Lycée Clemenceau Jeudi 22 janvier 2026
ECG 2 Durée : 4 heures

Devoir Surveillé de Mathématiques n°5

Remarques : 1l est toujours permis d’admettre les résultats de questions précédentes pour traiter les questions
suivantes. Chaque réponse doit étre démontrée et toutes les étapes des calculs doivent étre données. On
attachera un soin tout particulier a la clarté et a la propreté de la rédaction. Les téléphones portables et les
calculatrices, ainsi que tous matériels électroniques sont interdits. Tous les étudiants auront le choix entre
un sugjet de type EDHEC-EML et un autre de type HEC-ESSEC Maths 1. Ils indiqueront lisiblement sur leur
premiere copie le sujet qu’ils auront choisi, et ne pourront traiter que les questions de ce sujet.

1. Sujet type EDHEC-EML

Exercice 1. Dans tout 'exercice, on désigne par n un entier > 2. Soit A la matrice de M,,(R) dont les
éléments diagonaux sont égaux & —n, les autres étant tous égaux & 1. On note J la matrice de M,,(R) dont
tous les éléments sont égaux a 1 et I la matrice identité de M, (R).

(1) Exprimer A en fonction de I et .J, puis écrire A2 comme combinaison linéaire de I et J.

(2) En déduire un polynéme annulateur de A, puis donner les valeurs propres possibles de A.

(3) Montrer que la matrice A est inversible.
Par la suite, on considére un espace euclidien E' de dimension n + 1, dont le produit scalaire est noté ( , ) et
la norme associée || ||. On désigne par (go, ..., &,) une base orthonormée de E, et 'on pose :

1
U= ———

n
n+1

ek et Vie[on], e = (e; — (g3, u)u) .
vn+1 P n
(1) Calculer la norme du vecteur w.
(2) (a) Montrer que, pour tout ¢ € [0,n], on a : |le;|| = 1.

(b) Montrer aussi que, pour tout (4,5) € [0,n]? tel que i # j, on a : {(e;, e;) = —%.
(c) Montrer que les vecteurs e, ..., €, appartiennent tous au sous-espace F' = (Vect(u))* de E.
(d) A laide de la question (3) de la premieére partie, montrer que (eq, ..., €,) est une base de F'.
(3) On considere I'application f de F' x F' dans R définie pour tout (z,y) € F x F par :

n

f(xay) :Z<‘ra6k><yaek>7 <I7y>

k=0

n+1

(a) Montrer que f est une forme bilinéaire symétrique.
(b) Déterminer f(e;,e;) pour tout (i,7) € [1,n]? en distinguant les cas i = j et i # j.
(¢) En déduire que, pour tout (x,y) € F X F,on a:

Z<xaek><y7 ek> = nTH<x7y>

k=0
(d) En déduire également que, pour tout x € F, on a :

n
n
l2)|* = > (w,er)’
n+1 P

Exercice 2. Un mobile se déplace aléatoirement sur un axe dont l'origine est le point O d’abscisse 0. Au
départ (instant 0), le mobile est situé sur le point O. Le mobile se déplace selon la régle suivante : & instant
n € N*, il se place de fagon équiprobable sur les points d’abscisses 0, 1, ...,n. Pour tout entier naturel n, on
note X, 'abscisse de ce point & U'instant n (on a donc Xy = 0). On admet que, pour tout entier naturel n,
X, est une variable aléatoire définie sur un espace probabilisé (2, .4, P) que 'on cherchera pas a déterminer.
On admet aussi que (X,,)nen est une suite de variables aléatoires mutuellement indépendantes.

(1) (a) Déterminer la loi de X,, pour tout entier n # 0.
(b) En déduire que, pour tout n € N*, X, admet une espérance et une variance et les donner.

(2) On note Y le rang du premier retour & lorigine du mobile et on admet que Y est une variable aléatoire
définie elle aussi sur (2, A, P).
(a) Exprimer 'événement [Y = n| a 'aide de X3, ..., X,, pour tout n € N*.

1
(b) En déduire que la loi de Y est définie par : Vn € N*, P(Y =n) = Y
+oo
(c) Vérifier par le calcul que 'on a : Z PY=n)=1.
n=1

(d) La variable aléatoire Y admet-elle une espérance?
1



(3) (a) Montrer que, pour tout k € N*, on a :

1

kE+1
— <1
k‘_

(b) En déduire que : Vj > 2, In(y Z
k=1

j—1
1
(¢) Conclure alors que : Z — ~ In(j).

k Jj—+oo
k=1
(4) On note Z le rang du deuxiéme retour a 'origine du mobile et on admet que Z est une variable
aléatoire définie elle aussi sur (12, A, P).
(a) Déterminer pour tout i > j la probabilité Py —;(Z = j).
L+ 1
(b) Etablir que, pour tout i <j —1,0ona: Py_)(Z =j) = j(ZJ—FTl)
(c¢) Ecrire pour tout entier j > 2 la probabilité P(Z = j) comme une somme finie.
(d) La variable aléatoire Z admet-elle une espérance?

(5) Informatique
On rappelle qu’en Python, la commande rd.randint (a,b+1) permet de simuler une variable aléatoire
suivant la loi uniforme & valeurs dans [a, b].
(a) Ecrire une fonction en Python calculant et affichant la valeur de l’abscisse du mobile apres son
n-eme déplacement lorsque la valeur de n est entrée au clavier par I'utilisateur.
(b) Compléter la fonction en Python suivante pour qu’elle permette d’afficher dans cet ordre les
valeurs prises par les variables aléatoires Y et Z.

import numpy as np
import numpy.random as rd

def simul():
n=0
a=0
while a<2:
n=n+1
if rd.randint(0,n+1)==
a=a+1
if a==
y=n
return ........

Probléeme 1.
Partie I : Etude d’un exemple

4 0 0 1
Dans cette partie, on considere les matrices A= | -5 9 0| et 3= |0
-5 5 4 0
(1) Trouver en fonction de I3 et de A deux matrices P, et P» de M3(R) telles que P, + P, = I3 et
4P; + 9P, = A. Expliciter ensuite les coefficients de P; et de Ps.
(2) (a) Calculer les matrices PZ, Py Py, Py Py, P3.
(b) En déduire que : Vk € N, A =4FP, + 9% P,
(3) Trouver au moins une matrice B € M3(R), dont on explicitera les coefficients, telle que B2 = A.
(4) Quelles sont les valeurs propres de A? Justifier.

0 0
1 0
0 1

Dans toute la suite du probléme, on désigne par E un espace vectoriel de dimension finie > 1 et par
f un endomorphisme de E. On note e 'endomorphisme identité de E et 0 I’endomorphisme nul de £. On
suppose qu’il existe un entier m > 1, des réels Aq,..., A\, deux a deux distincts et des endomorphismes non
nuls pi, ..., pm de E tels que : Vk € [0,m], f*=Y""", A¥p;. Enfin, on considere les polynomes :

N:z+— H(x — A1) et pourtoutie [1,m], M;:z+— 1<l<1:n[ l#(x —A\) et L; = m]\/fl

On admet que (P x Q)(f) = P(f) o Q(f) pour tous P,Q € R|x].

Partie II : Etude des puissances de f

(1) Montrer que, pour tout P € Ry,,[z], on a: P(f) =Y i, P(\i)p;
(2) En déduire Dégalité : N(f) = 0.
(3) (a) Montrer que, pour tout (4,5) € [1,m]?, Li(\;) est égal & 1 si i = j et & 0 sinon.



(b) En déduire que, pour tout i € [1,m], on a: L;(f) = p;.
(4) (a) Montrer que : e =>_1", p;.

(b) En déduire que E est la somme des m sous-espaces vectoriels Jm(py), ...., Jm(pp,).
(5) Soit ¢ un élément de [1,m].

(a) Vérifier que, pour tout © € R : N(z) = M;(\)(xz — ;) Li(x).

(b) En déduire & 'aide de la question (2) que : Jm(p;) C ker(f — Ae).
(6) Déduire des questions précédentes que f est diagonalisable, que les valeurs propres de f sont les réels

A1y .oy A €t que, pour tout @ € [1,m], le sous-espace propre de f associé & A; est égal & Jm(p;).
(7) (a) Montrer que, pour tout (i, ;) € [1,m]? tel que i # j, on a : p;op; = 0.
(b) En déduire, en utilisant le résultat de la question (4)(a), que : Vi € [1,m], p; o p; = ;-

(c) Etablir que, pour tout ¢ € [1,m], on a : p; o f = A\ip;.

(8) Montrer que : Vk € N, f& =3"" AFp;. En déduire que, pour tout P € Rlz] : P(f) =Y~ P(\i)p:.

Partie III : Intervention de produits scalaires

Dans cette partie, on munit I’espace vectoriel E d’un produit scalaire noté (, ), et on considere l’application
¢ de E x E dans R définie pour tout (z,y) € E x E par :

m

o(z,y) = (pi(@), pi(y))-

i=1
(1) Montrer que ¢ est un produit scalaire sur E.
(2) Montrer que, pour tous z,y € E, on a: ¢o(f(z),y) = ¢(z, f(y))-

2. Sujet type HEC-ESSEC Maths I

Probléme 2. Ce probleme étudie quelques propriétés des endomorphismes cycliques d’un espace vectoriel E
de dimension finie, ainsi que la décomposition de Frobenius d’un élément de L(E). Dans tout le probléme :

e 1 est un entier > 2;

e [ est un espace vectoriel de dimension n;

e L(FE) désigne ’ensemble des endomorphismes de E;

e on rappelle qu'une homothétie est une application du type Aldg, ou A € R;

e un sous-espace vectoriel F' de E est dit stable par un endomorphisme u de F si, pour tout x € F,
on a u(xz) € F'. On note alors u|p 'endomorphisme de F' défini pour tout = € F' par u|p(z) = u(z).
Cet endomorphisme est appelé ’endomorphisme de F' induit par u;

e si u est un endomorphisme de F et si e est un vecteur de E, on note E,(e) le sous-espace vectoriel
de E défini par :

E,(e) = Vect (u"(e)|k € [0,n — 1]) = Vect (e, u(e), ..., u" *(e)) .

Si k € N*, on note B(e, k) la famille (e, u(e), ..., u**(e)).

e on dit qu’un endomorphisme u de FE est cyclique s'il existe e € E tem que E = E,(e); on considerera
qu’en dimension 1, tout endomorphisme est cyclique;

e soit A € M, (R); on dit que A est une matrice de Frobenius ou matrice compagnon s’il existe
des réels ag, ..., a,_1 tels que :

0 0 0 ao
1 0 0 0 u
0 1 (0)
A= ,
: (O) I 1 0 Ap—2
0 0 - -+ 0 1 ap

L — ... — a1z — ag est appelé le polynéme car-

et de plus, le polynome P4 : x — 2" — ap_12"~
actéristique de A;

e on dit qu'un endomorphisme u de E est nilpotent s’il existe un entier k£ > 1 tel que u* = 0. Dans
ce cas, r = min{k € N*| u¥ = 0} est appelé I’indice de nilpotence de u;

e enfin, on admet que toute partie non vide et majorée A de N admet un plus grand élément; cet
élément est appelé le maximum de A et noté max{k € A}.

Le probleme comporte trois parties. Dans la premiere partie, on étudie les premieres propriétés des endomor-
phismes cycliques et on traite quelques exemples. Dans la seconde partie, on étudie le cas des endomorphismes



diagonalisables et nilpotents. Enfin, dans la troisieme partie, on obtient une décomposition d’un endomor-
phisme, appelée décomposition de Frobenius, et on en déduit quelques propriétés élémentaires; on montre
en particulier que toute matrice carrée est semblable a sa transposée.

Partie I : Premiéres propriétés.

Soit v un endomorphisme de F et soit e un vecteur non nul de F.

Section A : Etude des sous-espaces E,(e).

(1) Justifier que la famille B(e,n + 1) est liée.
(2) On pose d(e) = max{k € N*| B(e, k) est libre}. Justifier 'existence de d(e).
(3) Montrer qu’il existe des scalaires ag, ay, ..., ag(ey—1 tels que :
d(e)—1
u™® () = age + aru(e) + ... + ad(e)_lud(e)fl(e) = Z azu'(e).
i=

Montrer alors que, pour tout entier k > d(e), le vecteur u¥(e) est combinaison linéaire des vecteurs

de (e,u(e),...,u¥®~1(e)). En déduire que B(e,d(e)) est une base de E,(e).
(4) Montrer que E,(e) est stable par 'endomorphisme .

Montrer également que tout sous-espace vectoriel F' de E contenant e et stable par u contient E,(e).
(5) A quelle condition nécessaire et suffisante portant sur U'entier d(e), le vecteur e est-il un vecteur propre

pour u?
(6) Montrer que u est une homothétie si et seulement si, pour tout vecteur non nul e de F, on a d(e) =1
(indication : calculer u(e; + e;) pour deux vecteurs distincts d’une base (e1, ...,e,) de E).

(7) Montrer que u est un endomorphisme cyclique si et seulement s’il existe un vecteur non nul e de E
tel que d(e) = n.

Section B : Premiéres propriétés des endomorphismes cycliques.

On suppose dans cette section que w est un endomorphisme cyclique de E, et donc qu’il existe un vecteur
non nul e de E tel que E = E,(e).

(1) On note A la matrice de u dans la base B(e,n) de E. Vérifier que A est une matrice de Frobenius.
(2) On note Py : & — ™ — an_12" ' — ... — a1x — ag son polynéme caractéristique.
Que vaut (Pa(u))(e)?
Calculer (P4 (u)) (u*(e)) pour k € [1,n — 1].
Montrer que P4 est un polynéme annulateur de u.
(3) Vérifier que la famille (Idg, u, ...,u™ 1) est libre dans L(E).
(4) En déduire que P4 est un polynéme annulateur non nul de u de degré minimal.
(5) Soit A € R. Montrer que X est valeur propre de u si et seulement si A est racine de P4 et vérifier que
le sous-espace propre de u associé a la valeur propre A est de dimension 1.
(6) En déduire une caractérisation portant sur P4 pour que u soit diagonalisable.

Section C : Un premier exemple.

Dans cette section, on suppose que £ = R? et on note Bs la base canonique de E. On note aussi f et
g les endomorphismes de E dont les matrices dans la base B3 sont respectivement :

0 0 1 1 -1 0
F=10 0 -1 et G=(-1 1 0
1 -1 -1 0 0 2

On admet que f est diagonalisable, et on notera A1, Ag, A3 avec A1 < Ay < Ag les valeurs propres de f rangées
par ordre croissant.
(1) Déterminer une base de diagonalisation (Vi, Vs, Vs) de f telle que, pour tout i € [1, 3], f(V;) = \V;
et telle que la premieére coordonnée de V; dans la base Bs soit 1.
(2) On pose V =V, + V5 + V5. Déterminer d(V) et en déduire que f est cyclique.
(3) Déterminer un polynéme annulateur non nul de g de degré minimal.
L’endomorphisme g est-il cyclique?
(4) Vérifier que (V7, V5, V3) est une base de vecteurs propres de g.

Partie IT : Etude de deux cas particuliers.

Section A : Endomorphismes diagonalisables qui sont cycliques.



Dans cette section, on considere un endomorphisme u de F et on suppose que u diagonalisable. On note
A1y ...y Ap une liste des valeurs propres distinctes de w.
(1) En considérant son action sur une base de vecteurs propres de u, établir que I’endomorphisme v =
(u—MIdg)o...o (u— A,Idg) est 'endomorphisme nul.
(2) En déduire que la famille (Idg, u, ..., u?) est liée dans L(E).
(3) Quelle est la valeur de p si u est cyclique?

On suppose jusqu’a la fin de cette section que p = n, et on note (eq,...,e,) une base de vecteurs
propres de u telle que, pour tout ¢ € [1,n], u(e;) = Ae;.

(4) Soit e =>"" | e;. Montrer que la famille B(e,n) est libre, et conclure que u est cyclique.

(5) On reprend dans cette question seulement I'exemple de la section C' de la partie I et, pour tout réel
«, on pose u, = g+ af. Montrer que u, est diagonalisable et discuter, en fonction des valeurs de «,
les cas ou u, est cyclique.

Section B : Endomorphismes nilpotents qui sont cycliques.

Dans cette section, u est un endomorphisme nilpotent de E, d’indice de nilpotence 7.

(1) Soit e € E tel que u"~!(e) # 0. Montrer que la famille (e, u(e),...,u""!(e)) est libre dans E.
(2) En déduire que r < n et montrer que r = n si et seulement si u est cyclique.
Dans le cas r = n, écrire la matrice de u dans la base B(e, n).

Section C : Un second exemple.

Dans cette section, E est le sous-espace vectoriel des fonctions polynomiales de degré < n — 1. Pour tout
k € [0,n — 1], on note X* la fonction z € R — z* et on rappelle que (Xk)kego,nq]] est une base de E.
+oo
(1) Soit P € E. Montrer que, pour tout « € R, I'intégrale P(z +t)e~'dt converge et montrer que
0

—+oo
la fonction z € R — / P(z + t)e”"dt appartient & E.
0

+oo
On note u : P € E +— u(P) défini par : Vo € R, u(P)(z) = / P(z +t)e 'dt.
0

(2) Vérifier que u est un endomorphisme de E.
(3) Soit P € E. A laide d’une intégration par parties, montrer que : Vo € R, u(P)(z) = P(x)+u(P’)(x).
(4) En déduire que, pour tout P € E, on a : u(P) = 1—, P®).
(5) Soit P € E. A l'aide d’un changement de variable, montrer que, pour tout z € R :
+oo
u(P)(z) = €” P(s)e ?ds.

x

(6) Montrer que, pour tout P € F, la fonction z — f:oo P(s)e *ds est dérivable sur R.
Montrer alors que u(P) est dérivable sur R et que (u(P))’ = u(P) — P.
En déduire que (u(P)) = u(P’).

(7) Déterminer la matrice de u dans la base (X*)c0,n—1] de E, et en déduire le spectre de w.

(8) On pose v = u — Idg. Montrer que Jm(v) est le sous-espace vectoriel de E formé des fonctions
polynomiales de degré < n — 2.

(9) Montrer que v est nilpotent. L’endomorphisme v est-il cyclique?

Partie III : Décomposition de Frobenius et applications.

Dans cette partie, on se propose de démontrer, pour tout endomorphisme u de L£(E), la propriété suivante
notée (R) :

il existe p € [1,n] et des sous-espaces vectoriels non nuls Fy, ..., F,, de E, stables par u, tels
que E=F, & ...® F, et pour tout 7 € [1,p], u|r, est un endomorphisme cyclique de F;.

Section A : Cas d’une homothétie.

(1) Démontrer que la propriété (R) est réalisée si u est une homothétie.



Section B : Cas ou1 u n’est pas une homothétie.

(1) Justifier qu'il existe un vecteur e non nul de F tel que d(e) # 1.

Pour le reste de la section, on choisit un vecteur non nul e de F tel que d = d(e) soit maximal (donc
d > 2) et on note, pour tout k € [0,d — 1], e, = u*(e). On note toujours B(e,d) = (eg, €1, ..., €4_1)
ainsi que des réels ag, a1, ...,aq—1 tels que :

d—1
ul(e) = Z au'(e).

Enfin, on pose : F} = E,(e).
(2) Justifier que la propriété (R) est réalisée si d = n.

Dans la suite de cette section, on suppose que d € [2,n — 1] (et donc n > 3). On complete la
famille B(e, d) en une base B = (eg, €1, ..., €4—1,€d, ..., €n—1) de E.

n—1
(3) Montrer que I'application ¢ : x = Z rrer € B — x4_1 est une forme linéaire non nulle de F.
i=0
On considére I'application ® : z € E — (p(u!(2)), p(u?%(2)), ..., p(u(2)), p(z)) € R%

(4) Vérifier que @ est lindaire. On note G = ker(®) et ® la restriction de ® & F}.

(5) Calculer ®(eg) et ®(e1) = P(uleg)).
Plus généralement, justifier que, pour tout k € [1,d — 1], il existe des réels Bo.x, 81,k .-, Be—1,k tels
que ®(ex) = (Bok; Brks s Be-1,k,1,0,..., 0). N

(6) Ecrire alors la matrice de ® de la base B(e,d) de F; vers la base canonique de R?, et justifier que ®
est bijectif.

(7) Montrer alors que E = F; ® G, et justifier que G est stable par u.

(8) Dire pourquoi u|g, est bien un endomorphisme cyclique de Fj.

(9) Justifier que, pour tout vecteur non nul ¢’ de G, on a d(e’) < d.

10) Démontrer que la propriété (R) est bien réalisée.

Section C : Premiére application (décomposition de Jordan des endomorphismes nilpotents).

(1) Soit w € L(E). On suppose qu'il existe p € [1,n] et Fi,..., F, des sous-espaces vectoriels de E non
nuls et stables par u tels que E = Fy & ... & F,, . Pour tout k € [1,p], on note Bp, une base de F.
Soit B la concaténation des bases Br,, Br,, ..., Br,. On rappelle que B est une base de E. Quelle est
la forme de la matrice de u dans la base B?

(2) Soit u un endomorphisme nilpotent de F, d’indice de nilpotence p. A Daide de la propriété (R),
montrer qu’il existe une base B de E dans laquelle la matrice T' = (; ;)1<i,j<n de u est triangulaire
inférieure et telle que, pour tout ¢ € [1,n], t;; = 0, pour tout ¢ € [2,n], t;,—1 € {0,1} et tous les
autres coefficients de T" sont nuls.

Section D : Deuxiéme application (toute matrice carrée est semblable & sa transposée).
Dans cette section, on pose E = R" et on note B, la base canonique de R™. Soit M € M,(R). On

note u ’endomorphisme de E canoniquement associé a M. On se propose de montrer que M vérifie la
propriété suivante, notée (S) :

il existe deux matrices symétriques V,W € M, (R), avec W inversible, telles que M = VW.

(1) Cas ot u est cyclique : il existe donc e € E tel que E = E,(e). On note toujours B(e,n) la base
(e,u(e),...,u""'(e)) de E et A =matg(c,,(u). Il s’agit de la matrice de Frobenius associée aux réels



aQg, A1y -eey Ap—1

0 O 0 0 ag
1 0 0 0 a1
0 1 (0)
A =
(0) 1 0 an_o
0 O 0 1 ap_q
On considere :
—ay —az —ag - —Gp—y —Gp—1 1
—as —as s o —Qp—1 1 0
—as . 0 0
S = 0
—Qn-2 —0n-1 (0)
—Aan—1 1 0 .
1 0 e 0 0 0

et on note f Pendomorphisme de E tel que S est la matrice de f dans la base B(e,n). On a donc :

Jle) == (Z aw“(@) +u'Ne) L S (u(e) = - (Z akw(e)) +u"2(e)
k=1 k=2

et plus généralement :

velon—2 Fu@)=—| Y et | +uri e
k=j+1
et enfin f (u"~'(e)) =e.

Calculer u(f(e)),u(ﬂu(e))) et plus généralement, pour tout i € [0,n — 2], u(f(u’(e))) et enfin
u(f(u""(e))).

(2) En déduire que l'on a :

ag 0 0 0 0 0

0 —ay —az3 -+ —ap2 —ap_1 1

0 —as —ay 1 0
AS =

0 —ap_o - -7 (0)

0 —ap_1 1 0 :

0 1 0 ‘. 0 0 0

Par la suite, on pose S; = AS.

(3) Justifier que S est inversible. On note alors So = S~! et on a donc A = 5155, ot S7 et Sy sont deux

matrices symétriques.

(4) On note P la matrice de passage de la base B,, vers la base B(e,n). Vérifier que :

M = PS,(*P)("P) 1Sy P™?

et conclure que M vérifie la propriété (S).

(5) Montrer alors que ‘M et M sont semblables. Plus précisément, déterminer une matrice symétrique

inversible Q telle que M = Q' MQ.

(6) Cas général : en s’appuyant sur le cas précédent et la propriété (R), montrer que, pour toute matrice

M de M,,(R), les matrices ‘M et M sont semblables.



