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Corrigé du Devoir Maison de Mathématiques no5

Corrigé de l’exercice 1. Soit f : R −→ R la fonction définie pour tout x ∈ R par f(x) = ln
(
x+

√
1 + x2

)
.

(1) (a) Calculons le développement limité de f à l’ordre 3 en 0. D’après le cours, on sait que :

√
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3y3

48
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Si l’on pose y = x2, alors on voit que y tend vers 0 quand x tend vers 0. Dès lors, par substitution
puis élimination des termes de degré > 3, on obtient que :√

1 + x2 =
x→0

1 +
x2

2
− x4

8
+

3x6

48
+ o(x3) =

x→0
1 +

x2

2
+ o(x3).

Posons maintenant z = x+
√
1 + x2 − 1. D’après le calcul précédent, on trouve que :

z = x+
√
1 + x2 − 1 =

x→0
x+

x2

2
+ o(x3).

Comme 1 + z = x +
√
1 + x2 et que de plus z tend vers 0 quand x tend vers 0, on obtient par

substitution, puis par utilisation de la formule du binôme et enfin par élimination des termes de
degré > 3 que :

f(x) = ln(1 + z)
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d’où il s’ensuit que :

f(x) =
x→0

x− x3

6
+ o(x3).

(b) D’après le résultat de la question précédente, on en déduit que l’équation de la tangente à la
courbe de f en 0 est donnée par :

y = x.

De plus, comme f(x) =
x→0

x− x3

6
+ o(x3), il s’ensuit que f(x)− x =

x→0
−x3

6
+ o(x3), et donc :

f(x)− x ∼
x→0
−x3

6
.

En particulier, le signe de f(x)− x est donné par celui de −x3/6 au voisinage de 0, c’est-à-dire
f(x) − x > 0 pour x < 0 proche de 0, et f(x) − x < 0 pour x > 0 proche de 0. En d’autres
termes, si Cf désigne la courbe de f et T0 sa tangente en 0, alors :

Cf est située au dessus de T0 pour x < 0 proche de 0, en dessous de T0
pour x < 0 proche de 0, et (0, 0) est un point d’inflexion de Cf .
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(2) (a) Calculons f ′(x) pour tout x ∈ R. D’après les règles de dérivation classiques, on trouve que :

f ′(x) =
(
ln(x+

√
1 + x2)

)′
=

(x+
√
1 + x2)′

x+
√
1 + x2

=
1 + 2x

2
√
1+x2

x+
√
1 + x2

=
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=
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1+x2+x√
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x+
√
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=
1√
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×
√
1 + x2 + x

x+
√
1 + x2

,

d’où il s’ensuit que :

∀x ∈ R, f ′(x) =
1√

1 + x2
.

De même, calculons f ′′(x) pour tout x ∈ R. D’après les règles de dérivation classiques et
l’expression de f ′(x) trouvée ci-dessus, on obtient que :

f ′′(x) =

(
1√

1 + x2

)′

=
(
(1 + x2)−

1
2

)′
= 2x×−1

2
× (1 + x2)−

1
2−1 = −x(1 + x2)−

3
2 ,

d’où il s’ensuit que :

∀x ∈ R, f ′′(x) =
−x

(
√
1 + x2)3

.

(b) D’après la formule de Taylor-Young appliquée à la fonction f à l’ordre 2 en 1, on trouve que :

f(x) =
x→1

f(1) + f ′(1)(x− 1) +
f ′′(1)

2!
(x− 1)2 + o((x− 1)2)

=
x→1

ln(1 +
√

1 + 12) +
1√

1 + 12
(x− 1) +

−1
2(
√
1 + 12)3

(x− 1)2 + o((x− 1)2),

d’où il s’ensuit que :

f(x) =
x→1

ln(1 +
√
2) +

1√
2
(x− 1)− 1

4
√
2
(x− 1)2 + o((x− 1)2).

(c) D’après le résultat de la question précédente, on en déduit que l’équation de la tangente à la
courbe de f en 1 est donnée par :

y = ln(1 +
√
2) +

1√
2
(x− 1).

De plus, d’après la question (2)(b) et par les mêmes arguments qu’à la question (1)(c), on a :

f(x)− ln(1 +
√
2)− 1√

2
(x− 1) ∼

x→1
− 1

4
√
2
(x− 1)2.

En particulier, le signe de f(x)− ln(1 +
√
2)− (x− 1)/

√
2 est donné par celui de −(x− 1)2 au

voisinage de 1, c’est-à-dire f(x) − ln(1 +
√
2) − (x − 1)/

√
2 ≤ 0 pour tout x proche de 1. En

d’autres termes, si T1 désigne la tangente à la courbe de f en 1, alors :

Cf est située en dessous de T1 pour tout x proche de 1.

Corrigé de l’exercice 2. A l’aide des développements limités, calculons :

lim
x→0

xex − ln(1 + x) + 3x2

1− cos(x)
.
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Pour ce faire, on commence par calculer des développements limités à l’ordre 2 en 0 des numérateur et
dénominateur de cette fraction. D’après les règles de calcul des développements limités, on trouve que :

xex − ln(1 + x) + 3x2 =
x→0

x

(
1 + x+

x2

2
+ o(x2)

)
−
(
x− x2

2
+ o(x2)

)
+ 3x2

=
x→0

x+ x2 +
x3

2
+ o(x2)− x+

x2

2
+ o(x2) + 3x2

=
x→0

9x2

2
+ o(x2).

De même, comme cos(x) =
x→0

1− x2

2
+ o(x2), on voit que 1− cos(x) =

x→0

x2

2
+ o(x2), et donc :

xex − ln(1 + x) + 3x2

1− cos(x)
=

x→0

9x2

2 + o(x2)
x2

2 + o(x2)
=

9 + o(1)

1 + o(1)
.

Comme les termes de la forme ”o(1)” correspondent à des fonctions qui tendent vers 0 quand x tend vers 0,
on en déduit que :

lim
x→0

xex − ln(1 + x) + 3x2

1− cos(x)
= 9.

Corrigé de l’exercice 3. Soit n un entier ≥ 2. On considère un endomorphisme f de Rn, dont la matrice
dans la base canonique de Rn est une matrice M de rang 1. On note C la première colonne de M et on
suppose que C est non nulle.

(1) Donnons tout d’abord la dimension de ker(f). Comme M est la matrice de f dans la base canonique
de Rn, on voit que :

rg(f) = rg(M) = 1.

D’après le théorème du rang, ceci nous donne que :

dimker(f) = n− rg(f) = n− 1.

Dès lors, comme n ≥ 2, on voit que dimker(f) = n− 1 > 0. Par conséquent, on en déduit que :

dimker(f) = n− 1 et 0 est valeur propre de f.

(2) (a) Montrons qu’il existe une matrice L =
(
1 l2 ... ln

)
appartenant à M1,n(R) telle que M =

CL. Comme la matrice M est de rang 1, ses colonnes C1, ..., Cn sont colinéaires entre elles. Dès
lors, comme C = C1 est non nulle, toutes les colonnes C2, ..., Cn sont colinéaires à C, et donc il
existe des réels l2, ..., ln tels que Ci = liC pour tout i ∈ J2, nK. En particulier, si c1, ..., cn sont
les composantes de C, alors la matrice M est de la forme :

M =
(
C | l2C | ... | lnC

)
=


c1 l2c1 ... lnc1
c2 l2c2 ... lnc2
...

...
...

cn l2cn ... lncn

 =


c1
c2
...
cn

(1 l2 ... ln
)
.

Mais comme C =


c1
c2
...
cn

, on en déduit que :

il existe une matrice L =
(
1 l2 ... ln

)
telle que M = CL.

(b) Vérifions que Tr(M) = LC. D’après la question précédente, on voit que :

Tr(M) = Tr



c1 l2c1 ... lnc1
c2 l2c2 ... lnc2
...

...
...

cn l2cn ... lncn


 = c1 + l2c2 + ...+ lncn.
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En outre, on trouve avec le produit ligne-colonne que :

(
1 l2 ... ln

)

c1
c2
...
cn

 = 1× c1 + l2c2 + ...+ lncn.

Par conséquent, on en déduit que :

Tr(M) = LC.

(c) Etablissons l’égalité M2 = Tr(M)M . D’après la question (2)(a), on voit par associativité du
produit matriciel que :

M2 = MM = CLCL = C(LC)L.

Comme LC est un réel, ceci entraine avec la question (2)(b) que :

M2 = C(LC)L = (LC)CL = (LC)M = Tr(M)M.

Par conséquent, on en déduit que :

M2 = Tr(M)M.

(3) Montrons que Tr(M) est une valeur propre de f . D’après la question (2)(c), on sait que M2 =
Tr(M)M . Comme f est l’endomorphisme canoniquement associé àM , ceci entraine que f2 = Tr(M)f .
A noter que, comme f est de rang 1 d’après la question (1), f n’est pas l’endomorphisme nul. En
particulier, il existe un vecteur x ∈ Rn tel que f(x) ̸= 0. Dès lors, ceci nous donne que :

f(f(x)) = f2(x) = Tr(M)f(x).

Comme f(x) ̸= 0, il s’ensuit que f(x) est un vecteur propre de f pour la valeur propre Tr(M). Par
conséquent, on en déduit que :

Tr(M) est une valeur propre de f.

(4) On suppose que Tr(M) = 0. Montrons que f n’est pas diagonalisable. Comme M2 = Tr(M)M
d’après la question (2)(c) et que Tr(M) = 0 par hypothèse, on voit que M2 = 0, et donc le polynôme
P : x 7−→ x2 est annulateur de M . Comme f est l’endomorphisme canoniquement associé à M ,
ceci entraine que P est aussi annulateur de f . En particulier, on obtient que Sp(f) ⊂ {0}. De plus,
comme 0 est valeur propre de f d’après la question (1), il s’ensuit que Sp(f) = {0}. Qui plus est, on
voit avec la question (1) que :

dimE0(f) = dimker(f) = n− 1 ̸= dimRn.

Par conséquent, on en déduit que :

si Tr(M) = 0, alors f n’est pas diagonalisable.

(5) On suppose que Tr(M) ̸= 0. Déterminons tout d’abord les valeurs propres de f . D’après la question
(2)(c), on sait que M2 = Tr(M)M . Comme f est l’endomorphisme canoniquement associé à M , ceci
entraine que f2 = Tr(M)f , et donc le polynôme P : x 7−→ x2 − Tr(M)x est annulateur de f . En
particulier, on obtient que Sp(f) ⊂ {0,Tr(M)}. Dès lors, comme 0 et Tr(M) sont valeurs propres de
f d’après les questions (1) et (3), il s’ensuit que :

Sp(f) = {0,Tr(M)}.

A présent, montrons que f est diagonalisable. D’après la question (1), on sait déjà que :

dimE0(f) = dimker(f) = n− 1.

De plus, comme Tr(M) est une valeur propre de f , on voit que ETr(M)(f) n’est pas réduit à {0}, et
donc dimETr(M)(f) ≥ 1. En particulier, comme Tr(M) ̸= 0 par hypothèse, ceci nous donne que :

dimETr(M)(f) + dimE0(f) ≥ 1 + n− 1 = n.

Par ailleurs, on sait d’après le cours que dimETr(M)(f) + dimE0(f) ≤ n, et donc :

dimETr(M)(f) + dimE0(f) = n.

Par conséquent, on en déduit que :

si Tr(M) ̸= 0, alors f est diagonalisable.
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A présent, on se fixe trois réels a, b, c non nuls, et on considère l’endomorphisme g de R3 dont la matrice dans
la base canonique de R3 est donnée par :

A =

1 1/a 1/b
a 1 1/c
b c 1

 .

Par la suite, on suppose que A n’est pas inversible.

(1) Ecrivons une fonction en Python qui, étant donnés trois réels a, b, c non nuls, construit et affiche la
matrice A. Pour ce faire, on procède comme suit :

import numpy as np

def matrice(a,b,c):

m=np.array([[1,1/a,1/b],[a,1,1/c],[b,c,1]])

return m

(2) (a) Etablissons que ac = b. Pour ce faire, on raisonne par l’absurde et on suppose que ac ̸= b.
Considérons alors le système AX = 0, où X a pour composantes x, y, z. Alors ce système peut
se réécrire sous la forme :

x +
1

a
y +

1

b
z = 0

ax + y +
1

c
z = 0

bx + cy + z = 0

.

En effectuant les opérations élémentaires L2 ← L2 − aL1 et L3 ← L3 − bL1, on trouve que :

x +
1

a
y +

1

b
z = 0

(
1

c
− a

b

)
z = 0

(
c− b

a

)
y = 0

.

En effectuant l’opération élémentaire L2 ↔ L3, on obtient que :

x +
1

a
y +

1

b
z = 0

(
c− b

a

)
y = 0

(
1

c
− a

b

)
z = 0

.

Comme b et c sont non nuls par hypothèse, on trouve en effectuant les opérations élémentaires
L2 ← cL2 et L3 ← bcL3 que :

x +
1

a
y +

1

b
z = 0

(ac− b) y = 0

− (b− ac) z = 0

.

Comme A n’est pas inversible, le système AX = 0 admet une solution non nulle, ce qui n’est
possible d’après ce qui précède que si ac − b = 0. Mais ceci est impossible car ac ̸= b par
hypothèse. Par conséquent, on en déduit que :

ac = b.
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(b) Déterminons le rang de A. Par définition, on voit que :

rg(A) = rg

1 1/a 1/b
a 1 1/c
b c 1

 .

En effectuant les opérations élémentaires L2 ← L2 − aL1 et L3 ← L3 − bL1, on trouve que :

rg(A) = rg

1 1/a 1/b
0 0 1/c− a/b
0 c− b/a 0

 .

En effectuant l’opération élémentaire L2 ↔ L3, on obtient que :

rg(A) = rg

1 1/a 1/b
0 c− b/a 0
0 0 1/c− a/b

 .

Comme b et c sont non nuls par hypothèse, on trouve en effectuant les opérations élémentaires
L2 ← cL2 et L3 ← bcL3 que :

rg(A) = rg

1 1/a 1/b
0 ac− b 0
0 0 b− ac

 .

Comme ac = b d’après la question précédente, ceci entraine que :

rg(A) = rg

1 1/a 1/b
0 0 0
0 0 0

 .

Comme a et b sont non nuls par hypothèse, on trouve en effectuant les opérations élémentaires
C2 ← aC2 − C1 et C3 ← bC3 − C1 que :

rg(A) = rg

1 0 0
0 0 0
0 0 0

 = 1.

Par conséquent, on en déduit que :

rg(A) = 1.

(3) (a) Montrons que g est diagonalisable et donnons ses valeurs propres. Par définition de la matrice
A, on voit que Tr(A) = 3 ̸= 0. Dès lors, comme rg(A) = 1 d’après la question précédente, que
la première colonne de A est non nulle et que g est l’endomorphisme canoniquement associé à A
par définition, on obtient d’après la question (5) de la première partie que :

g est diagonalisable et Sp(g) = {0, 3}.

(b) Montrons par récurrence la propriété P définie pour tout n ∈ N∗ par :

P(n) : ”An ∈ Vect(A)”.

Tout d’abord, on voit que P(1) est vraie, car A1 = A appartient à Vect(A). A présent, supposons
la propriété P vraie à l’ordre n ≥ 1, et montrons-la à l’ordre n+1. Par hypothèse de récurrence,
on sait que An appartient à Vect(A), et donc il existe un réel λn tel que An = λnA. Comme
rg(A) = 1 d’après la question (2)(b), que la première colonne de A est non nulle et que Tr(A) = 3,
on voit que A2 = 3A d’après la question (2)(c) de la première partie, et donc :

An+1 = AnA = λnAA = λnA
2 = 3λnA,

d’où il s’ensuit que P(n+1) est vraie. D’après le principe de récurrence, la propriété P est vraie
à tout ordre n ≥ 1. Par conséquent, on en déduit que :

∀n ∈ N∗, An ∈ Vect(A).

Corrigé du problème 1. Soit r un entier ≥ 2. Une urne contient r boules numérotées de 1 à r. On
pioche indéfiniment les boules avec remise, chaque boule pouvant être piochée de façon équiprobable. Pour
tout i ∈ {1, ..., r}, on désigne par Yi le nombre de pioches nécessaires pour obtenir i boules distinctes. Par
convention, on pose Y1 = 1. De même, on désigne par Xr le nombre de pioches nécessaires pour obtenir les
r boules numérotées. Il est clair que Xr = Yr. Par exemple, en supposant que r = 4 et si les boules piochées
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portent les numéros : 3, 3, 3, 1, 1, 1, 1, 2, 3, 2, 4, 1, ..., alors on voit que : Y1 = 1, Y2 = 4, Y3 = 8, Y4 = X4 = 11.

(1) Partie I : résultats préliminaires.

On considère la suite (un)n≥1 définie pour tout n ≥ 1 par : un =
(∑n

k=1
1
k

)
− ln(n).

(a) Ecrivons une fonction en Python qui, étant donné un entier n ≥ 1, calcule et affiche un. Pour ce
faire, on procède comme suit :

import numpy as np

def prob(n):

u=np.sum(1/np.arange(1,n+1))-np.log(n)

return u

(b) A l’aide d’un développement limité, montrons que un−un+1 ∼
n→+∞

1
2n2 . Par des calculs simples

et à l’aide des développements limités de ln(1 + x) et de 1
1+x à l’ordre 2 en 0, on a :

un − un+1 =

(
n∑

k=1

1

k

)
− ln(n)−

(
n+1∑
k=1

1

k

)
+ ln(n+ 1)

= ln(n+ 1)− ln(n)− 1

n+ 1

= ln

(
1 +

1

n

)
− 1

n
× 1

1 + 1
n

=
n→+∞

1

n
− 1

2n2
+ o

(
1

n2

)
− 1

n

(
1− 1

n
+

1

n2
+ o

(
1

n2

))

=
n→+∞

1

2n2
+ o

(
1

n2

)
.

Par conséquent, on en déduit que :

un − un+1 ∼
n→+∞

1

2n2
.

(c) Déterminons la nature de la série
∑

n≥1(un − un+1). D’après la question précédente, on a :

|un − un+1| ∼
n→+∞

1

2n2
.

Comme la série de Riemann
∑

1
n2 converge d’après le cours, la série

∑
1

2n2 converge aussi par
linéarité. De plus, comme la série

∑
n≥1 |un − un+1| est à termes positifs, elle est convergente

d’après le critère d’équivalence des séries à termes positifs. Dès lors, la série
∑

(un − un+1) est
absolument convergente. Mais comme toute série absolument convergente est convergente, il
s’ensuit que :

la série
∑
n≥1

(un − un+1) converge.

En particulier, la suite des sommes partielles (
∑n

k=1(uk − uk+1)) converge. Mais comme par

télescopage
∑n−1

k=1(uk − uk+1) = u1 − un , il s’ensuit que la suite (u1 − un) converge, et donc :

la suite (un)n≥1 converge.

(2) Partie II : étude de la variable Xr.
(a) Etude du cas r = 3.

Dans cette question, on suppose que r = 3, c’est-à-dire que l’urne contient 3 boules numérotées
1, 2, 3 pouvant être piochées avec probabilité 1

3 . Pour tout n ∈ N∗, on désigne par Cn l’événement
”les n premières pioches fournissent des boules portant toutes le même numéro”.

(i) Comparons les événements [Y2 > n] et Cn. Par définition, l’événement [Y2 > n] est réalisé
si et seulement s’il faut > n pioches pour obtenir 2 boules distinctes, c’est-à-dire si les n
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premières pioches fournissent des boules portant toutes le même numéro, ou en d’autres
termes si l’événement Cn est réalisé, et donc :

[Y2 > n] = Cn.

A présent, calculons la probabilité P (Cn). Pour tout i ∈ {1, ..., n} et tout j ∈ {1, 2, 3},
on désigne par Ci,j l’événement ”On pioche la boule numéro j au i-ème tirage”. Alors Cn

est réalisé si et seulement s’il existe j ∈ {1, 2, 3} tel que l’on tire n fois de suite la boule
numéro j, et donc on voit que :

Cn = (C1,1 ∩ ... ∩ Cn,1) ∪ (C1,2 ∩ ... ∩ Cn,2) ∪ (C1,3 ∩ ... ∩ Cn,3).

Par incompatibilité des événements C1,1 ∩ ... ∩ Cn,1, C1,2 ∩ ... ∩ Cn,2, C1,3 ∩ ... ∩ Cn,3, on
obtient que :

P (Cn) = P (C1,1 ∩ ... ∩ Cn,1) + P (C1,2 ∩ ... ∩ Cn,2) + P (C1,3 ∩ ... ∩ Cn,3).

D’après la formule des probabilités composées, on trouve que, pour tout j ∈ {1, 2, 3} :
P (C1,j ∩ ... ∩ Cn,j) = P (C1,j)PC1,j

(C2,j)...PC1,j∩...∩Cn−1,j
(Cn,j)

=
1

3
× ...× 1

3
=

(
1

3

)n

.

Par conséquent, on en déduit que :

P (Cn) =

(
1

3

)n−1

.

(ii) Déterminons la valeur de P ([Y2 > n]). Comme [Y2 > n] = Cn, on en déduit que :

P ([Y2 > n]) =

(
1

3

)n−1

.

A présent, donnons la loi de Y2. Par définition, on voit que l’on ne peut obtenir deux boules
distinctes qu’en effectuant au moins 2 tirages, et donc Y2 ne peut prendre que des valeurs
entières ≥ 2. De plus, pour tout entier n ≥ 2, on voit aisément que P ([Y2 > n − 1]) =
P ([Y2 > n]) + P ([Y2 = n]), et donc :

P ([Y2 = n]) = P ([Y2 > n− 1])− P ([Y2 > n]) =

(
1

3

)n−2

−
(
1

3

)n−1

.

Par conséquent, on obtient après calculs que la loi de Y2 est donnée par :

∀n ≥ 2, P ([Y2 = n]) =
2

3

(
1

3

)n−2

.

(iii) Justifions que, pour tout n ≥ 1, on ait : P ([Y3−Y2 = n]) =
∑+∞

k=2 P ([Y3 = n+k]∩[Y2 = k]).
Comme Y2 ne peut prendre que des valeurs entières ≥ 2 d’après la question précédente,
la famille ([Y2 = k])k≥2 est un système complet d’événements. Dès lors, la formule des
probabilités totales entraine que :

P ([Y3 − Y2 = n]) =

+∞∑
k=2

P ([Y3 − Y2 = n] ∩ [Y2 = k])

Mais comme [Y3 − Y2 = n] ∩ [Y2 = k] est réalisé si et seulement si [Y3 = n+ k] et [Y2 = k]
sont simultanément réalisés, c’est-à-dire si [Y3 = n + k] ∩ [Y2 = k] l’est, il s’ensuit que
[Y3 − Y2 = n] ∩ [Y2 = k] = [Y3 = n+ k] ∩ [Y2 = k], et donc :

P ([Y3 − Y2 = n]) =

+∞∑
k=2

P ([Y3 = n+ k] ∩ [Y2 = k]).

(iv) Montrons que : ∀n ≥ 1, ∀k ≥ 2, P ([Y3 = n + k] ∩ [Y2 = k]) = 1
3k−1

(
2
3

)n
. Pour ce faire,

supposons que l’événement [Y2 = k] soit réalisé. Pour tout i ∈ {k+1, ..., n+k}, on désigne
par Di l’événement ”On pioche l’une des deux boules déjà piochées au i-ème tirage”. Alors
[Y3 = n+ k] est réalisé si et seulement si Dk+1, ..., Dn+k−1, Dn+k le sont, et donc :

[Y3 = n+ k] ∩ [Y2 = k] = [Y2 = k] ∩Dk+1 ∩ ... ∩Dn+k−1 ∩Dn+k.
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D’après la formule des probabilités composées, on obtient que, pour tout j ∈ {1, 2, 3} :

P ([Y3 = n+ k] ∩ [Y2 = k]) = P ([Y2 = k])P[Y2=k](Dk+1)× ...
...× P[Y2=k]∩Dk+1∩...∩Dn+k−1

(Dn+k)

=
2

3

(
1

3

)k−2

× 2

3
× ...× 2

3
× 1

3
.

Par conséquent, on en déduit après calculs que, pour tout n ≥ 1 et tout k ≥ 2 :

P ([Y3 = n+ k] ∩ [Y2 = k]) =
1

3k−1

(
2

3

)n

.

(v) D’après les questions (2)(a)(iii) et (2)(a)(iv), on voit que, pour tout n ≥ 1 :

P ([Y3 − Y2 = n]) =

+∞∑
k=2

P ([Y3 = n+ k] ∩ [Y2 = k]) =

+∞∑
k=2

1

3k−1

(
2

3

)n

.

Par linéarité de la somme, on obtient que, pour tout n ≥ 1 :

P ([Y3 − Y2 = n]) = 3

(
2

3

)n +∞∑
k=2

1

3k
.

On reconnâıt alors à droite la somme des termes d’une suite géométrique de raison 1
3 .

D’après le cours, il s’ensuit que, pour tout n ≥ 1 :

P ([Y3 − Y2 = n]) = 3

(
2

3

)n
1

32
1

1− 1
3

=

(
2

3

)n
1

3

1
2
3

=
1

2

(
2

3

)n

.

Remarquons au passage que Y3 − Y2 ne peut prendre que des valeurs entières ≥ 1. En
effet, pour tirer une nouvelle boule non déjà tirée, il faut effectuer au moins un tirage
supplémentaire par rapport aux précédents. Par conséquent, la loi de la variable aléatoire
Y3 − Y2 est donnée par :

∀n ≥ 1, P ([Y3 − Y2 = n]) =
1

2

(
2

3

)n

.

(b) Loi de Yi+1 − Yi pour tout i ∈ {1, ..., r − 1}.
Dans toute la suite du problème, r désigne un entier ≥ 2.

(i) Justifions que Yi(Ω) = {i, i + 1, ...} = N \ {0, 1, ..., i − 1}. Tout d’abord, pour obtenir i
boules distinctes, il faut avoir effectué au moins i tirages au préalable, et donc Yi ≥ i.
De plus, pour tout entier k ≥ i, l’événement [Yi = k] est réalisé si l’on tire (i − 1) boules
distinctes au cours des (i−1) premiers tirages, si les boules tirées ensuite jusqu’au (k−1)-
ème tirage font partie des boules déjà tirées et enfin si l’on tire une nouvelle boule jamais
tirée au cours du k-ème tirage. Dès lors, la variable aléatoire Yi peut prendre toute valeur
entière k ≥ i, et donc :

Yi(Ω) = {i, i+ 1, ...} = N \ {0, 1, ..., i− 1}.

Justifions à présent que (Yi+1 − Yi)(Ω) = N∗. Tout d’abord, on peut remarquer que
Yi+1 − Yi ne peut prendre que des valeurs entières ≥ 1. En effet, pour tirer une nouvelle
boule non déjà tirée, il faut effectuer au moins un tirage supplémentaire par rapport aux
précédents. De plus, pour tout k ≥ 1, l’événement [Yi+1 − Yi = k] est réalisé si, après le
i-ème tirage, on tire (k − 1) fois une des boules déjà tirées, puis si l’on tire une nouvelle
boule jamais tirée au cours du tirage suivant. Dès lors, la variable aléatoire Yi+1−Yi peut
prendre toute valeur entière k ≥ 1, et donc :

(Yi+1 − Yi)(Ω) = N∗.

(ii) Montrons que : ∀n ≥ 1, ∀k ≥ i, P[Yi=k]([Yi+1 − Yi = n]) =
(
i
r

)n−1 (
1− i

r

)
. Pour ce

faire, supposons que l’événement [Yi = k] soit réalisé. Pour tout l ∈ {k + 1, ..., n+ k}, on
désigne par Bl l’événement ”On pioche l’une des boules déjà piochées au l-ème tirage”.
Alors [Yi+1 − Yi = n] est réalisé si et seulement si [Yi+1 = n+ k] est réalisé, c’est-à-dire si
les événements Bk+1, ..., Bn+k−1, Bn+k sont simultanément réalisés, et donc :

[Yi+1 = n+ k] ∩ [Yi = k] = [Yi = k] ∩Bk+1 ∩ ... ∩Bn+k−1 ∩Bn+k.
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D’après la formule des probabilités composées, on obtient que, pour tout j ∈ {1, 2, 3} :

P ([Yi+1 = n+ k] ∩ [Yi = k]) = P ([Yi = k])P[Yi=k](Bk+1)× ...
...× P[Yi=k]∩Bk+1∩...∩Bn+k−1

(Bn+k)

= P ([Yi = k])
i

r
× ...× i

r
×
(
1− i

r

)

= P ([Yi = k])

(
i

r

)n−1(
1− i

r

)
.

Par conséquent, on en déduit que, pour tout n ≥ 1 et tout k ≥ 2 :

P[Yi=k]([Yi+1 − Yi = n]) =

(
i

r

)n−1(
1− i

r

)
.

(iii) D’après la question précédente, on sait que Yi ne peut prendre que des valeurs entières ≥ i,
et donc la famille ([Yi = k])k≥i est un système complet d’événements. D’après la formule
des probabilités totales, on obtient que :

P ([Yi+1 − Yi = n]) =

+∞∑
k=i

P ([Yi+1 − Yi = n] ∩ [Yi = k])

=

+∞∑
k=i

P ([Yi+1 = n+ k] ∩ [Yi = k]).

D’après le résultat de la question précédente, il s’ensuit que :

P ([Yi+1 − Yi = n]) =

+∞∑
k=i

P ([Yi = k])

(
i

r

)n−1(
1− i

r

)
.

Par linéarité de la somme, on obtient que :

P ([Yi+1 − Yi = n]) =

(
i

r

)n−1(
1− i

r

)+∞∑
k=i

P ([Yi = k]).

Mais comme la famille ([Yi = k])k≥i est un système complet d’événements, la somme de

la série
∑+∞

k=i P ([Yi = k]) est égale à 1. Dès lors, il s’ensuit que, pour tout n ≥ 1 :

P ([Yi+1 − Yi = n] =

(
i

r

)n−1(
1− i

r

)
.

Comme Yi+1 − Yi ne peut prendre que des valeurs entières n ≥ 1, on en déduit que :

Yi+1 − Yi ↪→ G
(
1− i

r

)
.

D’après le cours, on sait qu’alors :

E(Yi+1 − Yi) =
1

1− i
r

et V (Yi+1 − Yi) =
i
r

(1− i
r )

2
.

Par conséquent, on en déduit après simplification que :

E(Yi+1 − Yi) =
r

r − i
et V (Yi+1 − Yi) =

ri

(r − i)2
.

(c) Espérance et variance de Xr.

(i) Justifions l’égalité Xr = 1 +
∑r−1

i=1 (Yr−i+1 − Yr−i). Comme Y1 = 1, on obtient par
télescopage que :

1 +

r−1∑
i=1

(Yr−i+1 − Yr−i) = Y1 + (Yr − Yr−1) + ...+ (Y2 − Y1) = Yr.
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Mais comme Xr = Yr, on en déduit que :

Xr = 1 +

r−1∑
i=1

(Yr−i+1 − Yr−i).

Admettons que les variables Y2 − Y1, Y3 − Y2, ..., Yr − Yr−1 soient indépendantes. Comme

Xr = 1 +
∑r−1

i=1 (Yr−i+1 − Yr−i) et que les variables aléatoires (Yr−i+1 − Yr−i) admettent
toutes une espérance, Xr admet aussi un espérance. De plus, par linéarité de l’espérance
et d’après la question (2)(b)(iii), on obtient que :

E(Xr) = E

(
1 +

r−1∑
i=1

(Yr−i+1 − Yr−i)

)

= 1 +

r−1∑
i=1

E(Yr−i+1 − Yr−i)

= 1 +

r−1∑
i=1

r

r − (r − i)

=
r

r
+ r

r−1∑
i=1

1

i
.

Par conséquent, on en déduit que :

E(Xr) = r

r∑
i=1

1

i
.

De même, comme les variables Y2−Y1, Y3−Y2, ..., Yr−Yr−1 sont indépendantes et qu’elles
admettent toutes une variance, la variable aléatoire Xr admet aussi une variance. De plus,
d’après la question (2)(b)(iii) et les propriétés de la variance, on obtient que :

V (Xr) = V

(
1 +

r−1∑
i=1

(Yr−i+1 − Yr−i)

)

= V

(
r−1∑
i=1

(Yr−i+1 − Yr−i)

)

=

r−1∑
i=1

V (Yr−i+1 − Yr−i)

=

r−1∑
i=1

r(r − i)

(r − (r − i))2

=
r(r − r)

r2
+

r−1∑
i=1

r(r − i)

i2

=

r∑
i=1

r(r − i)

i2
.

Par linéarité de la somme, on trouve que :

V (Xr) =

r∑
i=1

r2 − ri

i2
= r2

(
r∑

i=1

1

i2

)
− r

(
r∑

i=1

i

i2

)
.

Par conséquent, on en déduit que :

V (Xr) = r2

(
r∑

i=1

1

i2

)
− r

(
r∑

i=1

1

i

)
.
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(ii) Ecrivons une fonction en Python qui, à partir d’un entier r ≥ 1, calcule et affiche la matrice
Mr ∈ M2,r(R) dont les lignes sont L1 = (E(X1), ..., E(Xr)) et L2 = (V (X1), ..., V (Xr)),
puis qui trace dans le plan l’ensemble des points Mk = (E(Xk), V (Xk)) pour k ∈ J1, rK.
Pour ce faire, on procède comme suit :

import numpy as np

import matplotlib.pyplot as plt

def prob2(r):

m=np.zeros([2,r])

for k in range(r):

m[0,k]=(k+1)*np.sum(1/np.arange(1,k+1))

m[1,k]=((k+1)**2)*np.sum(1/(np.arange(1,k+1)**2))-m[0,k]

print(m)

x=np.zeros(r)

y=np.zeros(r)

for k in range(r):

x[k]=m[0,k]

y[k]=m[1,k]

plt.plot(x,y,’.’)

plt.show()

(iii) Montrons qu’il existe deux réels α, β tels que :

E(Xr) =
r→+∞

r ln(r) + αr + o(r) et V (Xr) ∼
r→+∞

βr2.

D’après la question (1)(c), on sait que la suite (un) converge. Si α est la limite de (un),
alors on voit que ur =

r→+∞
α + o(1) par définition. Mais comme ur =

(∑r
k=1

1
k

)
− ln(r)

pour tout r ∈ N∗, on a :

ur =

(
r∑

k=1

1

k

)
− ln(r) =

r→+∞
α+ o(1),

d’où il s’ensuit que :
r∑

k=1

1

k
=

r→+∞
ln(r) + α+ o(1).

Par produit avec r, on trouve que :

r

r∑
k=1

1

k
=

r→+∞
r ln(r) + αr + o(r).

Par conséquent, on en déduit avec la question précédente que :

E(Xr) =
r→+∞

r ln(r) + αr + o(r).

En outre, d’après la question (1)(d), on sait que la série
∑

1
k2 converge. Si β est la somme

de cette série, alors on voit que
∑r

i=1
1
i2 =

r→+∞
β + o(1) par définition. De plus, comme

cette série est à termes > 0, on voit que β > 0 et donc :

V (Xr) =
r→+∞

r2 [β + o(1)]− r [ln(r) + α+ o(1)] .

Par des calculs simples, on trouve alors que :

V (Xr) =
r→+∞

βr2 + r [− ln(r)− α+ o(r)− o(1)] .

Comme ln(r) =
r→+∞

o(r) par croissance comparée, que α =
r→+∞

o(r) et que o(1) =
r→+∞

o(r),

on voit que :

V (Xr) =
r→+∞

βr2 + r [o(r)] = βr2 + o(r2).

Mais comme β ̸= 0, on en déduit que :

V (Xr) ∼
r→+∞

βr2.



13

(3) Partie III : loi de Xr et déviation asymptotique par rapport à sa moyenne.
Pour tout entier m > 0 et pour tout entier k ∈ {1, ..., r}, on considère les événements Ak,m : ”le
numéro k n’a pas été pioché durant les m premières pioches” et Bk,m : ”k numéros fixés au départ
n’ont pas été piochés durant les m premières pioches”. Enfin, on admet la formule du crible pour n
événements A1, ..., An, à savoir :

P (A1 ∪ ... ∪An) =

n∑
k=1

(−1)k−1

 ∑
1≤i1<...<ik≤n

P (Ai1 ∩ ... ∩Aik)

 .

(a) Détermination de la loi de Xr.
(i) Calculons la probabilité de l’événement Ak,m. Fixons pour cela les entiers k,m. Pour

tout i ∈ J1,mK, on désigne par Ei l’événement ”la boule numéro k n’a pas été pioché lors
du i-ème lancer”. Alors l’événement Ak,m est réalisé si et seulement si les événements
E1, ..., Em sont simultanément réalisés, et donc :

Ak,m = E1 ∩ ... ∩ Em.

Par indépendance des Ei (vu que les tirages se font avec remise), on trouve que :

P (Ak,m) = P (E1)...P (Em) =
r − 1

r
× ...× r − 1

r
.

Par conséquent, on en déduit que :

P (Ak,m) =

(
r − 1

r

)m

.

A présent, calculons la probabilité de l’événement Bk,m. Fixons pour cela les entiers k,m.
Pour tout i ∈ J1,mK, on désigne par Fi l’événement ”les k numéros en question n’ont pas
été piochés lors du i-ème lancer”. Alors l’événement Bk,m est réalisé si et seulement si les
événements F1, ..., Fm sont simultanément réalisés, et donc :

Bk,m = F1 ∩ ... ∩ Fm.

Par indépendance des Fi (vu que les tirages se font avec remise), on trouve que :

P (Bk,m) = P (F1)...P (Fm) =
r − k

r
× ...× r − k

r
.

Par conséquent, on en déduit que :

P (Bk,m) =

(
r − k

r

)m

.

(ii) Justifions que P ([Xr > m]) = P (A1,m ∪ A2,m ∪ ... ∪ Ar,m). Par définition, l’événement
[Xr > m] est réalisé si et seulement si, au cours des m premières pioches, on n’a pas tiré
les r boules, c’est-à-dire s’il existe un entier k ∈ {1, ..., r} tel que le numéro k n’a pas été
pioché durant les m premières pioches, ou en d’autres termes si l’un des Ak,m est réalisé,
et donc :

[Xr > m] = A1,m ∪A2,m ∪ ... ∪Ar,m.

En passant aux probabilités, on en déduit que :

P ([Xr > m]) = P (A1,m ∪A2,m ∪ ... ∪Ar,m).

(iii) Montrons à l’aide de la formule du crible que : P ([Xr > m]) =
∑r

k=1(−1)k−1
(
r
k

) (
1− k

r

)m
.

D’après la formule du crible appliquée à la question précédente, on trouve que :

P ([Xr > m]) =

r∑
k=1

(−1)k−1

 ∑
1≤i1<...<ik≤r

P (Ai1,m ∩ ... ∩Aik,m)

 .

Par définition, l’événement Ai1,m ∩ ... ∩ Aik,m est réalisé si et seulement si les k numéros
i1, ..., ik n’ont pas été piochés, c’est-à-dire si Bk,m est réalisé, et donc :

P (Ai1,m ∩ ... ∩Aik,m) = P (Bk,m) =

(
r − k

r

)m

.



14

Dès lors, on trouve que :

P ([Xr > m]) =

r∑
k=1

(−1)k−1

 ∑
1≤i1<...<ik≤r

(
r − k

r

)m
 .

Déterminons maintenant le nombre de termes de la deuxième somme de droite. Par
définition, cette somme comporte autant de termes qu’il y a de façons de choisir k ter-
mes en ordre croissant parmi {1, ..., r}. Pour obtenir k termes en ordre croissant parmi
{1, ..., r}, on commence par choisir k termes parmi {1, ..., r}, sans ordre et sans répétition,
ce qui fait

(
r
k

)
possibilités. Ensuite, on les ordonne de la seule façon possible. Il y a donc(

r
k

)
× 1 façons de choisir k termes en ordre croissant dans l’ensemble {1, ..., r}, et donc la

deuxième somme de droite comporte
(
r
k

)
termes. Par conséquent :

P ([Xr > m]) =

r∑
k=1

(−1)k−1

(
r

k

)(
1− k

r

)m

.

(iv) Déterminons la loi deXr. Par définition, on voit que l’on ne peut obtenir r boules distinctes
qu’en effectuant au moins r tirages, et donc Xr ne peut prendre que des valeurs entières
≥ r. De plus, pour toutm ≥ r, on voit que P ([Xr > m−1]) = P ([Xr > m])+P ([Xr = m]),
et donc on a par linéarité de la somme :

P ([Xr = m]) = P ([Xr > m− 1])− P ([Xr > m])

=
r∑

k=1

(−1)k−1

(
r

k

)(
1− k

r

)m

−
r∑

k=1

(−1)k−1

(
r

k

)(
1− k

r

)m−1

=

r∑
k=1

(−1)k−1

(
r

k

)[(
1− k

r

)m

−
(
1− k

r

)m−1
]

=

r∑
k=1

(−1)k−1

(
r

k

)(
1− k

r

)m−1 [(
1− k

r

)
− 1

]
Par conséquent, on obtient après simplification que la loi de Xr est donnée par :

∀m ≥ r, P ([Xr = m]) =

r∑
k=1

(−1)k k
r

(
r

k

)(
1− k

r

)m−1

.

(b) Comportement asymptotique de Xr au delà de sa moyenne.
Pour tout réel ε > 0, on désigne par Mr la partie entière de (1 + ε)r ln(r), c’est-à-dire l’unique
entier relatif Mr tel que Mr ≤ (1 + ε)r ln(r) < Mr + 1.

(i) Montrons par récurrence la propriété P définie pour tout m ≥ 1 par :

P(m) : ”Pour tous événements D1, ..., Dm, P (D1 ∪ ... ∪Dm) ≤ P (D1) + ...+ P (Dm)”.

Tout d’abord, on voit que P(1) est vraie, car P (D1) ≤ P (D1). A présent, supposons que
P(m) soit vraie, et montrons que P(m+1) l’est aussi. Soient D1, ..., Dm+1 des événements
quelconques, et posons Em = Dm ∪Dm+1. Alors on voit que :

D1 ∪ ... ∪Dm+1 = D1 ∪ ... ∪Dm−1 ∪ Em.

Par hypothèse de récurrence, on obtient que :

P (D1 ∪ ... ∪Dm+1) ≤ P (D1) + ...+ P (Dm−1) + P (Em).

ce que l’on peut réécrire sous la forme :

P (D1 ∪ ... ∪Dm+1) ≤ P (D1) + ...+ P (Dm−1) + P (Dm ∪Dm+1) (∗).
Or, d’après la formule du crible, on sait que :

P (Dm ∪Dm+1) = P (Dm) + P (Dm+1)− P (Dm ∩Dm+1).

Comme toute probabilité est un réel ≥ 0, on voit que :

P (Dm ∪Dm+1) ≤ P (Dm) + P (Dm+1).

Dès lors, cela entraine avec l’inégalité (∗) que :

P (D1 ∪ ... ∪Dm+1) ≤ P (D1) + ...+ P (Dm−1) + P (Dm) + P (Dm+1),
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d’où il s’ensuit que P(m + 1) est vraie. D’après le principe de récurrence, la propriété P
est vraie à tout ordre m ≥ 1. Dès lors, pour tous événements D1, ..., Dm, on a :

P (D1 ∪ ... ∪Dm) ≤ P (D1) + ...+ P (Dm).

(ii) Démontrons que, pour tout réel x, on a : ex ≥ 1+x. Pour ce faire, on peut remarquer que
la fonction exponentielle est convexe. En effet, cette fonction est de classe C2, et de plus
(ex)′′ = ex > 0 pour tout x ∈ R. En particulier, la courbe de l’exponentielle est située au
dessus de sa tangente en 0, qui a pour équation y = 1 + x, et donc :

∀x ∈ R, ex ≥ 1 + x.

A présent, montrons que : ∀m ∈ N∗, ∀k ∈ {1, ..., r}, P (Ak,m) ≤ e−
m
r . D’après la question

(3)(a)(i), on sait que :

P (Ak,m) =

(
r − 1

r

)m

=

(
1− 1

r

)m

.

D’après l’inégalité ci-dessus, on trouve que 0 ≤ 1− 1
r ≤ e−

1
r , et donc :

P (Ak,m) ≤
(
e−

1
r

)m
.

Par conséquent, on en déduit que :

∀m ∈ N∗, ∀k ∈ {1, ..., r}, P (Ak,m) ≤ e−
m
r .

(iii) Comparons les événements [X > Mr] et [X > (1+ ε)r ln(r)]. Pour ce faire, supposons que
l’événement [X > Mr] soit réalisé. Comme X > Mr, on voit que X ≥ Mr + 1 (car X
ne prend que des valeurs entières). Mais comme Mr + 1 > (1 + ε)r ln(r) par définition, il
s’ensuit que X > (1 + ε)r ln(r), que l’événement [X > (1 + ε)r ln(r)] est réalisé, et donc :

[X > Mr] ⊂ [X > (1 + ε)r ln(r)].

Réciproquement, supposons que l’événement [X > (1 + ε)r ln(r)] soit réalisé. Comme
X > (1 + ε)r ln(r) et que (1 + ε)r ln(r) ≥ Mr par définition de la partie entière, on voit
que X > Mr, et donc :

[X > (1 + ε)r ln(r)] ⊂ [X > Mr].

Par double inclusion, on en déduit que :

[X > Mr] = [X > (1 + ε)r ln(r)].

A présent, montrons que P ([Xr > (1 + ε)r ln(r)]) ≤ e
rε . Partant de l’égalité ci-dessus, on

obtient en passant aux probabilités et à l’aide des questions (3)(b)(i) et (3)(b)(ii) :

P ([X > (1 + ε)r ln(r)]) = P ([X > Mr])

= P (A1,Mr
∪ ... ∪Ar,Mr

)

≤ P (A1,Mr
) + ...+ P (Ar,Mr

)

≤ e−
Mr
r + ...+ e−

Mr
r

≤ re−
Mr
r (∗).

En outre, comme Mr est la partie entière de (1 + ε)r ln(r), on obtient que :

Mr > (1 + ε)r ln(r)− 1 =⇒ −Mr

r < −(1 + ε) ln(r) + 1
r

=⇒ e−
Mr
r < e−(1+ε) ln(r)+ 1

r

=⇒ e−
Mr
r < 1

r1+ε e
1
r .

Mais comme r est un entier > 0, on voit que r ≥ 1, et donc e
1
r ≤ e1 = e. Dès lors, on a :

e−
Mr
r <

e

r1+ε
(∗∗).
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A l’aide des inégalités (∗) et (∗∗), il s’ensuit que :

P ([X > (1 + ε)r ln(r)]) ≤ r × e

r1+ε
,

d’où l’on déduit que :

P ([X > (1 + ε)r ln(r)]) ≤ e

rε
.

(c) Distribution de Xr autour de sa moyenne.
Pour tout réel t fixé, on désigne par mr la partie entière de r ln(r) + rt, c’est-à-dire l’unique
entier relatif mr tel que mr ≤ r ln(r) + rt < mr + 1. De plus, on introduit la suite (Zr)r≥2 de
variables aléatoires définies pour tout r ≥ 2 par :

Zr =
Xr − r ln(r)

r
.

(i) Justifions l’existence d’un rang r0(t) tel que : ∀r ≥ r0(t), mr ≥ 1. Par définition, on a :

r ln(r) + rt− 1 = r ln(r)

[
1 +

t

r
− 1

r ln(r)

]
< mr.

Comme t
r tend vers 0 quand r tend vers +∞, et que r ln(r) tend vers +∞ quand r tend

vers +∞, il s’ensuit que r ln(r) + rt − 1 tend vers +∞ quand r tend vers +∞. D’après
le théorème d’encadrement, on voit que mr tend vers +∞ quand r tend vers +∞. Mais
alors cela signifie que :

∀K > 0, ∃RK,t > 0, ∀r > RK,t, mr ≥ K.

En posant K = 1 et r0(t) = E(R1,t) + 1, on en déduit que :

∃r0(t) ∈ N∗, ∀r ≥ r0(t), mr ≥ 1.

(ii) Etablissons l’égalité : ∀r ≥ r0(t), P ([Zr > t]) = P ([Xr > mr]). Pour ce faire, supposons
que l’événement [Zr > t] soit réalisé. Alors, on voit que :

Zr > t =⇒ Xr−r ln(r)
r > t

=⇒ Xr − r ln(r) > rt

=⇒ Xr > r ln(r) + rt ≥ E(r ln(r) + rt)

=⇒ Xr > E(r ln(r) + rt)

=⇒ Xr > mr,

et donc l’événement [Xr > mr] est réalisé. En particulier :

[Zr > t] ⊂ [Xr > mr].

A présent, supposons que l’événement [Xr > mr] soit réalisé. Comme Xr > mr et que Xr

ne prend que des valeurs entières, on voit que Xr ≥ mr + 1, et donc :

Xr ≥ mr + 1 =⇒ Xr > E(r ln(r) + rt) + 1

=⇒ Xr > r ln(r) + rt

=⇒ Xr − r ln(r) > rt

=⇒ Xr−r ln(r)
r > t

=⇒ Zr > t,

et donc l’événement [Zr > t] est réalisé. En particulier :

[Xr > mr] ⊂ [Zr > t].

Dès lors, il s’ensuit par double inclusion que [Zr > t] = [Xr > mr], et donc :

P ([Zr > t]) = P ([Xr > mr]).
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(iii) Soit k ∈ N. A l’aide d’un développement limité, montrons que :

mr ln

(
1− k

r

)
=

r→+∞
−k ln(r)− kt+ o(1).

Comme mr est la partie entière de r ln(r) + rt, on voit que r ln(r) + rt−mr appartient à
[0, 1[ pour tout r ∈ N∗, et donc r ln(r) + rt−mr =

r→+∞
o(r), ce qui entraine que :

mr =
r→+∞

r ln(r) + rt+ o(r).

Comme −k
r tend vers 0 quand r tend vers +∞ et que ln(1 + x) =

r→+∞
x− x2

2 + o(x2), on

obtient par substitution que :

ln

(
1− k

r

)
=

r→+∞
−k

r
− k2

2r2
+ o

(
1

r2

)
.

Par produit, on trouve alors que :

mr ln

(
1− k

r

)
=

r→+∞
(r ln(r) + rt+ o(r))

(
−k

r
− k2

2r2
+ o

(
1

r2

))

=
r→+∞

−k ln(r)− k2 ln(r)

2r
+ o

(
ln(r)

r

)
− kt− k2t

2r

+o

(
1

r

)
− o (k)− o

(
k2

2r

)
+ o

(
1

r

)
.

Comme ln(r)
r tend vers 0 quand r tend vers +∞ par croissances comparées, et que 1

r tend
vers 0 quand r tend vers +∞, on en déduit que :

mr ln

(
1− k

r

)
=

r→+∞
−k ln(r)− kt+ o(1).

(iv) Montrons que

(
r

k

)
∼

r→+∞

rk

k!
pour tout k ∈ N. Par définition, on sait que :(

r

k

)
=

r(r − 1)(r − 2)...(r − k + 1)

k!
.

Pour k fixé, le numérateur de cette fraction est un polynôme en r, unitaire et de degré r.
Comme tout polynôme est équivalent en +∞ à son terme de plus haut degré, on a :(

r

k

)
∼

r→+∞

rk

k!
.

A présent, montrons que :

lim
r→+∞

(
r

k

)(
1− k

r

)mr

=
e−kt

k!
.

Par des calculs simples et d’après la question précédente, on trouve que :(
1− k

r

)mr

= emr ln(1− k
r ) =

r→+∞
e−k ln(r)−kt+o(1) =

r→+∞

e−kteo(1)

rk
.

Comme un o(1) est une expression qui tend vers 0 quand r tend vers +∞, on voit que
eo(1) tend vers 1 quand r tend vers +∞, et donc :(

1− k

r

)mr

∼
r→+∞

e−kt

rk
.

D’après le calcul précédent et les règles de calculs des équivalents, on a :(
r

k

)(
1− k

r

)mr

∼
r→+∞

rk

k!
× e−kt

rk
∼

r→+∞

e−kt

k!
.

Par conséquent, on en déduit que :

lim
r→+∞

(
r

k

)(
1− k

r

)mr

=
e−kt

k!
.


