+ Z E(Y,—it1—Yr)
=1

|

I
+
3

I

Par conséquent, on en déduit que :

T

E(X,)=r) %

i=1

De méme, comme les variables Yo — Y7, Y3 — Y5, ..., Y. — Y,._; sont indépendantes et qu’elles
admettent toutes une variance, la variable aléatoire X, admet aussi une variance. De plus,
d’apres la question (2)(b)(iii) et les propriétés de la variance, on obtient que :

r—1
ViX,) =V (1 + Z(Yrﬂud - er))
i=1

r—1
=V < (Yr—ig1 — Yr—i))
i=1

r—1

= > Vi =Y

" r(r— 1)
2z
=1

<.

Par linéarité de la somme, on trouve que :

2 i, (=1 N
V(XT):Z 2 =T (le>—r< 12>

i=1 i=1

Par conséquent, on en déduit que :




(ii) Ecrivons une fonction en Python qui, & partir d’un entier r > 1, calcule et affiche la matrice
M, € M, (R) dont les lignes sont L1 = (E(X1),..., E(X,)) et Ly = (V(X1),...,V(X,)),
puis qui trace dans le plan ’ensemble des points My, = (E(X%), V(X)) pour k € [1,7].
Pour ce faire, on procéde comme suit :

import numpy as np
import matplotlib.pyplot as plt

def prob2(r):

m=np.zeros ([2,r])

for k in range(r):
m[0,k]=(k+1)*np.sum(1/np.arange(1,k+1))
m[1,k]=((k+1)**2)*np.sum(1/(np.arange(1,k+1)**2))-m[0,k]

print (m)

x=np.zeros (r)

y=np.zeros (r)

for k in range(r):
x[k]=m [0, k]
y[kl=m[1,k]

plt.plot(x,y,’.’)

plt.show()

(iii) Montrons qu'il existe deux réels a, § tels que :

E(X,) =T In(r) + ar +o(r) et V(X,) ~ pr

r——4o0

D’apres la question (1)(c), on sait que la suite (u,) converge. Si « est la limite de (uy,),
alors on voit que u, = at o(1) par définition. Mais comme u, = (>, _; +) — In(r)
r—+00

pour tout r € N*, on a :

1
Up = ( 1k:> —In(r) T a+o(1),

k=
d’otn il s’ensuit que :

1
; T e In(r) + o+ o(1).

Par produit avec r, on trouve que :

—+oo

1
r,;:l = rin(r) + ar + o(r)

Par conséquent, on en déduit avec la question précédente que :

E(X,) T rin(r) + ar + o(r).

En outre, d’apres la question (1)(d), on sait que la série ) k—lz converge. Si 3 est la somme
de cette série, alors on voit que Y.._; %2 = B + o(1) par définition. De plus, comme
T—>+00

cette série est a termes > 0, on voit que 5 > 0 et donc :

V(X,) = r*[B+o(1)]—7r[n(r)+a+o(l)].
r—+00
Par des calculs simples, on trouve alors que :

V(X)) o Br2 +r[—In(r) — a+o(r) — o(1)].

1 = 1 A = 1 =
Comme In(r) v o(r) par croissance comparée, que « v o(r) et que o(1) e o(r),

on voit que :

V(X,) T Br2 +rlo(r)] = Br* + o(r?).

Mais comme (3 # 0, on en déduit que :

V(X)) ~ B

r—+00
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(3) Partie III : loi de X, et déviation asymptotique par rapport 4 sa moyenne.
Pour tout entier m > 0 et pour tout entier k € {1,...,7}, on considere les événements Ay, : "le
numéro k n’a pas été pioché durant les m premieres pioches” et By ,, : "k numéros fixés au départ
n’ont pas été piochés durant les m premieres pioches”. Enfin, on admet la formule du crible pour n
événements Ay, ..., A,, & savoir :

P(A U...UA,) = zn:(—l)’“’1 Z P(A;; Nn...NA;)

k=1 1<i1 <. <ip<n

(a) Détermination de la loi de X,..

(i) Calculons la probabilité de 1’événement Ay ,,,. Fixons pour cela les entiers k, m. Pour
tout ¢ € [1,m], on désigne par E; ’événement ”la boule numéro k n’a pas été pioché lors
du i-eme lancer”. Alors 'événement Ay ., est réalisé si et seulement si les événements
FE, ..., E,, sont simultanément réalisés, et donc :

Ak’,m =FE N...NE,.
Par indépendance des E; (vu que les tirages se font avec remise), on trouve que :

r—1 r—1
X ... X .
r r

P(Apm) = P(Ey)...P(Ey,) =

Par conséquent, on en déduit que :

P(Apm) = (T — 1>m.

r

A présent, calculons la probabilité de 1’événement By, ,,,. Fixons pour cela les entiers k, m.
Pour tout i € [1,m], on désigne par F; I’événement ”les k numéros en question n’ont pas
été piochés lors du i-eme lancer”. Alors I'événement By, ,,, est réalisé si et seulement si les
événements F1, ..., F;, sont simultanément réalisés, et donc :

Bim = Fi1N...NFy,.
Par indépendance des F; (vu que les tirages se font avec remise), on trouve que :
r—k r—=k

X ... X

P(Bk,nl) = P(Fl)P(F"L) = r r

Par conséquent, on en déduit que :

P(Bim) = (T - k)m.

r

(ii) Justifions que P([X, > m]) = P(A1m U Agm U ... U A, ). Par définition, 'événement
[X > m] est réalisé si et seulement si, au cours des m premiéres pioches, on n’a pas tiré
les  boules, c’est-a-dire 8’il existe un entier k € {1,...,r} tel que le numéro k n’a pas été
pioché durant les m premieres pioches, ou en d’autres termes si I'un des Ay, ,, est réalisé,
et donc :

[Xr > m] = Al,m U Agﬁm U...u AT,m-

En passant aux probabilités, on en déduit que :

’P([XT >m]) = P(Aym UAgpm U...UAp). \

(iii) Montrons & I’aide de la formule du crible que : P([X, > m]) =Y, _;(-1)*7*(}) (1 - %)m .

D’apres la formule du crible appliquée a la question précédente, on trouve que :

T

P([X, >m]) = > (-1t > P(Aim NN Ay )

k=1 1<ii<...<ip <r

Par définition, I’événement A;, ,,, N...N A;, » est réalisé si et seulement si les k£ numéros
i1,...,1, n'ont pas été piochés, c’est-a-dire si By, p, est réalisé, et donc :

—k\™
P(Aiyn O oo OV Aiy ) = P(Brom) = (T - ) .
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Deés lors, on trouve que :

P([Xr>m]):i(71)k71 3 (rrk>m

k=1 1<ip<...<ip <r

Déterminons maintenant le nombre de termes de la deuxieme somme de droite. Par
définition, cette somme comporte autant de termes qu’il y a de facons de choisir k ter-
mes en ordre croissant parmi {1,...,r}. Pour obtenir k termes en ordre croissant parmi
{1,...,7}, on commence par choisir k termes parmi {1, ...,7}, sans ordre et sans répétition,
ce qui fait (2) possibilités. Ensuite, on les ordonne de la seule facon possible. Il y a donc
(;) x 1 fagons de choisir k termes en ordre croissant dans l’ensemble {1, ...,7}, et donc la
deuxieme somme de droite comporte (2) termes. Par conséquent :

PX, > m)) = S (1 () (1- ’“)m .

k=1

(iv) Déterminons laloi de X,.. Par définition, on voit que ’on ne peut obtenir r boules distinctes
qu’en effectuant au moins r tirages, et donc X, ne peut prendre que des valeurs entiéres
> r. De plus, pour tout m > r, on voit que P([X, > m—1]) = P([X, > m])+P([X, =m]),
et donc on a par linéarité de la somme :

P(X, =m]) = P(X,>m—1])— P([X, > m])

e[GO RIS
- Qe -0
- 2o () 09

Par conséquent, on obtient apres simplification que la loi de X, est donnée par :

T

Ym>r, P(X,=m]) = Z(_ng (;) (1 - f)m_l .

k=1

(b) Comportement asymptotique de X, au dela de sa moyenne.
Pour tout réel € > 0, on désigne par M, la partie entiere de (1 4 €)rln(r), c’est-a-dire I'unique
entier relatif M, tel que M, < (1+¢&)rln(r) < M, + 1.
(i) Montrons par récurrence la propriété P définie pour tout m > 1 par :

P(m) : ”Pour tous événements Dy, ..., Dy, P(D1U...UD,,) < P(Dq)+ ...+ P(Dp)”.

Tout d’abord, on voit que P(1) est vraie, car P(D;) < P(D;). A présent, supposons que
P(m) soit vraie, et montrons que P(m+1) 'est aussi. Soient Dy, ..., D1 des événements
quelconques, et posons E,, = D,,, U D, 1. Alors on voit que :

DiU...UDpi1=D1U...UDpy_1 U E,,.

Par hypothese de récurrence, on obtient que :
P(D1U...UDy41) < P(D1)+ ...+ P(Dyp—1) + P(En).
ce que l'on peut réécrire sous la forme :
P(D1U..UDyy1) <P(D1)+...+ P(Dpo1) + P(Dyyy UDppg1) (%),
Or, d’apres la formule du crible, on sait que :
P(Dy U D) = P(Dy) + P(Dint1) — P(Din N Dypgr).
Comme toute probabilité est un réel > 0, on voit que :
P(Dy U Dyy1) < P(Dy) + P(Diny1)-
Des lors, cela entraine avec 'inégalité (x) que :
P(D1U..UDpi1) < P(D1)+ ...+ P(Dyy—1) + P(Dp,) + P(Dit1)s
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d’ott il s’ensuit que P(m + 1) est vraie. D’apres le principe de récurrence, la propriété P
est vraie a tout ordre m > 1. Des lors, pour tous événements D1, ..., D,,, on a :

| P(D1U..UD,,) < P(D1) + ... + P(Dy,). |

(ii) Démontrons que, pour tout réel z, on a : e® > 1+ x. Pour ce faire, on peut remarquer que
la fonction exponentielle est convexe. En effet, cette fonction est de classe C?, et de plus
(e*)” = ¢e* > 0 pour tout € R. En particulier, la courbe de ’exponentielle est située au
dessus de sa tangente en 0, qui a pour équation y = 1 + z, et donc :

‘Va:e]R, ex21—|—a:.‘

A présent, montrons que : Vm € N*, Vk € {1,...,r}, P(Ag,») < e~ . D’aprés la question
(3)(a)(i), on sait que :

r—1\" "
T T
D’apres I'inégalité ci-dessus, on trouve que 0 < 1 — % < e_%, et donc :

P(Apm) < (e*%)m.

Par conséquent, on en déduit que :

Vm e N*, Vk e {l,..,r}, P(Apm)<e 7.

(iii) Comparons les événements [X > M,] et [X > (1 +¢)rln(r)]. Pour ce faire, supposons que
Iévénement [X > M,] soit réalisé. Comme X > M,, on voit que X > M, + 1 (car X
ne prend que des valeurs entieres). Mais comme M, + 1 > (1 + ¢)rIn(r) par définition, il
s’ensuit que X > (1 + ¢)rln(r), que Pévénement [X > (1 + ¢)rln(r)] est réalisé, et donc :

[X > M,] C[X > (1+¢e)rin(r)].

Réciproquement, supposons que I'événement [X > (1 + e)rln(r)] soit réalisé. Comme
X > (14 ¢&)rin(r) et que (1 + &)rln(r) > M, par définition de la partie entiére, on voit
que X > M,., et donc :

[X > (14¢e)rin(r)] C [X > M,].

Par double inclusion, on en déduit que :

\ X >M]=[X>(1 +5)r1n(r)].\

A présent, montrons que P([X, > (1 +¢)rln(r)]) < -%. Partant de I’égalité ci-dessus, on
obtient en passant aux probabilités et a l’aide des questions (3)(b)(4) et (3)(b)(é) :

P([X > (1+¢)rin(r)]) P([X > M,])

= P(ALMr U"'UATJ\/[,«)

IN

P(ALMT) + ...+ P(AT',I\/[T)
My My
< e dade
< re ().
En outre, comme M, est la partie entiere de (1 + €)rIn(r), on obtient que :

M,>1+e)rh(r)—1 = - < —(14+¢)n(r)+1

s e—% < e~ (1+e)In(r)+1

. . . 1 N

Mais comme 7 est un entier > 0, on voit que © > 1, et donc er < e! = e. Dés lors, on a :
_ My e

(& < m (**)
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A Taide des inégalités (x) et (xx), il s’ensuit que :

P(X > 1+4+e)rin(r)]) <rx £

rlte’

d’ot1 'on déduit que :

e

P(IX > 1 +e)rin(r)]) <

re’

(c) Distribution de X, autour de sa moyenne.
Pour tout réel t fixé, on désigne par m, la partie entiere de rIn(r) + rt, c’est-a-dire I'unique
entier relatif m, tel que m, < rlu(r) +rt < m, + 1. De plus, on introduit la suite (Z,),>2 de
variables aléatoires définies pour tout r > 2 par :

X, —rlin(r)

—

Z, =

(i) Justifions lexistence d’un rang ro(t) tel que : Vr > ro(t), m, > 1. Par définition, on a :
t 1

r  rln(r)
Comme f tend vers 0 quand r tend vers +oo, et que r1n(r) tend vers 400 quand r tend
vers +00, il s’ensuit que r1n(r) + rt — 1 tend vers 400 quand r tend vers +o0o. D’apres

le théoreme d’encadrement, on voit que m, tend vers +oo quand r tend vers +oo. Mais
alors cela signifie que :

VK >0, dRg:>0, Vr>Rg; m,>K.
En posant K =1 et ro(t) = E(R1,) + 1, on en déduit que :

rin(r) +rt — 1 =rln(r) [14— < my.

‘Hro(t) eN*, Vr>ro(t), my> 1.‘

(ii) Etablissons 'égalité : Vr > ro(t), P([Z, > t]) = P([X, > m,]). Pour ce faire, supposons
que ’événement [Z, > t] soit réalisé. Alors, on voit que :

er:ln(r) >t

Zy >t —
= X, —rn(r) >rt
= X, >rln(r)+rt > E(rin(r) +rt)
= X, > E(rln(r) +rt)

= X, >m,,
et donc 'événement [X, > m,] est réalisé. En particulier :
[Z, > 1] C [X; > m,].

A présent, supposons que 1’événement [X, > m,] soit réalisé. Comme X, > m, et que X,
ne prend que des valeurs entieres, on voit que X, > m, + 1, et donc :

X, >m,+1 X, > E(rin(r)+rt) +1
X, >rin(r) +rt
X, —rin(r) > rt

X,—rlIn(r)
- — >t

el

Z, > t,
et donc 'événement [Z, > t] est réalisé. En particulier :
(X, > m,] C[Z, >t].

Des lors, il s’ensuit par double inclusion que [Z, > t] = [X, > m,], et donc :

| P12, > 1)) = P(X, > m,)). |
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Soit k € N. A l'aide d’un développement limité, montrons que :

my In (1_k> — k() — kt + o(1).

r 7—+00

Comme m, est la partie entiere de rIn(r) 4 rt, on voit que rIn(r) + rt — m,. appartient &
[0, 1] pour tout r € N*, et donc 7 In(r) + rt —m, = o(r), ce qui entraine que :
r—+00
my =0T In(r) + rt + o(r).

Comme —£ tend vers 0 quand r tend vers +oo et que In(1+2) = x— % +o(2?), on

T r——4o0
obtient par substitution que :

In 17ﬁ = féfkaJro 1
r) rotoo o 22 r2 )’

Par produit, on trouve alors que :
k ko k? 1
m, In (1 - r) v (rin(r) + rt 4+ o(r)) (_r ~ 53 +o (7&))
21 1 2
= —kln(r)—m—i—o(w)—kt—kt
2r r

2
+0(i> —o(k:)—o(gi) +o(i>.

1 . .
Comme # tend vers 0 quand r tend vers +oo par croissances comparées, et que % tend
vers 0 quand r tend vers 400, on en déduit que :

r r——+00

m, In (1_k> —  kIn(r) — kt +o(1),

k
r r

Montrons que ~ — pour tout k € N. Par définition, on sait que :
k) r—+oo k!

r\ _ rr—1)r—-2)..(r—k+1)
(k‘) k!

Pour k fixé, le numérateur de cette fraction est un polyndéme en r, unitaire et de degré r.
Comme tout polynoéme est équivalent en 400 & son terme de plus haut degré, on a :

T rk
k) r—too !
A présent, montrons que :

im (TY (1B o
T—Hipoo k r Tk

Par des calculs simples et d’apres la question précédente, on trouve que :

(1-5)" cemmtot) o om0

r r—>+00 r—+00 ’r‘k’

Comme un o(1) est une expression qui tend vers 0 quand r tend vers 400, on voit que
€M) tend vers 1 quand r tend vers +o0, et donc :

k my e—kt
1—— ~ .
r r—4oo 1k

D’apres le calcul précédent et les regles de calculs des équivalents, on a :

r k my 7,.16 e—kt e—kt
1 —_ = ~ —_— —_— ~ —_— .
(k) < 1") r—+oo k! % rk rotoo k!

Par conséquent, on en déduit que :




