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Devoir Surveillé de Mathématiques no5

Remarques : Il est toujours permis d’admettre les résultats de questions précédentes pour traiter les questions
suivantes. Chaque réponse doit être démontrée et toutes les étapes des calculs doivent être données. On
attachera un soin tout particulier à la clarté et à la propreté de la rédaction. Les téléphones portables et les
calculatrices, ainsi que tous matériels électroniques sont interdits. Tous les étudiants auront le choix entre
un sujet de type EDHEC-EML et un autre de type HEC-ESSEC Maths I. Ils indiqueront lisiblement sur leur
première copie le sujet qu’ils auront choisi, et ne pourront traiter que les questions de ce sujet.

1. Sujet type EDHEC-EML

Exercice 1. Dans tout l’exercice, on désigne par n un entier ≥ 2. Soit A la matrice de Mn(R) dont les
éléments diagonaux sont égaux à −n, les autres étant tous égaux à 1. On note J la matrice de Mn(R) dont
tous les éléments sont égaux à 1 et I la matrice identité de Mn(R).

(1) Exprimer A en fonction de I et J , puis écrire A2 comme combinaison linéaire de I et J .
(2) En déduire un polynôme annulateur de A, puis donner les valeurs propres possibles de A.
(3) Montrer que la matrice A est inversible.

Par la suite, on considère un espace euclidien E de dimension n+ 1, dont le produit scalaire est noté ⟨ , ⟩ et
la norme associée ∥ ∥. On désigne par (ε0, ..., εn) une base orthonormée de E, et l’on pose :

u =
1√
n+ 1

n∑
k=0

εk et ∀i ∈ J0, nK, ei =

√
n+ 1

n
(εi − ⟨εi, u⟩u) .

(1) Calculer la norme du vecteur u.
(2) (a) Montrer que, pour tout i ∈ J0, nK, on a : ∥ei∥ = 1.

(b) Montrer aussi que, pour tout (i, j) ∈ J0, nK2 tel que i ̸= j, on a : ⟨ei, ej⟩ = − 1
n .

(c) Montrer que les vecteurs e0, ..., en appartiennent tous au sous-espace F = (Vect(u))⊥ de E.
(d) A l’aide de la question (3) de la première partie, montrer que (e1, ..., en) est une base de F .

(3) On considère l’application f de F × F dans R définie pour tout (x, y) ∈ F × F par :

f(x, y) =

n∑
k=0

⟨x, ek⟩⟨y, ek⟩ −
n+ 1

n
⟨x, y⟩.

(a) Montrer que f est une forme bilinéaire symétrique.
(b) Déterminer f(ei, ej) pour tout (i, j) ∈ J1, nK2 en distinguant les cas i = j et i ̸= j.
(c) En déduire que, pour tout (x, y) ∈ F × F , on a :

n∑
k=0

⟨x, ek⟩⟨y, ek⟩ =
n+ 1

n
⟨x, y⟩.

(d) En déduire également que, pour tout x ∈ F , on a :

∥x∥2 =
n

n+ 1

n∑
k=0

⟨x, ek⟩2.

Exercice 2. Un mobile se déplace aléatoirement sur un axe dont l’origine est le point O d’abscisse 0. Au
départ (instant 0), le mobile est situé sur le point O. Le mobile se déplace selon la règle suivante : à l’instant
n ∈ N∗, il se place de façon équiprobable sur les points d’abscisses 0, 1, ..., n. Pour tout entier naturel n, on
note Xn l’abscisse de ce point à l’instant n (on a donc X0 = 0). On admet que, pour tout entier naturel n,
Xn est une variable aléatoire définie sur un espace probabilisé (Ω,A, P ) que l’on cherchera pas à déterminer.
On admet aussi que (Xn)n∈N est une suite de variables aléatoires mutuellement indépendantes.

(1) (a) Déterminer la loi de Xn pour tout entier n ̸= 0.
(b) En déduire que, pour tout n ∈ N∗, Xn admet une espérance et une variance et les donner.

(2) On note Y le rang du premier retour à l’origine du mobile et on admet que Y est une variable aléatoire
définie elle aussi sur (Ω,A, P ).
(a) Exprimer l’événement [Y = n] à l’aide de X1, ..., Xn pour tout n ∈ N∗.

(b) En déduire que la loi de Y est définie par : ∀n ∈ N∗, P (Y = n) =
1

n(n+ 1)
.

(c) Vérifier par le calcul que l’on a :

+∞∑
n=1

P (Y = n) = 1.

(d) La variable aléatoire Y admet-elle une espérance?
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(3) (a) Montrer que, pour tout k ∈ N∗, on a :
1

k + 1
≤ ln(k + 1)− ln(k) ≤ 1

k
.

(b) En déduire que : ∀j ≥ 2, ln(j) ≤
j−1∑
k=1

1

k
≤ ln(j) + 1− 1

j
.

(c) Conclure alors que :

j−1∑
k=1

1

k
∼

j→+∞
ln(j).

(4) On note Z le rang du deuxième retour à l’origine du mobile et on admet que Z est une variable
aléatoire définie elle aussi sur (Ω,A, P ).
(a) Déterminer pour tout i ≥ j la probabilité P[Y=i](Z = j).

(b) Etablir que, pour tout i ≤ j − 1, on a : P[Y=i](Z = j) =
i+ 1

j(j + 1)
.

(c) Ecrire pour tout entier j ≥ 2 la probabilité P (Z = j) comme une somme finie.
(d) La variable aléatoire Z admet-elle une espérance?

(5) Informatique
On rappelle qu’en Python, la commande rd.randint(a,b+1) permet de simuler une variable aléatoire
suivant la loi uniforme à valeurs dans Ja, bK.
(a) Ecrire une fonction en Python calculant et affichant la valeur de l’abscisse du mobile après son

n-ème déplacement lorsque la valeur de n est entrée au clavier par l’utilisateur.
(b) Compléter la fonction en Python suivante pour qu’elle permette d’afficher dans cet ordre les

valeurs prises par les variables aléatoires Y et Z.

import numpy as np

import numpy.random as rd

def simul():

n=0

a=0

while a<2:

n=n+1

if rd.randint(0,n+1)==0:

a=a+1

if a==1:

y=n

return ........

Problème 1.

Partie I : Etude d’un exemple

Dans cette partie, on considère les matrices A =

 4 0 0
−5 9 0
−5 5 4

 et I3 =

1 0 0
0 1 0
0 0 1

.

(1) Trouver en fonction de I3 et de A deux matrices P1 et P2 de M3(R) telles que P1 + P2 = I3 et
4P1 + 9P2 = A. Expliciter ensuite les coefficients de P1 et de P2.

(2) (a) Calculer les matrices P 2
1 , P1P2, P2P1, P

2
2 .

(b) En déduire que : ∀k ∈ N, Ak = 4kP1 + 9kP2.
(3) Trouver au moins une matrice B ∈ M3(R), dont on explicitera les coefficients, telle que B2 = A.
(4) Quelles sont les valeurs propres de A? Justifier.

Dans toute la suite du problème, on désigne par E un espace vectoriel de dimension finie ≥ 1 et par
f un endomorphisme de E. On note e l’endomorphisme identité de E et 0̃ l’endomorphisme nul de E. On
suppose qu’il existe un entier m ≥ 1, des réels λ1, ..., λm deux à deux distincts et des endomorphismes non
nuls p1, ..., pm de E tels que : ∀k ∈ J0,mK, fk =

∑m
i=1 λ

k
i pi. Enfin, on considère les polynômes :

N : x 7−→
m∏
l=1

(x− λl) et pour tout i ∈ J1,mK, Mi : x 7−→
∏

1≤l≤m, l ̸=i

(x− λl) et Li =
1

Mi(λi)
Mi.

On admet que (P ×Q)(f) = P (f) ◦Q(f) pour tous P,Q ∈ R[x].

Partie II : Etude des puissances de f

(1) Montrer que, pour tout P ∈ Rm[x], on a : P (f) =
∑m

i=1 P (λi)pi.

(2) En déduire l’égalité : N(f) = 0̃.
(3) (a) Montrer que, pour tout (i, j) ∈ J1,mK2, Li(λj) est égal à 1 si i = j et à 0 sinon.
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(b) En déduire que, pour tout i ∈ J1,mK, on a : Li(f) = pi.
(4) (a) Montrer que : e =

∑m
i=1 pi.

(b) En déduire que E est la somme des m sous-espaces vectoriels Im(p1), ....,Im(pm).
(5) Soit i un élément de J1,mK.

(a) Vérifier que, pour tout x ∈ R : N(x) = Mi(λi)(x− λi)Li(x).
(b) En déduire à l’aide de la question (2) que : Im(pi) ⊂ ker(f − λie).

(6) Déduire des questions précédentes que f est diagonalisable, que les valeurs propres de f sont les réels
λ1, ..., λm et que, pour tout i ∈ J1,mK, le sous-espace propre de f associé à λi est égal à Im(pi).

(7) (a) Montrer que, pour tout (i, j) ∈ J1,mK2 tel que i ̸= j, on a : pi ◦ pj = 0̃.
(b) En déduire, en utilisant le résultat de la question (4)(a), que : ∀i ∈ J1,mK, pi ◦ pi = pi.
(c) Etablir que, pour tout i ∈ J1,mK, on a : pi ◦ f = λipi.

(8) Montrer que : ∀k ∈ N, fk =
∑m

i=0 λ
k
i pi. En déduire que, pour tout P ∈ R[x] : P (f) =

∑m
i=0 P (λi)pi.

Partie III : Intervention de produits scalaires

Dans cette partie, on munit l’espace vectoriel E d’un produit scalaire noté ⟨ , ⟩, et on considère l’application
φ de E × E dans R définie pour tout (x, y) ∈ E × E par :

φ(x, y) =

m∑
i=1

⟨pi(x), pi(y)⟩.

(1) Montrer que φ est un produit scalaire sur E.
(2) Montrer que, pour tous x, y ∈ E, on a : φ(f(x), y) = φ(x, f(y)).

2. Sujet type HEC-ESSEC Maths I

Problème 2. Ce problème étudie quelques propriétés des endomorphismes cycliques d’un espace vectoriel E
de dimension finie, ainsi que la décomposition de Frobenius d’un élément de L(E). Dans tout le problème :

• n est un entier ≥ 2;
• E est un espace vectoriel de dimension n;
• L(E) désigne l’ensemble des endomorphismes de E;
• on rappelle qu’une homothétie est une application du type λIdE , où λ ∈ R;
• un sous-espace vectoriel F de E est dit stable par un endomorphisme u de E si, pour tout x ∈ F ,
on a u(x) ∈ F . On note alors u|F l’endomorphisme de F défini pour tout x ∈ F par u|F (x) = u(x).
Cet endomorphisme est appelé l’endomorphisme de F induit par u;

• si u est un endomorphisme de E et si e est un vecteur de E, on note Eu(e) le sous-espace vectoriel
de E défini par :

Eu(e) = Vect
(
uk(e)|k ∈ J0, n− 1K

)
= Vect

(
e, u(e), ..., un−1(e)

)
.

Si k ∈ N∗, on note B(e, k) la famille
(
e, u(e), ..., uk−1(e)

)
.

• on dit qu’un endomorphisme u de E est cyclique s’il existe e ∈ E tem que E = Eu(e); on considèrera
qu’en dimension 1, tout endomorphisme est cyclique;

• soit A ∈ Mn(R); on dit que A est une matrice de Frobenius ou matrice compagnon s’il existe
des réels a0, ..., an−1 tels que :

A =



0 0 · · · · · · 0 0 a0
1 0 · · · · · · 0 0 a1

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 0 an−2

0 0 · · · · · · 0 1 an−1


,

et de plus, le polynôme PA : x 7−→ xn − an−1x
n−1 − ... − a1x − a0 est appelé le polynôme car-

actéristique de A;
• on dit qu’un endomorphisme u de E est nilpotent s’il existe un entier k ≥ 1 tel que uk = 0. Dans
ce cas, r = min{k ∈ N∗| uk = 0} est appelé l’indice de nilpotence de u;

• enfin, on admet que toute partie non vide et majorée A de N admet un plus grand élément; cet
élément est appelé le maximum de A et noté max{k ∈ A}.

Le problème comporte trois parties. Dans la première partie, on étudie les premières propriétés des endomor-
phismes cycliques et on traite quelques exemples. Dans la seconde partie, on étudie le cas des endomorphismes
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diagonalisables et nilpotents. Enfin, dans la troisième partie, on obtient une décomposition d’un endomor-
phisme, appelée décomposition de Frobenius, et on en déduit quelques propriétés élémentaires; on montre
en particulier que toute matrice carrée est semblable à sa transposée.

Partie I : Premières propriétés.

Soit u un endomorphisme de E et soit e un vecteur non nul de E.

Section A : Etude des sous-espaces Eu(e).

(1) Justifier que la famille B(e, n+ 1) est liée.
(2) On pose d(e) = max{k ∈ N∗| B(e, k) est libre}. Justifier l’existence de d(e).
(3) Montrer qu’il existe des scalaires a0, a1, ..., ad(e)−1 tels que :

ud(e)(e) = a0e+ a1u(e) + ...+ ad(e)−1u
d(e)−1(e) =

d(e)−1∑
i=0

aiu
i(e).

Montrer alors que, pour tout entier k ≥ d(e), le vecteur uk(e) est combinaison linéaire des vecteurs
de
(
e, u(e), ..., ud(e)−1(e)

)
. En déduire que B(e, d(e)) est une base de Eu(e).

(4) Montrer que Eu(e) est stable par l’endomorphisme u.
Montrer également que tout sous-espace vectoriel F de E contenant e et stable par u contient Eu(e).

(5) A quelle condition nécessaire et suffisante portant sur l’entier d(e), le vecteur e est-il un vecteur propre
pour u?

(6) Montrer que u est une homothétie si et seulement si, pour tout vecteur non nul e de E, on a d(e) = 1
(indication : calculer u(ei + ej) pour deux vecteurs distincts d’une base (e1, ..., en) de E).

(7) Montrer que u est un endomorphisme cyclique si et seulement s’il existe un vecteur non nul e de E
tel que d(e) = n.

Section B : Premières propriétés des endomorphismes cycliques.

On suppose dans cette section que u est un endomorphisme cyclique de E, et donc qu’il existe un vecteur
non nul e de E tel que E = Eu(e).

(1) On note A la matrice de u dans la base B(e, n) de E. Vérifier que A est une matrice de Frobenius.
(2) On note PA : x 7−→ xn − an−1x

n−1 − ...− a1x− a0 son polynôme caractéristique.
Que vaut (PA(u))(e)?
Calculer (PA(u))

(
uk(e)

)
pour k ∈ J1, n− 1K.

Montrer que PA est un polynôme annulateur de u.
(3) Vérifier que la famille (IdE , u, ..., u

n−1) est libre dans L(E).
(4) En déduire que PA est un polynôme annulateur non nul de u de degré minimal.
(5) Soit λ ∈ R. Montrer que λ est valeur propre de u si et seulement si λ est racine de PA et vérifier que

le sous-espace propre de u associé à la valeur propre λ est de dimension 1.
(6) En déduire une caractérisation portant sur PA pour que u soit diagonalisable.

Section C : Un premier exemple.

Dans cette section, on suppose que E = R3 et on note B3 la base canonique de E. On note aussi f et
g les endomorphismes de E dont les matrices dans la base B3 sont respectivement :

F =

0 0 1
0 0 −1
1 −1 −1

 et G =

 1 −1 0
−1 1 0
0 0 2

 .

On admet que f est diagonalisable, et on notera λ1, λ2, λ3 avec λ1 ≤ λ2 ≤ λ3 les valeurs propres de f rangées
par ordre croissant.

(1) Déterminer une base de diagonalisation (V1, V2, V3) de f telle que, pour tout i ∈ J1, 3K, f(Vi) = λiVi

et telle que la première coordonnée de Vi dans la base B3 soit 1.
(2) On pose V = V1 + V2 + V3. Déterminer d(V ) et en déduire que f est cyclique.
(3) Déterminer un polynôme annulateur non nul de g de degré minimal.

L’endomorphisme g est-il cyclique?
(4) Vérifier que (V1, V2, V3) est une base de vecteurs propres de g.

Partie II : Etude de deux cas particuliers.

Section A : Endomorphismes diagonalisables qui sont cycliques.
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Dans cette section, on considère un endomorphisme u de E et on suppose que u diagonalisable. On note
λ1, ..., λp une liste des valeurs propres distinctes de u.

(1) En considérant son action sur une base de vecteurs propres de u, établir que l’endomorphisme v =
(u− λ1IdE) ◦ ... ◦ (u− λpIdE) est l’endomorphisme nul.

(2) En déduire que la famille (IdE , u, ..., u
p) est liée dans L(E).

(3) Quelle est la valeur de p si u est cyclique?

On suppose jusqu’à la fin de cette section que p = n, et on note (e1, ..., en) une base de vecteurs
propres de u telle que, pour tout i ∈ J1, nK, u(ei) = λiei.

(4) Soit e =
∑n

i=1 ei. Montrer que la famille B(e, n) est libre, et conclure que u est cyclique.
(5) On reprend dans cette question seulement l’exemple de la section C de la partie I et, pour tout réel

α, on pose uα = g + αf . Montrer que uα est diagonalisable et discuter, en fonction des valeurs de α,
les cas où uα est cyclique.

Section B : Endomorphismes nilpotents qui sont cycliques.

Dans cette section, u est un endomorphisme nilpotent de E, d’indice de nilpotence r.

(1) Soit e ∈ E tel que ur−1(e) ̸= 0. Montrer que la famille
(
e, u(e), ..., ur−1(e)

)
est libre dans E.

(2) En déduire que r ≤ n et montrer que r = n si et seulement si u est cyclique.
Dans le cas r = n, écrire la matrice de u dans la base B(e, n).

Section C : Un second exemple.

Dans cette section, E est le sous-espace vectoriel des fonctions polynomiales de degré ≤ n − 1. Pour tout
k ∈ J0, n− 1K, on note Xk la fonction x ∈ R 7−→ xk et on rappelle que (Xk)k∈J0,n−1K est une base de E.

(1) Soit P ∈ E. Montrer que, pour tout x ∈ R, l’intégrale
∫ +∞

0

P (x + t)e−tdt converge et montrer que

la fonction x ∈ R 7−→
∫ +∞

0

P (x+ t)e−tdt appartient à E.

On note u : P ∈ E 7−→ u(P ) défini par : ∀x ∈ R, u(P )(x) =

∫ +∞

0

P (x+ t)e−tdt.

(2) Vérifier que u est un endomorphisme de E.
(3) Soit P ∈ E. A l’aide d’une intégration par parties, montrer que : ∀x ∈ R, u(P )(x) = P (x)+u(P ′)(x).

(4) En déduire que, pour tout P ∈ E, on a : u(P ) =
∑n−1

k=0 P
(k).

(5) Soit P ∈ E. A l’aide d’un changement de variable, montrer que, pour tout x ∈ R :

u(P )(x) = ex
∫ +∞

x

P (s)e−sds.

(6) Montrer que, pour tout P ∈ E, la fonction x 7−→
∫ +∞
x

P (s)e−sds est dérivable sur R.
Montrer alors que u(P ) est dérivable sur R et que (u(P ))′ = u(P )− P .
En déduire que (u(P ))′ = u(P ′).

(7) Déterminer la matrice de u dans la base (Xk)k∈J0,n−1K de E, et en déduire le spectre de u.
(8) On pose v = u − IdE . Montrer que Im(v) est le sous-espace vectoriel de E formé des fonctions

polynomiales de degré ≤ n− 2.
(9) Montrer que v est nilpotent. L’endomorphisme v est-il cyclique?

Partie III : Décomposition de Frobenius et applications.

Dans cette partie, on se propose de démontrer, pour tout endomorphisme u de L(E), la propriété suivante
notée (R) :

il existe p ∈ J1, nK et des sous-espaces vectoriels non nuls F1, ..., Fp de E, stables par u, tels
que E = F1 ⊕ ...⊕ Fp et pour tout i ∈ J1, pK, u|Fi

est un endomorphisme cyclique de Fi.

Section A : Cas d’une homothétie.

(1) Démontrer que la propriété (R) est réalisée si u est une homothétie.
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Section B : Cas où u n’est pas une homothétie.

(1) Justifier qu’il existe un vecteur e non nul de E tel que d(e) ̸= 1.

Pour le reste de la section, on choisit un vecteur non nul e de E tel que d = d(e) soit maximal (donc
d ≥ 2) et on note, pour tout k ∈ J0, d − 1K, ek = uk(e). On note toujours B(e, d) = (e0, e1, ..., ed−1)
ainsi que des réels a0, a1, ..., ad−1 tels que :

ud(e) =

d−1∑
i=0

aiu
i(e).

Enfin, on pose : F1 = Eu(e).
(2) Justifier que la propriété (R) est réalisée si d = n.

Dans la suite de cette section, on suppose que d ∈ J2, n − 1K (et donc n ≥ 3). On complète la
famille B(e, d) en une base B = (e0, e1, ..., ed−1, ed, ..., en−1) de E.

(3) Montrer que l’application φ : x =
n−1∑
i=0

xkek ∈ E 7−→ xd−1 est une forme linéaire non nulle de E.

On considère l’application Φ : x ∈ E 7−→
(
φ(ud−1(x)), φ(ud−2(x)), ..., φ(u(x)), φ(x)

)
∈ Rd.

(4) Vérifier que Φ est linéaire. On note G = ker(Φ) et Φ̃ la restriction de Φ à F1.
(5) Calculer Φ(e0) et Φ(e1) = Φ(u(e0)).

Plus généralement, justifier que, pour tout k ∈ J1, d − 1K, il existe des réels β0,k, β1,k, ..., βk−1,k tels
que Φ(ek) = (β0,k, β1,k, ..., βk−1,k, 1, 0, ..., 0).

(6) Ecrire alors la matrice de Φ̃ de la base B(e, d) de F1 vers la base canonique de Rd, et justifier que Φ̃
est bijectif.

(7) Montrer alors que E = F1 ⊕G, et justifier que G est stable par u.
(8) Dire pourquoi u|F1

est bien un endomorphisme cyclique de F1.
(9) Justifier que, pour tout vecteur non nul e′ de G, on a d(e′) ≤ d.
(10) Démontrer que la propriété (R) est bien réalisée.

Section C : Première application (décomposition de Jordan des endomorphismes nilpotents).

(1) Soit u ∈ L(E). On suppose qu’il existe p ∈ J1, nK et F1, ..., Fp des sous-espaces vectoriels de E non
nuls et stables par u tels que E = F1 ⊕ ... ⊕ Fp . Pour tout k ∈ J1, pK, on note BFk

une base de Fk.
Soit B la concaténation des bases BF1

,BF2
, ...,BFp

. On rappelle que B est une base de E. Quelle est
la forme de la matrice de u dans la base B?

(2) Soit u un endomorphisme nilpotent de E, d’indice de nilpotence p. A l’aide de la propriété (R),
montrer qu’il existe une base B de E dans laquelle la matrice T = (ti,j)1≤i,j≤n de u est triangulaire
inférieure et telle que, pour tout i ∈ J1, nK, ti,i = 0, pour tout i ∈ J2, nK, ti,i−1 ∈ {0, 1} et tous les
autres coefficients de T sont nuls.

Section D : Deuxième application (toute matrice carrée est semblable à sa transposée).

Dans cette section, on pose E = Rn et on note Bn la base canonique de Rn. Soit M ∈ Mn(R). On
note u l’endomorphisme de E canoniquement associé à M . On se propose de montrer que M vérifie la
propriété suivante, notée (S) :

il existe deux matrices symétriques V,W ∈ Mn(R), avec W inversible, telles que M = VW .

(1) Cas où u est cyclique : il existe donc e ∈ E tel que E = Eu(e). On note toujours B(e, n) la base(
e, u(e), ..., un−1(e)

)
de E et A = matB(e,n)(u). Il s’agit de la matrice de Frobenius associée aux réels
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a0, a1, ..., an−1 :

A =



0 0 · · · · · · 0 0 a0
1 0 · · · · · · 0 0 a1

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 0 an−2

0 0 · · · · · · 0 1 an−1


.

On considère :

S =



−a1 −a2 −a3 · · · −an−2 −an−1 1

−a2 −a3 · · · . .
.

−an−1 1 0

−a3 · · · . .
.

. .
.

. .
.

0 0
... . .

.
. .
.

. .
.

. .
.

0

−an−2 −an−1 . .
.

. .
.

(0)
...

−an−1 1 0
...

1 0 · · · · · · 0 0 0


et on note f l’endomorphisme de E tel que S est la matrice de f dans la base B(e, n). On a donc :

f(e) = −

(
n−1∑
k=1

aku
k−1(e)

)
+ un−1(e) , f (u(e)) = −

(
n−1∑
k=2

aku
k−2(e)

)
+ un−2(e)

et plus généralement :

∀j ∈ J0, n− 2K, f (u(e)) = −

 n−1∑
k=j+1

aku
k−j−1(e)

+ un−j−1(e)

et enfin f
(
un−1(e)

)
= e.

Calculer u(f(e)), u(f(u(e))) et plus généralement, pour tout i ∈ J0, n − 2K, u(f(uj(e))) et enfin
u(f(un−1(e))).

(2) En déduire que l’on a :

AS =



a0 0 0 · · · 0 0 0
0 −a2 −a3 · · · −an−2 −an−1 1

0 −a3 −a4 . .
.

. .
.

1 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 −an−2 . .
.

. .
.

. .
.

(0)
...

0 −an−1 1 0
...

0 1 0 · · · 0 0 0


.

Par la suite, on pose S1 = AS.
(3) Justifier que S est inversible. On note alors S2 = S−1 et on a donc A = S1S2, où S1 et S2 sont deux

matrices symétriques.
(4) On note P la matrice de passage de la base Bn vers la base B(e, n). Vérifier que :

M = PS1(
tP )(tP )−1S2P

−1

et conclure que M vérifie la propriété (S).
(5) Montrer alors que tM et M sont semblables. Plus précisément, déterminer une matrice symétrique

inversible Q telle que tM = Q−1MQ.
(6) Cas général : en s’appuyant sur le cas précédent et la propriété (R), montrer que, pour toute matrice

M de Mn(R), les matrices tM et M sont semblables.


