Lycée Clemenceau Jeudi 22 janvier 2026
ECG 2 Durée : 4 heures

Corrigé du devoir Surveillé de Mathématiques n°5

1. CorRIGE DU suJET EDHEC-EML

Corrigé de l’exercice 1. Dans tout I'exercice, on désigne par n un entier > 2. Soit A la matrice de M., (R)
dont les éléments diagonaux sont égaux & —n, les autres étant tous égaux a 1. On note J la matrice de M,,(R)
dont tous les éléments sont égaux a 1 et I la matrice identité de M, (R).

(1) Exprimons tout d’abord A en fonction de I et J. Par des calculs simples, on trouve que :

-n 1 .. 1 1 0 ... 0 1 1 ... 1
A= 1 . . : —(~1-n) o . EPT " 1

: | R (| 1

1 1 -n o .. 0 1 1 ... 1 1

Par conséquent, on en déduit que :

(A= (-1-n)+J]

A présent, écrivons A? comme combinaison linéaire de I et J. Comme les matrices I et J commutent,
on obtient par des calculs simples que :

A =[(-1-n)I+JP=1+n)?IP+J*=2(n+1)JI = (1+n)’T+J> —2(n+1)J.
Comme J? = nJ, il s’ensuit que :
A2 =1 +n) T+ J? -2+ 1)J =1 +n)?T+nJ —2(n+1)J = (1+n)* — (n+2)J.

Par conséquent, on en déduit que :

A% = (14n)*T — (n+2)J.
| |

(2) Déterminons tout d’abord un polynéme annulateur de A. Partant du fait que J = A + (n + 1)I, on
obtient par des calculs simples que :

P=[1+n)I+ AP =1+n)2I*+ A2 +2(n+1)Al = (1 +n)*T + A% +2(n + 1)A.
Comme J? = nJ, ceci entraine que :
JP=(14+n)’ T+ A% +2(n+1)A=nJ =n[(n+ 1) + Al =n(n+ 1)I +nA.
En particulier, il s’ensuit que :
0=1+n?T+A%2+2n+1)A—nn+1)I-nA=A%+(n+2)A+ (1 +n)l.

Par conséquent, on en déduit que :

‘ P:x+— 2° 4+ (n+2)z + (n+ 1) est un polynéme annulateur de A. ‘

A présent, donnons les valeurs propres possibles de A. Comme toute valeur propre de A est racine de

tout polynéme annulateur de A, il suffit de déterminer les racines de P. Par des calculs simples, on a

A=(Mn+2)?2—-4n+1)=n?+4n+4—4n —4 =n?, et donc les racines de P sont données par :
—-n—2+n -n—2-n

xlzf:—l et xng:—n—l.

Par conséquent, on en déduit que :

les seules valeurs propres possibles de A sont — 1 et —n — 1.

(3) Montrons que la matrice A est inversible. D’aprés la question précédente, —1 et —n — 1 sont les seules
valeurs propres possibles de A, et donc 0 n’est pas valeur propre de A car n > 2. Comme une matrice
est inversible si et seulement si 0 n’en est pas valeur propre, on en déduit que :

A est inversible.
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Par la suite, on considére un espace euclidien E de dimension n + 1, dont le produit scalaire est noté (, ) et
la norme associée || ||. On désigne par (o, ...,€,) une base orthonormée de E, et ’on pose :

n+1
n

Zek et Vie[0,n], e = (i — {es,u)u) .
k=0

1
U= —
vn+1 —

(1) Calculons la norme du vecteur w. Comme la famille (eq, ...,&,) est orthonormée, tous les vecteurs ¢;
sont de norme 1 et deux a deux orthogonaux. Dés lors, on obtient avec le théoreme de Pythagore que :

1 2 1 - 7’7,+1
2 E 2
Hu” (\/n—f—l) Hgk” ’I’L+1k 0 n+1

k=0

Par conséquent, on en déduit en passant a la racine carrée que :

[Jull = 1.
(2) (a) Montrons que, pour tout ¢ € [0,n], on a : ||e;|| = 1. Par bilinéarité et symétrie du produit scalaire,
on trouve que :
lesll* = {eieq)
n+1 n+1
= < n (Ei - <€ia U>U) ) n (Ei - <€ia U>U)>

n

— ( nt 1) (ei — (ei, u)u, &5 — (€4, u)u)

1
- e (i — {ei,u)u, &, — (g4, u)u)
n
n+1
= n [<€i’€i> - <5i7u><5i7u> - <€i’u> <u’ 5i> + <€i’u> <€i7u><u’u>]
n+1
= = [lleall® = (g6, u)(ei, u) — (g5, u)(es, u) + (g6, u) (€5, u)||ul]?]
n+1
= — [llesll” = 2(es, u)® + {ei, u)? Jul|?] -
Comme ||u|| =1 d’apres la question précédente, on obtient que :
n+1
leill* = - [llesll® = 2(es, u)® + (eq, w)?[|ull?]
n+1
= PR el — 2w + i)
n+1

- T [leall® = (e, w)®] . (%)

Comme la famille (g, ...,£,) est orthonormée, tous les vecteurs ¢; sont de norme 1 et deux a deux
orthogonaux. Dés lors, on trouve par bilinéarité du produit scalaire que :

1 n
<€z‘,u> = <5z‘, \/ﬁ kz_o€k>

1 n
= €iy€
n+1kz:%< k)

1
= 0+..+0+1+0+..+0]
n+1
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En particulier, on obtient avec la relation (%) que :

n+1

||€z'||2 = n [Hsi|‘2_<5i7u>2}
_ on+l, < 1 >2
o n vn+1
B nJrl_1 1
o n n—+1
_ on+1[ n B
B n |[n+1 B

Par conséquent, on en déduit en passant & la racine carrée que, pour tout i € [0,n] :
lles]] = 1.

(b) Montrons que, pour tout (i, j) € [0,n]? tel que i # j,ona: (e;, e;) = —%. Par bilinéarité et symétrie
du produit scalaire, on trouve que :

n-+1 n-+1
(eirej) = < - (ei — (&i, u)u), -

(e — <€jvu>u)>

2
= ( n+1> <517<5i,u>U,€j*<€j7U>U>

- ot L ter = (en,uhu e — (&5, uhu)
= P o) — e w)enuh — feiyd (s 25) + (o ), ) )
= P e o) — fenr ey u) — (e ), w) + {exs e, o)
= P e — 2o g u) + (e, Jull?]
Comme [u]| = 1 d’aprés la question précédente, on obtient que :
(enes) = " [len o) — 2ew ules, w) + e e, ol
= "0 feve) — 20en udleg,ud + e e, )
= T o) — feuud gy,

Comme la famille (g, ..., &,) est orthonormée, tous les vecteurs ¢; sont de norme 1 et deux & deux
orthogonaux. Des lors, on trouve que :

<eivej> = nTH [<€i,€j> — <Ei,u><5j7u>] — _’I’L—|— L

{ei,u)(ej,u). (%)



Comme précédemment, on obtient par bilinéarité du produit scalaire que, pour tout [ € [0,n] :

n

- zak>

k=0

<5l>u> =

S
+

—

—_

1 n
= €l,€
n —+ g<l k>

k=0

1
= 0+ .. +0+1+0+..+0]
n —+

-3

d

n

En particulier, on trouve avec la relation (x) que :

n—+1
(eivej) = — (ei,u)(ej, u)
n
n+1 1 1 1

X X = ——.
n vn+1l +n+1 n
Par conséquent, on en déduit que, pour tout (i,5) € [0,n]? tel que i # j :
1

<eiv6j> = _E'

Montrons que les vecteurs e, ..., e, appartiennent tous au sous-espace F' = (Vect(u))* de E. Par
bilinéarité du produit scalaire, on trouve que, pour tout i € [0,n] :

< nZl (e; — (gi, uhu) ,u>

1
= nt (g; — (&i, u)u, u)
n

_ W s ) — (o2, uu, )]

Comme (u, u) = ||ul|> = 1 d’aprés la question (2)(a) de la premiére partie, on a pour tout i € [0,n] :

<ei’ u>

n+1
n

(ei,u) = [(gi,u) = (g5, w)] = 0.

Deés lors, tous les vecteurs e; sont orthogonaux a u. Par conséquent, on en déduit que :

les vecteurs e, ..., e, appartiennent tous & F = (Vect(u))".

Montrons que (e, ..., e,) est une base de F'. D’apres la question précédente, on sait que les vecteurs
e1, ..., e, appartiennent tous a F. De plus, d’apres les propriétés de I'orthogonal, on voit que :

dim F = dim(Vect(u))* = dim E — dim Vect(u) = n + 1 — dim Vect(u).

Comme u est de norme 1 d’apres la question (1) de la deuxiéme partie, le vecteur u est non nul. En
particulier, la famille (u) est libre. Mais comme elle est génératrice dans Vect(u) par définition, la
famille (u) est une base de Vect(u), et donc :

dimFF=n+1—dimVect(u) =n+1—-1=nmn.

Comme la famille (eq, ..., e,) est de cardinal n, il suffit de montrer que cette famille est libre pour
obtenir que c’est une base de F'. Pour ce faire, considérons des réels x1, ..., z, tels que :

rie1 + ... + xpen = 0g.
Par bilinéarité du produit scalaire, on trouve que, pour tout j € [0,n] :

z1(er,e;) + ...+ xnlen, ;) = (x1€1 + ... + Tnen, ;) = (0p,e;) = 0.



D’apres les questions (2)(a) et (2)(b) de la deuxiéme partie, on obtient que, pour tout j € [0,n] :

1
zi{er,ej) + ... + xplen, ;) = —orL +xz;— ... — T = 0.

En multipliant cette égalité par —n, on trouve que, pour tout j € [0,n] :

T+ ... +2j—1 —NT; +Tjp1... + Ty = 0.

En particulier, si X est le vecteur colonne de composantes x1, ..., T,, alors on voit avec les relations
ci-dessus que AX = 0, ou A est la matrice donnée dans la premieére partie. Comme A est inversible
d’apres la question (3) de la premiére partie, le systéme AX = 0 admet 0 comme unique solution,
et donc z1 = ... = x,, = 0. Par conséquent, la famille (eq, ..., e,,) est libre, et donc :

’ (e1,...,en) est une base de F. ‘

(3) On considere I'application f de F' x F' dans R définie pour tout (z,y) € F' x F par :

n

fla,y) = (w, ey, ex) —

k=0

n+1

(z,y).

(a) Montrons que f est une forme bilinéaire symétrique. Commengons par établir la symétrie. Par
symétrie du produit scalaire, on trouve que, pour tout (z,y) € F x F :

f(y, )

= Z<y7ek><x7ek>—n+1<yyx>
k=0
= Yl -t @y = S,

>
Il
o

et donc f est symétrique. Deés lors, pour montrer que f est bilinéaire, il suffit de vérifier que f
est linéaire a gauche. Pour ce faire, considérons des vecteurs x1,x2,y € F et des réels A, Ao. Par
bilinéarité du produit scalaire et par linéarité de la somme, on obtient que :

fizr + Aozo,y) =

n

n+1
D s+ Aowa, ex) (y, ex) — — Nzt Aeza,y)

k=0
d n+1
D alm,en) + Aalwa, ex)](y, ex) — (21, y) + Az (z2, y)]
k=0
" ~ n+1 n+1
A1 Z<9E1a€k><y,€k>+/\2 Z<$2,€k><y7€k> -\ (T1,9) — A2 (z2,9)
k=0 k=0
i n+1 = n+1
>\1 Z<$1,€k><y7€k> - <.T1,y> + )\2 Z<m2aek><yaek> - <l‘2,y>
k=0 k=0

Af(w1,y) + Aaf(z2,y).

Des lors, il s’ensuit que f est linéaire a gauche. Par conséquent, on en déduit que :

‘ f est une forme bilinéaire symétrique.

(b) Déterminons f(e;,e;) pour tout (i, ;) € [1,n]?. Pour ce faire, on distingue deux cas. Tout d’abord,
si ¢ = j, alors on obtient par définition de f que :

fleiej) = fleer) =D (ei ex) (e ex) —

n

n+1

<ei7 ei> .
k=0



D’apres les questions précédentes, on sait que (e;, ex) est égal A 1 si k =i et & —% si k # 1. Des lors,
il S’ensuit que, pour tout 7 € [1,n] :

n+1

fleier) = > leier)(eier) + (es ) — T<€i;ei>
0<k<n, k#i
2
1 1
= ¥ ()
. n n
0<k<n, k#i
2
1 1
e
n n
1 1
D )
n n
A présent, si i # j, alors on obtient par définition de f que :
n
n+1
fleies) = (eirer)lej,ex) — ——(eir ).
k=0

D’apres les questions précédentes, on sait que (e;, ex) est égal A 1 si k =i et a f% si k # i. Des lors,
il s’ensuit que, pour tout (4,5) € [1,n]? tel que i # j :

n+1
fleie;) = S leierejien) + (eiei)(ej i) + (e ej){ej ) — ——eie5)

0<k<n, k#i,j

2
5 1 1 1 11
0<k<n, ki N " " " n

1N 101 n+d
= (nl)(> - *E‘FT

n n

Par conséquent, on en déduit que, pour tout (i,5) € [1,n]? :

f(ez-, ej) =0.
(¢) Montrons que, pour tout (z,y) € F x F, on a :
~ n+1
Z<‘T7ek><yvek> = <£L’,y>
k=0

Au vu de Pexpression de f, il suffit de montrer que f(x,y) = 0. Pour ce faire, considérons deux vec-
teurs quelconques z,y de F. D’apres la question (2)(d) de la deuxiéme partie, on sait que (e, ..., e;,)
est une base de F. Des lors, il existe des réels ay, ..., ap, b1, ..., b, tels que :

n n
T = E ae; et y= E bje;.
i=1 j=1

Comme f est bilinéaire d’apres la question (3)(a), on trouve avec la question précédente que :

n n

f(x,y) = f zn:aiei,zn:bj(ij = zn:i:alef (ei,ej) = ZZaibj x 0=0.
i=1 j=1

i=1 j=1 i=1 j=1

Par conséquent, on en déduit que, pour tout (z,y) € F X F :

+1

(z,y).

Z<x’ ek><y7 €k> - z

k=0




(d) Montrons que, pour tout « € F, on a :

n
n
loll® = =g 2 en)™
k=0

Partant du résultat de la question précédente, on trouve en prenant x = y que :

n n
2 _n+1 _n+1 9
Z<$7el€> —Z<$76k><m,ek> - n <x’x> - n ||.'L'|| N
k=0 k=0
Par conséquent, on en déduit en multipliant cette égalité par nil que, pour tout z € F :

n
n
loll® = =g o en)™
k=0

Corrigé de l’exercice 2. Un mobile se déplace aléatoirement sur un axe dont l'origine est le point O
d’abscisse 0. Au départ (instant 0), le mobile est situé sur le point O. Le mobile se déplace selon la regle
suivante : a linstant n € N*, il se place de facon équiprobable sur les points d’abscisses 0,1, ...,n. Pour
tout entier naturel n, on note X, labscisse de ce point & Uinstant n (on a donc Xy = 0). On admet que,
pour tout entier naturel n, X, est une variable aléatoire définie sur un espace probabilisé ({2, .4, P) que l'on
cherchera pas a déterminer. On admet aussi que (X,,)ren est une suite de variables aléatoires mutuellement
indépendantes.

(1) (a) Déterminons la loi de X,, pour tout entier n # 0. Comme le mobile se place de fagon équiprobable
sur les points d’abscisses 0, 1, ...,n a 'instant n et que X,, est la position du mobile a I'instant n, il
s’ensuit que :

| X, = u([0,n]). |

(b) Montrons que, pour tout n € N*, X,, admet une espérance et une variance et donnons-les. Comme
X, suit la loi uniforme sur [0,n] d’apres ce qui précede, il s’ensuit d’apres le cours que :

2
X,, admet une espérance et une variance et de plus : E(X,,) = g, V(Xy,) = %

(2) On note Y le rang du premier retour & l'origine du mobile et on admet que Y est une variable aléatoire
définie elle aussi sur (€2, A, P).

(a) Exprimons I’événement [Y = n] a laide de X1, ..., X,, pour tout n € N*. Par définition, I’événement
[Y = n] est réalisé si et seulement si le mobile ne revient & Porigine qu’a l'instant n et jamais
auparavant, c’est-a-dire si les événements [X; # 0],...,[X,—1 # 0],[X,, = 0] sont simultanément
réalisés, et donc :

[V =n] = [X1 #0]N .0 [X, 1 # 0] N [X, = 0]

(b) Montrons que la loi de Y est définie par : VYn € N*, P(Y =n) = ﬁ
que Y ne peut prendre que des valeurs entiéres > 0 par construction, et donc Y (2) € N*. De
plus, comme X, < U([0, k]) pour tout k € [1,n — 1] et que les variables aléatoires X7, ..., X,, sont
indépendantes par hypothése, on voit que, pour tout n € N* :

P(Y=n) = P(X1#£0nNn..N[X1#0]N[X,=0])

Remarquons tout d’abord

= P([X1 #0])..P([Xp-1 # 0]) P([Xn = 0])
= (1-P([X1=0])...(A = P([Xn-1 = 0])) P([X, = 0])
() (-D)
SOOREIES

Dés lors, ceci entraine par télescopage que, pour tout n € N* :

1
n(n+1)

PY =n)=



Comme toutes ces probabilités sont non nulles, il s’ensuit que Y (2) = N*. Par conséquent :

1
la loi de Y est donnée par : Vn € N*, P(Y =n) = ——.
nn+1)
Vérifions par le calcul que 'on a : Z:: P(Y =n)=1. Comme m =1_ n%_l pour tout n € N*,
on trouve par télescopage que, pour tout p € N* :
P P P
1 1 1 1
PY=n)=) ————=>» —— =1- :
ngl ;n(nJrl) ngln n+1 p+1
Comme le terme de droite dans 1’égalité ci-dessus tend vers 1 quand p tend vers +o0, on a :
P
Y P(Y =n)= lim P(Y =n) =1.
P%+mn=1

Par conséquent, on en déduit que :

+oo
> Py =
n=1

Montrons que la variable aléatoire Y n’admet pas d’espérance. Par définition, la variable aléatoire Y
admet une espérance si et seulement si la série ) ., nP(Y = n) converge absolument, c’est-a-dire

converge (puisqu’elle est & termes positifs). Or, pour tout n € N*, on voit que :
1 1

nb( ") nxn(n—i—l) n+1

Comme la série harmonique diverge d’apres le cours, on obtient par décalage que la série >
diverge, et donc ), -, nP(Y = n) diverge aussi. Par conséquent, on en déduit que :

1
n>1 n+1

la variable aléatoire Y n’admet pas d’espérance. ‘

Montrons que, pour tout k € N*, on a : k+ < In(k +1) — In(k) < +. Comme la fonction In est
continue sur [k, k + 1] et dérivable sur |k, k + [ pour tout k € N*, le théoréme des accroissements
finis entraine I’existence d’un réel ¢ €]k, k + 1] tel que :

In(k + 1) — In(k) = ln(kkili - Ln(k) _ %

Commek<c<kz+1,onvoitquek#ﬂS%S%,etdonconapourtoutk‘EN*:

1
— < <
] In(k+1) —In(k) <

=

Montrons que : Vj > 2, In(j) < Z 11 % <In(j)+1- % Par sommation sur k de ’égalité ci-dessus,
on trouve que, pour tout 5 > 2 :

j—1 1 Jj—1
Zm < In(k+1) —In(k) <
k=1 k=1

Par télescopage, ceci nous donne que, pour tout j > 2 :

j—1 1
—— < In(j) —In(1) <
;,HI_H(J) n(1) <

En effectuant le changement d’indice [ = k + 1 dans la somme de gauche et sachant que In(1) = 0,
il vient que, pour tout j > 2 :

<.
|
—

o

Il

L
el

<.
|
—_

=

k=1



En scindant cet encadrement en deux inégalités, on trouve que, pour tout j > 2 :

<
|
—
<
|
—

el

1
—14+-=<In(j) et In() <
J

~
I
—
£l
I
-

<
|
—
<.
|
—

el

Sln(j)—i—l—; et In(y) <

=~
Il
_
x~
Il
-

=1 1
In(j) <) —<@)+1--~
k J
k=1
Montrons que : fﬁ 1 k N+ In(j). Partant de I’encadrement de la question précédente, on obtient
par division que, pour tout j>2:
Sl 1 1
R B
In(j) In(j)  jIn(j)

Comme ﬁ et ﬁ tendent vers 0 quand j tend vers +oo, il s’ensuit d’apres le théoreme des
gendarmes que :

Jj—1

1
k= 1%
— 1.
In(j) j—+oo

Par conséquent, on en déduit que :

Z% ).

J
k=1

(4) On note Z le rang du deuxiéme retour & l'origine du mobile et on admet que Z est une variable aléatoire
définie elle aussi sur (€2, A4, P).

(a)

Déterminons pour tout 4 > j la probabilité Py_;(Z = j). Pour ce faire, supposons que I'événement
[Y = ] soit réalisé. Alors le premier retour & l'origine se fait & I'instant 7, et il est impossible que le
deuxieme se fasse a un instant j < ¢. Par conséquent, on en déduit que :

‘WZJ} Py—q(Z = j) :0-‘

Etablissons que, pour tout i < j —1,on a: Py_j(Z = j) = Pour ce faire, on commence

+1
par exprimer 1’événement [Y = i| N [Z = j] & laide de Xl,ij X) Par définition, 1’événement
[Y =i]N[Z = j] est réalisé si et seulement si le mobile revient une premiére fois & lorigine & 'instant
i, puis ne repasse pas par 'origine aux instants i+ 1, ..., j — 1 et enfin revient a I'origine a l'instant j,
c’est-a-dire si les événements (X7 # 0],...,[X;—1 # 0], [X; = 0], [Xi41 # 0],...,[X;—1 # 0], [X; = 0]

sont simultanément réalisés, et donc :

i—1 Jj—1

Y =in[Z=j=(Xe £0N[X;i =01 (] [Xx#0]N[X;=0]

k=1 k=i+1



Comme Xy — U([0,k]) pour tout k € [i + 1,4] et que les variables aléatoires Xj, ..., X; sont
indépendantes par hypothese, on voit que, pour tout ¢ < j —1:

1—1 j—1
P(Y =in[Z=j]) = P(m[Xk7é0]ﬂ[Xi:O]ﬂ (N Xk #0n[X; 20]>
k=1 k=i+1
I P(x 2 opp—op T] P2 0)P(X, — 0)
k=1 k=i+1

= Py =) [ P(Xk £O)P(X, = 0))

k=i+1

j—1

= Py =1) [] - P(xXp=0])P(X;=0)

k=i+1

= Hw=ﬂfh%0‘kiin1

k=i+1

= P([Y =1) ﬁ (kil) a%

k=i+1

Des lors, ceci entraine par télescopage que, pour tout ¢ < j — 1 :
1+ 1 1 . t+1

) =P =

i) i+ 3G +1)
En particulier, ceci nous donne apres division que, pour tout ¢ < j — 1 :

) P(Y =i n[Z=j)]) 1+1
P([Y =) 3G +1)

Par conséquent, on en déduit que, pour tout i < j —1:

HWﬂmMﬂ)fﬂYm<

1+ 1

Py-y(Z =j) = iG+1)

¢) Ecrivons pour tout entier 7 > 2 la probabilité P(Z = j) comme une somme finie. D’apres la
J
formule des probabilités totales appliquée a ’événement [Z = j] et au systéme complet d’événements
([Y = i])ien+, on trouve que, pour tout j > 2 :

ZP i) Py=iy(Z = j).

Comme Pyy_;(Z = j) = 0 pour tout i > j d’apres la question (4)(a), on a pour tout j > 2 :

j—1

P(Z=j)=Y P(Y =i)Py—y(Z = j).

i=1
J(J-’rl) et P(Y =1) =
et (4)(b), on trouve que, pour tout j > 2 :

Comme Py_;)(Z = j) = 5 pour tout i < j—1 d’apreés les questions (2)(b)

_1
iGi+1

! 1+ 1

zz+1 jj+1)'

i=1

Par conséquent, on en déduit apres simplification que, pour tout j > 2 :

=1

, 1
P(Z:j):m;;.
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(d) Montrons que la variable Z n’admet pas d’espérance. D’aprés la question (3)(c), on sait que :

<.
|

1
1
— ~ In(y).
1kj—>+oon(])

ES
Il

Comme un polynome est équivalent au voisinage de 400 a son terme de plus haut degré, on voit
que j(j + 1) ~4o0 5. Deés lors, on trouve d’apres les régles de calcul des équivalents et la question

précédente que :
j—1 o .
« ! jln(j) In(j)

. , J
P(Z = = < -~ ~ 2
B 7 jGi+1) Zl 1 jotoo  j2 jodoo

. . . .. . . In(j R
Comme jP(Z = j) > 0 pour tout j > 2, les séries } .-, jP(Z = j) et 3,5, nj(j) sont de méme
nature d’apres le critére d’équivalence des séries a termes positifs. Par ailleurs, comme In(j) tend

vers +o0o quand j tend vers o0, on voit que :
o In(y)
Jimtee \ j )7

@) 3 termes positifs convergeait, alors la série harmonique i>2 % convergerait

Sila série 3 -, =
RN < s ;1. es 2 . . : N - In(j) 7.
aussi d’apres le critére de négligeabilité, ce qui est impossible. Des lors, la série > i>2 = diverge,

ce qui entraine la divergence de la série -, jP(Z = j), et donc :

‘ Z n’admet pas d’espérance. ‘

(5) Informatique
On rappelle qu’en Python, la commande rd.randint (a,b+1) permet de simuler une variable aléatoire

suivant la loi uniforme & valeurs dans [a, b].

(a) Ecrivons une fonction en Python calculant et affichant la valeur de 1’abscisse du mobile aprées son
n-eme déplacement lorsque la valeur de n est entrée au clavier par I'utilisateur. Pour ce faire, on

procedera comme suit :

import numpy as np
import numpy.random as rd

def simuli(n):
x=rd.randint (0,n+1)

return x

(b) Complétons la fonction en Python suivante pour qu’elle permette d’afficher dans cet ordre les valeurs

prises par les variables aléatoires Y et Z.

import numpy as np
import numpy.random as rd

def simul2():
n=0
a=0
while a<2:
n=n+1
if rd.randint(0,n+1):
a=a+l
if a==1:
y=n

return ........

Pour ce faire, on procédera comme suit :
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import numpy as np
import numpy.random as rd

def simul2():
n=0
a=0
while a<2:
n=n+1
if rd.randint(0,n+1)==0:
a=a+1
if a==1:
y=n
return y,n

Corrigé du probléme 1.
Partie I : Etude d’un exemple

4 0 0 100
Dans cette partie, on considere les matrices A= | -5 9 0| etl3=[0 1 0
-5 5 4 0 0 1

(1) Trouvons en fonction de I3 et de A deux matrices P; et Po de M3(R) telles que P + P, = I3 et
4Py + 9P, = A, puis explicitons les coefficients de P; et de P,. Partant des relations Py + P, = I3 et
4P; + 9P, = A, on obtient en multipliant la premiere par 4 que 4P, + 4P, = 413 et 4P, + 9P, = A. Par
différence, on trouve que 5P, = A — 413, et donc :

1 4
P=-A—-1Is.
2= 5 513
De méme, en multipliant la premiere relation par 9, on obtient que 9P; + 9P, = 913 et 4P, + 9P, = A.

Par différence, on trouve que 5P, = —A + 913, et donc :

1 9
Pi=—-A+4+ -1Is.
1 5 +53

Par conséquent, on en déduit que :

1 9 1 4
P1:—5A+SI3 et PQZSA—g.[g

Par des calculs simples, on trouve alors que :

1 0 0 0 00
P=11 0 0 et PR=|-1 10
1 -1 1 -1 1 0

(2) (a) Calculons les matrices PZ, Py Py, Py Py, P3. Par des calculs simples, on trouve que :

1 0 0\ /1 0 O 1 0 0

P = (1 0 o1 0o o] = (1 0 0 = P
1 -1 1 1 -1 1 1 -1 1
1 0 0 0 00 0 0 0

PP, = (1 0 OfJ|-1 1 0] = [0 00 = 0
1 -1 1/ \-1 1 0 0 00
0 0 0\ /1 0 O 000

PpBP = (-1 1 0|1 0 0] = |0 0O = 0
-1 1 0/ \1 -1 1 0 00
0 00 0 00 0 0O

P = |[-110||-110] = ([-110| = P.
-1 1 0/ \-1 10 -1 10

Par conséquent, on en déduit que :

P12:P1 s PlPQZO, P2P1:07 P22:P2
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(b) Montrons par récurrence la propriété P définie pour tout k € N par :
P(k):"AF =4*P + 9% Py,
Tout d’abord, on voit que P(0) est vraie car, par construction de P; et Py :
A =I; =P + P, =4°P, + 9°P,.

A présent, supposons P (k) vraie et montrons que P(k+ 1) Pest aussi. Par hypothése de récurrence,
on sait que A* = 4P, + 9*P,. Comme A = 4P, + 9P, par construction, ceci entraine que :

AR = AFA = (4F Py + 97 Py) (4P + 9P3) = 4R P PE 49 x 4P P Py + 4 x 95 Py Py + 9F TIPS
Comme P? = Py, PP, = P,P; =0 et P? = P, d’aprés la question précédente, on trouve que :
AR = 4RI p2 9 x 4R Py Py + 4 x 9P PPy + 95T PY = 4P P 4 9M Ly,

et donc P(k + 1) est vraie. D’apres le principe de récurrence, la propriété P est vraie a tout ordre
k € N. Par conséquent, on en déduit que, pour tout k € N :

A = 4*P + 9Py |

(3) Trouvons une matrice B € M3(R), dont on explicitera les coefficients, telle que B> = A. En s’inspirant
de la question précédente et en remarquant que v4 = 2 et v/9 = 3, on peut supposer que B = 2P, +3P,
vérifie la relation B% = A. C’est ce que I'on va vérifier. Par des calculs simples, on trouve que :

B? =B x B= (2P, + 3P,) (2P, +3P,) = 4P} + 6P, P, + 6P, P, + 9P}.
Comme P? = Py, PiP, = PP, =0 et P{ = P> d’apres la question (2)(a), on obtient que :
B? = 4P} + 6P, P, + 6P, P, + 9P} = 4P, + 9P, = A.

Par conséquent, on en déduit apres calculs que :

2 0 0
la matrice B=2P, + 3P, = [ =1 3 0| vérifie la relation : B®> = A.
-1 1 2

(4) Déterminons les valeurs propres de A. Comme la matrice A est triangulaire inférieure, ses valeurs
propres sont ses coefficients diagonaux, et donc :

Sp(A) = {4,9}

Dans toute la suite du probléme, on désigne par E un R-espace vectoriel de dimension finie > 1 et par
f un endomorphisme de E. On note e 'endomorphisme identité de E et 0 Pendomorphisme nul de E. On
suppose qu’il existe un entier m > 1, des réels Ay, ..., A, deux a deux distincts et des endomorphismes non
nuls py, ..., pm de E tels que : Vk € [0,m], f* = > Afp;. Enfin, on considére les polyndmes :

N:zr—>H(xf)\l) et pour tout ¢ € [1,m], M;:x+— H (x—N) et L; =
=1 1<I<m, I#£i

On admet que (P x Q)(f) = P(f) o Q(f) pour tous P,Q € R[z].

M;(N\)

Partie IT : Etude des puissances de f

(1) Montrons que, pour tout P € R, [z], ona: P(f) = >, P(\;)p;. Comme P est un élément de R,,[z],
il existe des réels ag,aq,...,an, tels que P : x — ag + a1x + ... + a,,,x™. Deés lors, on obtient par
interversion des sommes que :

S PO =3 ( akxf) n=Sa (z Afpz-) |
=1 k=0 k=0 =1

i=1

Comme >/ AFp; = f* pour tout k € [0,m], il s’ensuit que :

> POpi =Y ax (ZM‘%‘) = anf* = P(f).
i=1 k=0 i=1 k=0

Par conséquent, on en déduit que, pour tout P € R,,[z] :
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(2) Montrons I'égalité : N(f) = 0. Comme N : x +— [[/",(z — 1), le polynéme N est & coefficients réels
de degré m, et donc N appartient & R,,[z]. D’aprés la question précédente, on obtient que :

N(f) = 3N

Mais comme N (A;) = 0 pour tout ¢ € [1,m] par construction, il s’ensuit que :

N() =S 0% p; =0.
=1

Par conséquent, on en déduit que :

(3) (a)

N(f) = 0.

Montrons que, pour tout (4,5) € [1,m]?, L;(\;) est égal & 1 sii = j et & 0 sinon. Pour ce faire, on
procede a une distinction de cas. Tout d’abord, si ¢ = j, alors on trouve que :

1
M;(Ni)

Li(\j) = Li(N) = M;(\) = 1.
A présent, supposons que ¢ # j. Comme M; : . — [[, ;<. l#i(x — N et que i # j, le réel \; est
racine de M;, ce qui entraine que : T

1 1

Li(Aj) =

Par conséquent, on en déduit que, tout (i, ) € [1,m]? :

‘Li()\j)zlsiizjetLi()\j)zosii;«éj.‘

Montrons que, pour tout ¢ € [1,m], on a : L;(f) = p;. Comme L; = ﬁMZ et que M; : x —>

I[Ti<i<m lﬂ(x — A1), le polyndéme L; est a coefficients réels de degré m — 1, et donc L; appartient a
R, [z]. D’aprés la question (1) de la partie II, on obtient que :

L) = > Ly

Comme L;(\;) =1sii=jet Ly(\;) =0sii#j,il sensuit que :

Lif)y= > Li\pi+Ldpi= > 0xpj+1xp=ps:

1<j<m, j#i 1<j<m, j#i

Par conséquent, on en déduit que, pour tout ¢ € [1,m] :
Li(f) =pi.
Montrons que : e = Y i~ p;. Comme f* =" AFp; pour tout k € [0,m], on a pour k =0 que :
m m
e=f0= Npi=> 1xp.
i=1 i=1

Par conséquent, on en déduit que :

m
e = Zpl
i=1

Montrons que E est la somme des m sous-espaces vectoriels Jm(p1), ...., Jm(p,, ). Comme tous les
ensembles Jm(p;) sont des sous-espaces vectoriels de E, on a clairement l'inclusion :

i jm(pl) CE.
=1

Par ailleurs, on obtient avec la question précédente que, pour tout x € E :

x=e(x) = (Z}%) (r) = sz(x)
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Comme p;(z) appartient & Jm(p;) pour tout i € [1,m], on voit que x appartient a Y.~ Jm(p;).
Comme ceci est vrai pour tout x € F, il s’ensuit que :

i=1

Par conséquent, on en déduit par double inclusion que :

m

E =Y Jm(p:).

i=1

(5) Soit ¢ un élément de [1,m].

(a) Vérifions que, pour tout © € R : N(z) = M;(\;)(z — A\;)L;(z). Par des calculs simples, on trouve
que, pour tout x € R :

s

N)=]lxz—-X)=(x—-X\) H (x —N) = (x — \) M;(x).
=1 1<I<m, I#i
Comme L; = Mi/\i)Mi’ on obtient que, pour tout x € R :
1
N(x) = (Z‘ — )\Z)Ml(x) = (l‘ — )\z) X Ml()\l) X li(x) = (.I — /\1) X Mz()\z) X LZ(.%‘)

Par conséquent, on en déduit que, pour tout x € R :

| N(2) = M;(\) (@ = \i) Li(w). |

(b) Montrons que : Jm(p;) C ker(f — \;e). D’aprés la question (2) de la partie IT, on sait que N(f) =0,
ce qui entraine avec la question précédente que :

M;(\)(f = Nie) o Li(f) = 0.
Comme M;()\;) est un réel non nul, on obtient que :
(f = Xie) o Li(f) = 0.
Comme L;(f) = p; d’apres la question (3)(b) de la partie II, on trouve que :
(f = Aie)op; = 0.

Considérons un élément 2 de Jm(p;). Alors il existe un élément y de F tel que p;(y) = z. Avec la
relation ci-dessus, on obtient que :

(f = Xie)(@) = (f = Xie)(pi(y)) = (f — Xie) o pi(y) = 0(y) = 0,

et donc x appartient a ker(f — A;e). Comme ceci est vrai pour tout « € Jm(p;), on en déduit que :

‘3m(pi) C ker(f — Aie). ‘

(6) Montrons que f est diagonalisable, que les valeurs propres de f sont les réels Ay, ..., A, et que, pour
tout i € [1,m], le sous-espace propre de f associé & A; est égal & Jm(p;). Tout d’abord, on peut
remarquer que Jm(p;) # {Og} pour tout ¢ € [1,m], et ce car p; # 0 pour tout i € [1,m] par
hypothése de départ. Comme Jm(p;) C ker(f — \;e) d’apres la question précédente, on obtient que
ker(f — M\ie) # {Og} pour tout ¢ € [1,m], et donc les réels Ay, ..., \,, sont valeurs propres de f.
On désigne alors par Ey, (f),...,Ex, (f) les sous-espaces propres associés respectivement aux valeurs
propres i, ..., A, Comme Jm(p;) C ker(f—X\;e) = Ey,(f) pour tout i € [1,m] et que E = >"1" | Tm(p;)
d’aprés la question (4)(b) de la partie II, on obtient que E C Y_." | Ex,(f), et donc :

b= ZEAi(f)

Comme les sous-espaces propres d’un endomorphisme sont toujours en somme directe, il s’ensuit que :
m
B= @0
i=1

Par conséquent, on en déduit que :

‘ f est diagonalisable et ses valeurs propres sont les réels Ay, ..., Ap,.




16

A présent, fixons un indice ¢ € [1,m]. Comme IJm(p;) C ker(f — A\;e) et que ker(f — \;e) = Ey,(f), on
voit que Jm(p;) C E,(f). Réciproquement, considérons un élément x de Ej,(f). Comme f(z) = Az
et que p; = L;(f) d’apres la question (3)(b) de la partie II, on voit d’apres le cours que :

pi(z) = Li(f)(z) = Li(\i)z.

Comme p; est une application linéaire et que L;(\;) # 0, ceci entraine que :

1 pilz) = ( 1 )
T = =p; x|,
Lo TP o)
Jm(p;). Comme ceci est vrai pour tout @ € Ej,(f), il s’ensuit que
= Jm(p;) par double inclusion. Par conséquent, on en déduit que,

et donc le vecteur x appartient a
Ex, (f) € Jm(p;), et donc Ex,(f)
pour tout ¢ € [[1,m] :

‘E,\i (f) = Im(p;). ‘

(7) (a) Montrons que, pour tout (i,7) € [1,m]? tel que i # j, on a : p; o p; = 0. Pour ce faire, fixons deux

indices 4, j € [1,m] tels que i # j. D’aprés la question (3)(a) de la partie II, on sait que L;(f) = p;
et L;(f) = p;j. Comme My : @ — [],c<, 12 (x — M) €t que Ly : 2 — My (x) pour tout
k € [1, m] par définition, on trouve que, pour tout = € R :

M, (A)

1
= MMy M -» I @

1<1<m, 1 1<i<m, 1]
1
= — I[I @-w@E=x ] @-n
Mi(Xe) M; (Az) [ 1<i<m, 124, | 1<I<m, I#]
1
- )\ — A
Mz‘o\z‘)MjO\j) H (z 1) H (z 1)

1<I<m, I#i,j 1<i<m

1
= ooy | AL @ Ne

1<I<m, I#i,j

En particulier, il existe un polynéme @ € R[z] tel que L;L; = QN. Comme N(f) = 0 d’apres la
question (2) de la partie II, il s’ensuit que :

piop; = Li(f) o L;(f) = (LiL;)(f) = (QN)(f) = Q(f) o N(f) = Q(f) 0 0 = 0.

Par conséquent, on en déduit que, pour tout (i,5) € [1,m]? tel que i # j :

Pbiopj =0.

(b) Montrons que : Vi € [1,m], p; o p; = p;. Comme e = Y .~ p; d’aprés le résultat de la question
(4)(a), on trouve que, pour tout i € [1,m] :

biopi=pio|e— Z pj | =bice— Z bi°p;j-
1<j<m, j#i 1<j<m, j#i

Comme p; o e = p; et que p; op; = 0 pour tout (i,7) € [1,m]? tel que i # j d’aprés la question
précédente, il s’ensuit que :

piopi=Dpice— Z piopj =Di— Z 6=]0i-

1<j<m, j#i 1<j<m, j#i

Par conséquent, on en déduit que, pour tout i € [1,m] :
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¢) Etablissons que, pour tout i € [1,m], ona: p;o f = A\;p;. Comme f =>""" . \;p; par hypothese de
=178
départ, on trouve que, pour tout i € [1,m] :

m m
piof=pio| D _Npj | =D Nipiop;.
j=1 j=1

Comme p; o p; = p; pour tout ¢ € [1,m] et que p; op; = 0 pour tout (i,5) € [1,m]? tel que i # j
d’apres les questions précédentes, il s’ensuit que :

piof= > Apiop;+Apiopi =0+ \ipi.
1<j<m, ji

Par conséquent, on en déduit que, pour tout ¢ € [1,m] :

pio f = \ip;.

(8) Montrons tout d’abord par récurrence la propriété P définie pour tout k € N par :
m
Plk):"fF = Nipi”.
i=1

Tout d’abord, on voit que P(0),..., P(m) sont vraies car f¥ = > Aep, pour tout k € [0,m] par
hypotheése de départ. A présent, supposons P (k) vraie et montrons que P(k+1) l'est aussi. Par hypothese
de récurrence, on sait que fF = POy Nep;. Comme f = 27:1 Ajp; par hypothése de départ, ceci
entraine que :

Rl = R f = <Z A§p1-> D oapi | =D0D AN op;.
i=1 j=1

i=1 j=1

Comme p; op; = 0 pour tout (7, 5) € [1,m]? tel que i # j, et ce d’aprés la question (7)(a) de la partie
II, on obtient que :

m m m

m
=3 NXjpiopi| =Y MXipiopi=> Atpiop:.
1 i=1 i=1

i=1 | j=

Comme p; o p; = p; pour tout ¢ € [1,m] d’apres la question (7)(b) de la partie II, on trouve que :
m m
=N piop = A,
i=1 i=1

et donc P(k+1) est vraie. D’apres le principe de récurrence, la propriété P est vraie & tout ordre k € N.
Par conséquent, on en déduit que, pour tout k£ € N :

= i/\fpi-
i—1

A présent, montrons que, pour tout P € Rlz] : P(f) = >, P(\i)p;. Pour ce faire, on considére un
élément quelconque P de R[z]. Alors il existe des réels ag, a1, ..., a, tels que P : © — ap+ajz+...+a,x™.
Par interversion des sommes, on trouve que :

ZP()\i)pi = Z < ak)\f> p; = Zak (Z )\fpi> .
i=1 k=0 k=0 i=1

i=1

Comme Y ", Mep; = f* pour tout k € N d’apres ce qui précede, il s’ensuit que :

m

> POpi =) (ZM%) = anf* =P(f).
k=0 1=1 k=0

=1

Par conséquent, on en déduit que, pour tout P € R[x] :
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Partie III : Intervention de produits scalaires

Dans cette partie, on munit le R-espace vectoriel d'un produit scalaire ( , ). On considére lapplication
¢ de E x E dans R définie pour tout (z,y) € E x E par :

m

p(,y) = > (pi(@),pi(y))-

=1

(1) Montrons que ¢ est un produit scalaire sur E. Pour ce faire, on va vérifier que ¢ est une forme bilinéaire
symétrique définie positive :

Premieére étape : ¢ est symétrique.

En effet, comme ( , ) est symétrique, on a pour tous x,y € E :

m m

ey, x) =Y (i), pi(x)) =Y _(pil@), pi(y)) = o(,y),

i=1 i=1

d’ot il s’ensuit que ¢ est symétrique.

Deuxiéme étape : ¢ est bilinéaire.

En effet, comme (, ) est bilinéaire et que p; est linéaire pour tout ¢ € [1,m], on obtient par linéarité
de la somme que, pour tous x1,x2,y € E et pour tous A, A € R :

m

phias +dowayy) = Y (pi(han + dowa) pily))
i=1

m

= Z</\1pi($1) + )\2pi($2)7pi(y)>

i=1

= > Mpi(@1),pi(y)) + Ae(pi(x2), pi(v))
i=1

m m

= )\1 Z(pi(xl),pi(y» + /\2 Z<pi(m2)api(y)>

=1 i=1

= Al@(mlay) +>\2S0($27y),

ce qui entraine que ¢ est linéaire a gauche, et donc bilinéaire par symétrie.

Troisiéme étape : ¢ est définie positive.

En effet, comme (, ) est définie positive, on a pour tout z € F :

m m
oz, ) =Y (pi(x),pi()) =D |pi(@)]* > 0,
i=1 i=1
et donc ¢ est positive. De plus, si p(z,2) = 0, alors on voit que ||p;(z)]|> = 0 pour tout i € [1,m]
(car une somme de réels positifs est nulle si et seulement si chacun des réels est nul). En particulier,
on constate que ||p;(z)|| = 0 pour tout ¢ € [1,m], et donc p;(x) = 0 pour tout i € [1,m] d’apres les
propriétés de la norme. Comme e = 1" | p; d’apres la question (4)(a) de la partie II, il s’ensuit que :

r=e(r)= (Z%) (z) = Zpi(x) = ZOE = 0g,

et donc ¢ est définie. En particulier, la forme bilinéaire ¢ est définie positive.

Par conséquent, on en déduit que :

@ est un produit scalaire sur E.
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(2) Montrons que, pour tous z,y € E, on a: ¢(f(z),y) = ¢(z, f(y)). Comme (, ) est bilinéaire, on obtient
d’apres la question (7)(c) de la partie IT que, pour tous z,y € E :

m

o(f(@)y) = D pi(f@),piy)

=1

m

= > (io @), pily)

i=1

m

= Z()\ipi(x),pi(y»

= Z(pz(l‘), (pio f)(y))

=1

= oz, [(y))

Par conséquent, on en déduit que, pour tous z,y € E :

[e(f(@),y) = 0@, £(y))- |

2. Sujet type HEC-ESSEC Maths I

Corrigé du probléme 2. Ce probleme étudie quelques propriétés des endomorphismes cycliques d’un espace
vectoriel E de dimension finie, ainsi que la décomposition de Frobenius d’un élément de £(F). Dans tout le
probleme :
— n est un entier > 2;
— F est un espace vectoriel de dimension n ;
— L(FE) désigne ’ensemble des endomorphismes de E;
— on rappelle qu'une homothétie est une application du type Aldg, ou A € R;
— un sous-espace vectoriel F' de E est dit stable par un endomorphisme u de E si, pour tout = € F', on
a u(r) € F. On note alors ujz 'endomorphisme de F' défini pour tout = € F' par ujp(z) = u(z). Cet
endomorphisme est appelé ’endomorphisme de F' induit par u;
— si u est un endomorphisme de E et si e est un vecteur de E, on note E,(e) le sous-espace vectoriel de
E défini par :

Ey(e) = Vect (u"(e)|k € [0,n — 1]) = Vect (e, u(e), ..., u" " *(e)) .

Si k € N*, on note B(e, k) la famille (e, u(e), ..., u*"*(e)).

— on dit qu'un endomorphisme u de F est cyclique §'il existe e € E tel que E = E,(e); on consideérera
qu’en dimension 1, tout endomorphisme est cyclique;

— soit A € M, (R); on dit que A est une matrice de Frobenius ou matrice compagnon s'il existe
des réels ag, ..., a,_1 tels que :

0 O 0 0 ag
1 0 0 0 a
0 1 (0)
A= ,
. (O) . 1 0 an—2
0 0 - - 0 1 ap
et de plus, le polynéme P4 : & — 2" — ap_12" ' — ... — a1& — ag est appelé le polynéme caracté-

ristique de A;
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— on dit qu'un endomorphisme u de E est nilpotent s’il existe un entier & > 1 tel que u* = 0. Dans ce
cas, r = min{k € N*| u¥ = 0} est appelé I’indice de nilpotence de u;

— enfin, on admet que toute partie non vide et majorée A de N admet un plus grand élément (x); cet
élément est appelé le maximum de A et noté max{k € A}.

Le probleme comporte trois parties. Dans la premiére partie, on étudie les premieres propriétés des endomor-
phismes cycliques et on traite quelques exemples. Dans la seconde partie, on étudie le cas des endomorphismes
diagonalisables et nilpotents. Enfin, dans la troisiéme partie, on obtient une décomposition d’un endomor-
phisme, appelée décomposition de Frobenius, et on en déduit quelques propriétés élémentaires ; on montre
en particulier que toute matrice carrée est semblable & sa transposée.

Partie I : Premiéres propriétés.

Soit w un endomorphisme de E et soit e un vecteur non nul de E.

Section A : Etude des sous-espaces E,(e).

(1) Justifions que la famille B(e,n + 1) est liée. Par définition, on voit que B(e,n+ 1) = (e, u(e), ..., u"(e)),
et donc la famille B(e,n + 1) compte n 4 1 éléments. Mais comme dim(FE) = n, cette famille ne peut
pas étre libre, et donc :

‘1a famille B(e,n + 1) est liée. ‘

(2) On pose d(e) = max{k € N*| B(e, k) est libre}. Justifions l’existence de d(e). Pour ce faire, on pose :
A = {k € N*| B(e, k) est libre}.

Comme e # 0, la famille B(e, 1) = (e) est formée d’'un seul vecteur non nul. En particulier, elle est
libre et ’ensemble A est non vide car il contient Uentier 1. De plus, on voit par définition que B(e, k) =
(e,u(e), ...,uk_l(e)), et donc la famille B(e, k) compte k éléments. Deés lors, comme dim(E) = n, cette
famille ne peut pas étre libre si £ > n + 1, et donc 'ensemble A est majoré par n. Mais comme toute
partie non vide et majorée A de N admet un plus grand élément, on en déduit que :

‘d(e) = max{k € N*| B(e, k) est libre} existe. ‘

(3) Montrons tout d’abord qu'’il existe des scalaires ag, a1, ..., a4(c)—1 tels que :
d(e)—1
ud© (e) = ape + ayule) + ... + ad(e),lud(e)_l(e) = Z azu'(e).
i=0
Par définition, d(e) est le plus grand entier k tel que la famille B(e, k) soit libre. Comme d(e)+1 > d(e),
on voit en particulier que la famille B(e, d(e) 4+ 1) n’est pas libre, et donc il existe des réels by, by, ..., ba(e)
non tous nuls tels que :
boe + bru(e) + ... + bd(e),lud(e)_l(e) + bd(e)ud(e)(e) =0.
Si bg(e) était égal & 0, alors on aurait :
boe + bru(e) + ... + bd(e)_lud(e)*l(e) =0,

et donc by = b1 = ... = bg(ey—1 = 0 car la famille B(e,d(e)) est libre. En particulier, tous les b; seraient
nuls, ce qui est impossible car ils sont non tous nuls par hypothese. Deés lors, on voit que bg(.) # 0, et
on obtient avec la relation précédente que :

u®(e) = _ b e— b €) —...— 7bd(e)71ud(e)_l(€).
baey  ba(e) ba(e)
Si 'on pose a; = fbdb(i> pour tout ¢ € [0,d(e) — 1], alors on vient de montrer que :

Jag, ..., ageey—1 € R, u¥® (e) = age + aru(e) + ... + ad(e),lud(e)fl(e).

A présent, montrons par récurrence la propriété P définie pour tout entier k > d(e) par :
P(k) : "le vecteur u*(e) est combinaison linéaire des vecteurs de (e,u(e), ...,ud(e)_l(e)) 7,

Tout d’abord, on voit que P(d(e)) est vraie d’aprés ce qui précede. A présent, supposons la propriété
P(k) vraie pour un certain entier k > d(e), et montrons que P(k + 1) est aussi vraie. Par hypotheése de
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récurrence, on sait que le vecteur u*(e) est combinaison linéaire des vecteurs e, u(e),...,u®™®~1(e), et
donc il existe des réels cg, c1, ..., c4(e)—1 tels que :

uF(e) = coe + crule) + ... + cd(e)_lud(e)fl(e).

Fixons des réels ag, ay, ..., age)—1 tels que u(®(e) = age + aru(e) + ... + ag(e)—1u*@~*(e). Par linéarité
de u, on trouve que :

ule) = u(coe+ crule) + ... + cae)—1ut@71(e))
= coule) +cru?(e) + ... + Cd(e)—zud(e)fl(e) + Cd(e)—lud(e) (e)
= coule) + cru?(e) + ... + cd(e),gud(e)_l(e) + Cae)—1 (aoe +ajule) + ... + ad(e),lud(e)_l(e))

= ca(e)—1a0¢ + (Co + cq(ey—1a1)u(e) + (c1 + cq(ey—1a2)u*(e) + ... + (Cae)—2 + Cd(e)—lad(e)—l)ud(e)il(e)a

d’oti il s’ensuit que u**1(e) est combinaison linéaire des vecteurs e, u(e), ..., u®~1(e), et donc P(k+1)
est vraie. D’apreés le principe de récurrence, la propriété P est vraie & tout ordre k > d(e), et donc on
a pour tout k > d(e) :

u*(e) est combinaison linéaire des vecteurs e, u(e), ..., u?© 71 (e).

Enfin, montrons que B(e,d(e)) est une base de E,(e). Pour tout k € [0,d(e) — 1], le vecteur u”(e) est
un élément de B(e, d(e)), et donc il appartient a Vect(B(e, d(e))). De plus, on sait d’apres ce qui précede
que, pour tout k > d(e), le vecteur u*(e) appartient & Vect(B(e, d(e))). En d’autres termes, on voit que,
pour tout k € N, le vecteur u*(e) appartient & Vect(B(e, d(e))). En particulier, on a I'inclusion suivante
par définition de E,(e) :
E,(e) = Vect (uk(e)\k € [0,n —1]) C Vect (B(e, d(e))) .

Comme de plus tout élément de B(e, d(e)) appartient au sous-espace vectoriel E,(e), on a aussi :

Vect (B(e,d(e))) C Ey(e).
Par double inclusion, il s’ensuit que :

E,(e) = Vect (B(e,d(e))) .
En particulier, la famille B(e,d(e)) est génératrice de E,(e). Mais comme elle est libre par définition
de d(e), on en déduit que :

‘B(e,d(e)) est une base de E,(e). ‘

Montrons tout d’abord que E,(e) est stable par ’endomorphisme u. Pour ce faire, considérons un
vecteur = de E,(e). D’aprés la question précédente, on sait que B(e,d(e)) est une base de E,(e), et
donc il existe des réels ag, ..., ag)—1 tels que :

x = cpe + crule) + ... + cd(e)_lud(e)_l(e).
De plus, toujours d’apres la question précédente, il existe des réels ag, ..., ag()—1 tels que :
u™® (e) = age + aru(e) + ... + ad(e)_lud(e)*l(e).
Par linéarité de u, on trouve que :

u(z) = u(coe+crule) +...+ cd(e)ilud(e)—l(e))
= COu(e) + C1u2(e) + ...+ Cn,2u”*1(e) + Cd(e)—lud(e)(e)
= coule) + cu?(e) + ... + Cd(e)f2ud(e)_1(e) + Ca(e)—1 (aoe +aju(e) + ... + ad(e)flud(e)_l(e))

= Ca(e)—100¢ + (Co + cqe)—1a1)u(e) + (1 + cq(ey—1a2)u*(e) + ... + (Cae)—2 + Cd(e)—lad(e)—l)ud(e)il(e)a

En particulier, u(z) est combinaison linéaire des éléments de B(e,d(e)). Comme B(e,d(e)) est une base
de E,(e), il s’ensuit que u(z) appartient & F, (e). Mais comme ceci est vrai pour tout x € E,(e), on en
déduit que :

’ E.(e) est stable par u. ‘

Montrons a présent que tout sous-espace vectoriel F' de E contenant e et stable par u contient E,,(e).
Par définition, si F' est stable par u et contient e, il contient u(e). Par une récurrence facile, on peut
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vérifier que F' contient u*(e) pour tout k € N. En particulier, F contient les vecteurs e, u(e), ..., u™ 1 (e).
Mais comme F' est un sous-espace vectoriel de F, il s’ensuit que :

E,(e) = Vect (e,u(e),...,u" '(e)) C F.

Par conséquent, on en déduit que :

‘tout sous-espace vectoriel F' stable par u et contenant e contient E, (e). ‘

Déterminons & quelle condition nécessaire et suffisante portant sur U'entier d(e) le vecteur e est un
vecteur propre pour u. Tout d’abord, si e est vecteur propre de u pour une valeur propre A, alors on
voit que u(e) = Xe et e # 0. D’apres le cours, on constate que u*(e) = A\Fe pour tout k¥ € N. En
particulier, tous les vecteurs u*(e) sont colinéaires a e pour tout k& > 1, et la famille B(e, k) est liée
pour tout k > 2. De plus, si k = 1, alors la famille B(e, 1) = (e) est libre car elle est formée d’un seul
vecteur non nul. Dés lors, il s’ensuit par définition de d(e) que :

d(e) = max{k € N*| B(e, k) est libre} = 1.

Réciproquement, supposons que d(e) = 1. Par définition de d(e), la famille B(e,d(e) + 1) = B(e,2) =
(e,u(e)) n’est pas libre, et donc les vecteurs e, u(e) sont colinéaires. Comme e # 0 par hypothése, il
existe un réel \ tel que u(e) = Ae, et donc e est vecteur propre de u. Par conséquent, on en déduit que :

‘e est vecteur propre de u si et seulement si d(e) = 1. ‘

Montrons que u est une homothétie si et seulement si, pour tout vecteur non nul e de E, on a d(e) = 1.
Tout d’abord, supposons que u soit une homothétie. Alors il existe un réel A tel que ©v = Aldg. En
particulier, on voit que u(e) = Ae pour tout vecteur non nul e de E, et donc tout vecteur e # 0 est
vecteur propre de u. D’apres la question précédente, il s’ensuit que d(e) = 1 pour tout e de E'\ {0}.

Réciproquement, supposons que d(e) = 1 pour tout vecteur e non nul de E. Fixons un base B =
(e1,...,en) de E. D’apres la question précédente et comme e; # 0, le vecteur e; est vecteur propre de
u pour une certaine valeur propre \;, et ce pour tout i € [1,n]. Fixons alors deux indices i, j € [1, n]?
tels que 7 # j. Comme e; + e; # 0, il existe un réel \; ; tel que u(e; +e;) = A; j(e; + e;). Par linéarité
de wu, ceci nous donne que :

u(el- + ej) = Ai,jei + )\i,jej = u(ez) + u(ej) = \;e; + )\jej.
En particulier, on obtient que :
(Aij = Ai)ei + (Aij — Aj)e; = 0.

Comme B = (eq, ...,e5) est une base de E et que i # j, la famille (e;, e;) est libre comme sous-famille
d’une famille libre, et donc la relation précédente entraine que A; j — Ay = A; j; — A; = 0. En particulier,
on voit que \; = \;. Comme ceci est vrai pour tous 4,j € [1,n]? tels que i # j, tous les \; sont égaux
entre eux. Si l'on désigne par A leur valeur commune, alors on voit que u(e;) = Ae; pour tout @ € [1,n].
En particulier, les endomorphismes u et Aldg coincident sur la base B de E, d’ou il s’ensuit qu’ils sont
égaux, et donc u est une homothétie. Par conséquent, on en déduit que :

‘u est une homothétie si et seulement si d(e) = 1 pour tout vecteur e non nul de E. ‘

Montrons que u est un endomorphisme cyclique si et seulement s’il existe un vecteur non nul e de F
tel que d(e) = n. Tout d’abord, supposons que u soit un endomorphisme cyclique. Alors il existe un
vecteur e € E tel que E = E,(e). En particulier, on voit que E = Vect(e,u(e),...,u" 1(e)), et donc
la famille B(e,n) est génératrice de E. Comme cette famille compte n éléments et que dim(FE) = n,
B(e,n) est une base de E. En particulier, cette famille est libre, et donc e # 0. De plus, on voit par
définition de d(e) que d(e) > n. A noter que, comme B(e, k) compte k éléments et que dim(E) = n, la
famille B(e, k) ne peut pas étre libre si k& > n. Dés lors, ceci entraine que d(e) < n, et donc d(e) = n.
En d’autres termes, on vient de montrer qu’il existait un vecteur e # 0 tel que d(e) = n.

Etablissons a présent la réciproque. Pour ce faire, supposons qu’il existe un vecteur non nul e de E
tel que d(e) = n. Alors la famille B(e,n) est libre par définition de E. Comme cette famille compte n
éléments et que dim(E) = n, B(e,n) est une base de E. En particulier, cette famille est génératrice de
E| et donc on voit que :

E,(e) = Vect (e,u(e), ..., u" "' (e)) = Vect (B(e,n)) = E.

Comme FE,(e) = E, il s’ensuit que u est cyclique. Par conséquent, on en déduit que :

’u est cyclique si et seulement s’il existe un vecteur non nul e de E tel que d(e) = n. ‘
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Section B : Premiéres propriétés des endomorphismes cycliques.

On suppose dans cette section que u est un endomorphisme cyclique de F, et donc qu’il existe un vecteur
non nul e de E tel que E = E,(e).

(1)

On note A la matrice de v dans la base B(e,n) de E. Vérifions que A est une matrice de Frobenius.
D’apres la question (3) de la partie I, section A, il existe des réels ag, a1, ..., ag(e)—1 tels que :
u™® (e) = age + aru(e) + ... + ad(e)_lud(e)fl(e).
Comme d(e) = n, ceci entraine que :
u"(e) = age + aju(e) + ... + an_1u™ " '(e).
En particulier, on voit que :

u(e) = Oxe+1xu(e)+..+0xu""1e)
u(u(e)) = U2(€) 0X€+0><u(e)—|—1><u2(e)_|__._+0><un—1(e)

'un(e) = uu" (e)) = aoxetay xule)+..+a,_1 xu""1(e)

En particulier, la matrice A de u dans la base B(e,n) de F est donnée par :

0 0 0 0 a
1 0 0 0 a
0 1 (0)

A:
L (0) 10 ap
0 0 - - 0 1 ap

Par conséquent, on en déduit que :

‘ A est une matrice de Frobenius. ‘

On note Py : & — 2™ —ap_12" "1

Par définition, on voit que :

—...— a1 — ap son polynoéme caractéristique. Calculons (P4 (u))(e).

(Pa(w))(e) = (u" — an_1u" ' — ... — a1u — apldg) () = u"(e) — an—1u™ ' (e) — ... — ayu(e) — age.
Mais comme u"(e) = age + aju(e) + ... + a,_1u""1(e) d’apres la question précédente, il s’ensuit que :
| (Pa(u))(e) = 0.

Calculons & présent (Pa(u)) (u*(e)) pour k € [1,n — 1]. Comme P4 (u) et u* sont deux polynoémes en
le méme endomorphisme w, ils commutent. Dés lors, par linéarité de u, on a pour tout k € [1,n — 1] :

(Pa(w)) (u*(e)) = u* o Pa(u)(e) = u* (Pa(u)(e)) = u*(0) = 0.

Par conséquent, on en déduit que, pour tout k € [1,n — 1] :

(Pa(u)) (u(c) = 0.

Montrons enfin que P4 est un polynéme annulateur de u. D’apres les calculs précédents, on voit que
(Pa(w)) (u*(e)) = 0 pour tout k € [0,n — 1]. En particulier, 'endomorphisme (P4 (u)) est nul sur la
base B(e,n) de E, et donc c’est ’endomorphisme nul. Par conséquent, on en déduit que :

‘ P4 est un polynéme annulateur de u. ‘

Vérifions que la famille (Idg,u,...,u" ') est libre dans L(E). Pour ce faire, considérons des réels
bo, ..., bp_1 tels que boldg + biu + ... + by_qu™" ! = 0. En évaluant cette égalité sur le vecteur e,
on trouve que :

(boldg + biu + ... + by_1u™ 1) (€) = boe + bru(e) + ... + by—1u™ " *(e) = 0(e) = 0.

Comme la famille B(e,n) est une base de F, elle est libre et la relation ci-dessus entraine que by = b; =
... = b1 = 0. Par conséquent, on en déduit que :

‘ (Idg,u, ...,u™ ') est une famille libre. ‘
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(4)

Montrons que P4 est un polyndéme annulateur non nul de v de degré minimal. D’aprés la question (2)
de la partie I, section B, on sait déja que P4 est un polynéme annulateur non nul de u. Reste & vérifier
qu’il est de degré minimal. Pour ce faire, considérons un polyndéme @ de degré < n — 1. Par définition,
il existe des réels by, ..., b, 1 tels que Q : & — by + by + ... + b, 12"~ 1. Si 'on suppose que Q(u) = 0,
alors on trouve que :

Q(U) = boIdE —|— b1U —|— —|— bn_lu"71 = 0
n—l)

Comme la famille (Idg, u, ..., u est libre d’apres la question précédente, il s’ensuit que by = by = ... =
bn—1 =0, et donc @ est le polyndéme nul. En d’autres termes, il n’existe pas de polynéme annulateur

non nul de u de degré < n — 1. Par conséquent, on en déduit que :

‘ P4 est un polyndéme annulateur non nul de degré minimal de wu.

Soit A € R. Montrons tout d’abord que A est valeur propre de u si et seulement si A est racine de Py.
D’apres le cours, on sait que, si A est valeur propre de u, alors A est racine de tout polynéme annulateur
de u. En particulier, A\ est racine de P4 d’apres la question précédente.

Réciproquement, supposons que X soit racine de P4. Alors il existe un polynome @ de R, _;[x] tel
que Pa(z) = (x — A\)Q(z) pour tout x € R. A noter que, comme Py # 0, on a @ # 0. Comme Py est
annulateur de u, on trouve que :

Py(u) = (u—ANdg) o Q(u) =0.

Raisonnons par ’absurde et supposons que A ne soit pas une valeur propre de u. Alors I’endomorphisme
u — AIdg est injectif, et donc il est bijectif car E est de dimension finie. En particulier, on trouve que :

(u—Adg) " o(u—Adg)oQ(u) =Idg o Q(u) = Q(u) = (u— Ndg) ' 00=0.

Des lors, il s’ensuit que @) est annulateur de u, mais ceci est impossible d’apres la question précédente
car () est non nul et de degré < n — 1. En d’autres termes, on vient de montrer que, si A est racine de
P4, alors X\ est valeur propre de u. Par double implication, on en déduit que :

‘ A est valeur propre de u si et seulement si A est racine de Py.

A présent, vérifions que le sous-espace propre de u associé a la valeur propre A est de dimension 1.
Comme A est valeur propre de u, on a dim(Fy(u)) > 1. De plus, comme le rang d’un endomorphisme
est égal a celui de sa matrice dans n’importe quelle base, on trouve que :

“A 0 - -~ 0 0 ao
1 —A -+ -+ 0 0 ay
0 1 (0)
rg (u — Mdg) =rg (A — AI,) =rg
. (O) 1 - Ap—2
0 0 - o 0 1 ap1-—2\

Comme les (n — 1) premieres colonnes de cette matrice forment une famille échelonnée, elles forment
une famille libre et le rang ci-dessus est > n — 1. Dés lors, comme rg (u — A\Idg) > n — 1, on obtient
avec le théoreme du rang que :

dim(Ey(u)) = dim(ker(u — Aldg)) =n —rg(u — Aldg) <n—(n—1)=1.

d’ot il s’ensuit que dim(E)(u)) < 1. Mais comme dim(Ey(u)) > 1, on en déduit que dim(Ey(u)) = 1.
Par conséquent :

‘tout sous-espace propre de u est de dimension 1. ‘

Déterminons une caractérisation portant sur P4 pour que u soit diagonalisable. D’apres le cours, on
sait que, pour tout endomorphisme u de F :

u est diagonalisable <= Z dim(Ey(u)) = n.
AESP(u)
D’apres la question précédente, on sait aussi que tous les sous-espaces propres de u sont de dimension

1. En particulier, I’équivalence ci-dessus se rameéne a :

u est diagonalisable <= Z 1 = card (Sp(u)) = n.
AESP(u)
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En d’autres termes, u est diagonalisable si et seulement si son spectre compte n éléments. Mais comme
le spectre de u est exactement égal a I’ensemble des racines de P4 d’apres la question précédente, on
en déduit que, si u est un endomorphisme cyclique, alors :

u est diagonalisable si et seulement si P4 admet n racines distinctes.

Section C : Un premier exemple.

Dans cette section, on suppose que E = R? et on note Bz la base canonique de E. On note aussi f et g
les endomorphismes de E dont les matrices dans la base Bs sont respectivement :

0 0 1 1 -1 0
F=10 0 -1 et G=-1 1 O
1 -1 -1 0 0 2

On admet que f est diagonalisable, et on notera A1, Aa, A3 avec A1 < Ay < A3 les valeurs propres de f rangées
par ordre croissant.

(1) Déterminons une base de diagonalisation (V1, Va, V) de f telle que, pour tout i € [1, 3], f(Vi) = \;V; et
telle que la premiére coordonnée de V; dans la base Bs soit 1. Pour ce faire, on commence par calculer
les valeurs propres de f. Par définition :

AeSp(f) <= rg(f—Aldg:) <3 < 1rg(F—\3)<3.

En d’autres termes, on voit que :

AeSP(f) <= g 0 —X -1 < 3.
1 -1 —-1-X

En permutant les lignes Lq et Lg, on trouve que :

-2 0 1 1 -1 —-1-2A
rg 0 =X -1 =rg 0 -A -1
1 -1 —-1-A -2 0 1

En effectuant 'opération élémentaire Ly «— L3 + AL, on obtient que :

-2 0 1 1 -1 —1-2A
rg 0 =X -1 =rg 0 =X -1
1 -1 —-1-—-2)\ 0 =X =AM —-)X+1

Enfin, en effectuant I'opération élémentaire L3 «+— Ls — Lo, on trouve que :

-2 0 1 1 -1 —1-A
rg 0 =X -1 =rg 0 =X -1
1 -1 —-1-2x 0 0 —X—-Xx+2

En particulier, on voit que :

AESP(f) <= -A=0 ou N +AX-2=0
< A=0 ou A\-1)(A+2)=0

<— A=0 ou A=1 ou A=-2

Par conséquent, on en déduit que Sp(f) = {—2,0,1}, et donc :

‘)\1:—2, Ao =0, )\3:1.‘

A présent, calculons le sous-espace propre E_o(f). Par définition, si  est un vecteur de R® et si X est
son vecteur colonne des coordonnées dans la base canonique de R3, on a :

r€E 5(f) <= f(r)=-22 <+— AX=-2X.

En d’autres termes, on voit que :

0 0 1 T X
x € Efz(f) <~ 0 0 -1 To | =—-2|22 ],
1 -1 -1 I3 T3
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ce qui nous ramene a résoudre le systeme :

211 + x3 =0
21‘2 — I3 = 0
T — X2 + I3 = 0

En effectuant 'opération élémentaire L3 «+— 2L3 — L1, on trouve que :

211 + x3 =0
2$2 — I3 = 0
721‘2 + I3 = O

Enfin, en effectuant 'opération élémentaire L3 +— L3 + Lo, on obtient que :

211 + x3 =0
21‘2 — I3 = 0
0 =0
Si I'on choisit £1 comme parameétre, on trouve que x1 = 1, T3 = —x1, T3 = —2x1, et donc :

reE o(f) <= drieR, z=uz(1,-1,-2).

Des lors, il s’ensuit que :

| E_5(f) = Vect((1,~1,-2)). |

Ensuite, calculons le sous-espace propre Eg(f). Par définition et avec les mémes notations que celles
utilisées plus haut, on a :

z€Ey(f) <= fla)=0 <= AX=0.

En d’autres termes, on voit que :

0
HAS Eo(f) <~ 0o 0 -1 z2 |l =101,
0

ce qui nous ramene a résoudre le systeme :

X3 =0
—T3 = 0
ry — X2 — I3 =0

Si 'on choisit 1 comme parametre, on trouve que x1 = x1, 2 = 1, 3 = 0, et donc :
reEy(f) <= 3dreR, z=u2(1,1,0).

Des lors, il s’ensuit que :

| Bo(f) = Vect((1,1,0)). |
Enfin, calculons le sous-espace propre Fi(f). Par définition, on voit que :

reB(f) <= fla)=2 <= AX=X.

En d’autres termes, on voit que :

0 0 1 1 1
x € E(f) = 0 0 -1 o | = |22 |,
1 -1 -1 I3 I3
ce qui nous ramene a résoudre le systeme :
—21 + x3 =0
—X9 — I3 = O
I — X2 - 21‘3 =0

En effectuant 'opération élémentaire L3z «+— L3 + L1, on trouve que :

- + x3 =0
—T2 — X3 = 0
—Tr2 — X3 = 0

Enfin, en effectuant 'opération élémentaire L3 +— L3 — Lo, on obtient que :
—r + x3 =0
—T2 — X3 = 0
0 =0
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Si l’on choisit #; comme parameétre, on trouve que z; = 21, 9 = —21, 3 = &1, et donc :
reB(f) <= 3nmeR, z=mn(l,-11).

Des lors, il s’ensuit que :

| Br(f) = Vect((1,-1,1)).|

Par conséquent, on en déduit quune base de diagonalisation (V7, Va2, V3) de f qui respecte les conditions
demandées est donnée par :

‘ (Vla Va, V3) = ((17 -1, _2)’ (17 170)7 (17 -1, 1)) ‘

On pose V = V; + V5 4+ V5. Déterminons tout d’abord d(V'). D’apres la question précédente, on a :
V=01,-1,-2)+(1,1,0)+ (1,-1,1) = (3,—1,—1).

Comme la famille B(V, k) compte k éléments et que dim R® = 3, on voit que cette famille est liée pour
tout k > 4, et donc d(V) < 3 par définition. De plus, par des calculs matriciels, on trouve que :

0 0 1 3 -1
o 0o —1|[-1]=1(1],
1 -1 -1 -1 5
et donc f(V) = (—1,1,5). De méme, on obtient que :
0 0 1\/3 0 0 1Y\ /-1 5
0 0 -1 -1]1=10 0 -1 1 =|-5],
1 -1 -1 -1 1 -1 -1 5 -7
et donc f2(V) = (5, —5,—7). En particulier, on voit que :
3 -1 5
rg(V, f(V), fP(V))=rg | [ -1 1 —5|].
-1 5 —
En échangeant les colonnes Cy et C5, on trouve que :
-1 3 5
rg(V, f(V), f2(V)) =g I -1 =5
5 -1 -7
En effectuant les opérations élémentaires Cy «— C5 + 3C1 et C3 «— C3 + 5C1 , on obtient que :
-1 0 0
rg(Vo f(V), 2 (V) =rg| | 1 2 0 =3.
-5 —16 —32

Comme rg(V, f(V), f2(V)) = 3 = dimR3, la famille (V, f(V), f2(V)) est génératrice de R3. Mais comme
cette famille compte 3 éléments et que dimR® = 3, c’est une base de R3. En particulier, elle est libre
et d(V) > 3. Comme d(V) < 3 d’apres ce qui précede, on en déduit que :

d(V) =3.

Comme d(V) = 3, on en déduit aussi d’apres la question (7) de la partie I, section (A) que :

‘l’endomorphisme f est cyclique. ‘

Déterminons un polynéme annulateur non nul de g de degré minimal. Par des calculs simples, on a :
2

1 -1 0 2 -2 0
GZ=|-1 1 0] =1-2 4 ol =26
0 0 2 0 0 4

En particulier, ceci nous donne que g2 —2¢ = 0, et donc P : x — 2 — 22 est annulateur de ¢g. A noter
que g n’admet pas de polynéme annulateur non nul de degré < 1. Sinon, il existerait des réels ag, a;
non tous nuls tels que agldgs + a1g = 0, ce qui entrainerait que agls +a1G = 0, et donc les matrices I3
et GG seraient colinéaires, ce qui n’est manifestement pas le cas ici vu la forme de G, d’ou contradiction.
Par conséquent, on en déduit que :

‘ P : x> 2? — 2z est un polyndéme annulateur de g de degré minimal. ‘

Montrons par 'absurde que I’endomorphisme g n’est pas cyclique. Pour ce faire, on suppose qu’il ’est.
D’aprés la question (7) de la partie I, section (A), il existe un vecteur e # 0 tel que d(e) = 3. En
particulier, la famille B(e,g) = (e, g(e),g?(e)) est libre. Comme g?> = 2g d’aprés ce qui précede, on
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voit que g2(e) = 2g(e), et donc (e, g(e), g%(e)) = (e, g(e),2g(e)). En particulier, cette famille ne peut
pas étre libre car ses deux derniers vecteurs sont colinéaires, d’ot contradiction. Par conséquent, on en
déduit que :

‘1’endom0rphisme g n’est pas cyclique. ‘

Vérifions que (V1, Va, V3) est une base de vecteurs propres de g. Par des calculs matriciels élémentaires,
on trouve que :

1 1 -1 0\ /1 2
Gl-1]=[-1 1 of[-1]|=]|-2],
-2 0 0 2/ \-2 —4

et donc g(V1) = (2,—2,—4)) = 2V;. Comme de plus V; # (0,0,0), on voit que V; est vecteur propre de
g pour la valeur propre 2. De méme, on obtient que :

1 1 -1 0\ /1 0
Glil=(-1 1 o] f1]=]0],
0 o o 2/ \o 0

et donc g(V2) = (0,0,0) = 0 x Vo. Comme de plus Va5 # (0,0,0), on voit que V4 est vecteur propre de g
pour la valeur propre 0. En outre, on trouve que :

1 1 -1 0\ /1 2
Gl-1]=(-1 1 of[-1]=[-2].
1 0o 0 2/ \1 2

et donc g(V3) = (2,—2,2) = 2V53. Comme de plus V5 # (0,0,0), on voit que V; est vecteur propre de
g pour la valeur propre 2. Par conséquent, comme (Vi, Vo, V3) est une base de R? d’apres les questions
précédentes, on en déduit que :

‘ (V1, Va, V3) est une base de vecteurs propres de g. ‘

Partie IT : Etude de deux cas particuliers.

Section A : Endomorphismes diagonalisables qui sont cycliques.

Dans cette section, on considére un endomorphisme u de E et on suppose que u diagonalisable. On note

A,y e,

(1)

Ap une liste des valeurs propres distinctes de u.

Etablissons que ’'endomorphisme v = (u—AIdg)o...o(u—A,Idg) est 'endomorphisme nul. Pour ce faire,
considérons une base B = (ey, ..., €,) de vecteurs propres de u (laquelle existe car u est diagonalisable).
Soit e; un vecteur de cette base et soit Ag, la valeur propre associée. Comme u(e;) = Ay, e; et que les
endomorphismes sont linéaires, on trouve que :

vie;)) = (u—MIdg)o..o(u—NIdg)(e;)

(u—MIdg)o...o(u— Ag—1IdEg) o (u — Ag411dE)... o (w — Apldg) o (u — A, IdE)(e;)

(u—MIdg)o...o(u— Ag,—11dg) o (u — Ag,+11dE)... o (u — A IdE) (u(e;) — Ak, €5)

= (u—)\lIdE)o...o(u—/\ki_lldE)o(u—/\k,i+1IdE)...o(u—)\pIdE)(O) = 0.

Comme ceci est vrai pour tout ¢ € [1,n], 'endomorphisme v est nul sur la base B. Par conséquent, on
en déduit que :

‘ (u—MIdg)o...o (u— AIdg) est 'endomorphisme nul. ‘

Montrons que la famille (Idg,u, ...,uP) est liée dans L(E). Pour ce faire, on considére le polynéme
P:xzvr+— (x— A1)...(x — Ap). Par définition, on voit que P est un polynoéme de degré p et unitaire,
c’est-a-dire dont le coefficient dominant est égal a 1. En d’autres termes, on peut écrire P sous la forme :

P:zr—ap+arz+.. —|—ap,1xp_1 + aP,

ol ag, @y, ..., ap—1 sont des réels. De plus, on sait d’apres la question précédente que P est annulateur
de u, et donc :
P(u) = agldp + aqu + ... + ap_lup71 +uP = 0.

Comme le coefficient devant u? est non nul car égal a 1, on en déduit que :

’ la famille (Idg,u,...,u?) est liée. ‘
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Déterminons la valeur de p si u est cyclique. D’apres la question (7) de la partie I, section A, il existe
un vecteur e de E tel que d(e) = n. En particulier, la famille B(e,n) = (e, u(e),...,u""*(e)) est libre.
Or, on sait d’apres la question précédente qu'’il existe des réels ag, a1, ..., ap—1 tels que :

aoldg +a1u+ ... + ap,lup_1 +uP = 0.
En évaluant cette égalité sur le vecteur e, on trouve que :
age + ayu(e) + ... + ap,_1uP"(e) + uP(e) = 0.

Comme le coefficient devant u?(e) est non nul car égal & 1, il s’ensuit que la famille B(e,p + 1) =
(e,u(e),...,uP(e)) n’est pas libre. Si p était < n, alors la famille B(e,p + 1) serait une sous-famille de la
famille libre B(e, n). En particulier, elle serait libre, ce qui est impossible d’aprés ce qui précede, et donc
p > n. Par ailleurs, comme u est un endomorphisme d’un espace vectoriel de dimension n, il admet au
plus n valeurs propres distinctes, et donc p < n. Par conséquent, on en déduit que :

‘Si u est cyclique, alors p = n. ‘

On suppose jusqu’a la fin de cette section que p = n, et on note (eq, ..., €, ) une base de vecteurs propres
de u telle que, pour tout ¢ € [1,n], u(e;) = Ae;.

Soit e = Y7, e;. Montrons tout d’abord que la famille B(e, n) est libre. Pour ce faire, considérons des
réels ag, ..., a,_1 tels que :
ape + aqule) + .+ ap1uHe) = 0. (%)

Comme u(e;) = Aje; pour tout i € [1,n], on voit que u¥(e;) = A\Fe; pour tout k& € N et pour tout
i € [1,n]. En particulier, ceci nous donne par linéarité de u que, pour tout k € N :

uf(e) = uF (Z ei> = Zuk(ei) = Zz\fei.

Dés lors, la relation (*) entraine que :

n n n
—1
Qg E e; + oy E i€+ oo+ a1 E /\ZI e; =0,
=1 =1 =1

ce que l'on peut réécrire sous la forme :
n

Z(a0+a1)\i+...+an,1)\?71) e; = 0. (**)

i=1
Comme (e1, ..., e,) est une base de E, elle est libre et ceci entraine que ag + g\ + ... + @, 1 A1 =0
pour tout i € [1,n]. En particulier, le polynéme P :  — ag + aq + ... + 12" admet Ap, ..., A\,
pour racines. Comme P admet n racines distinctes et qu’il est de degré < n — 1, il s’ensuit que P est
le polynoéme nul, et donc a9 = a1 = ... = a1 = 0. Par conséquent, on en déduit que :

la famille B(e,n) = (e, u(e), ..., u"_l(e)) est libre.

Comme la famille B(e,n) est libre, qu’elle compte n éléments et que dim(E) = n, ceci nous donne que
B(e,n) est une base de E. En particulier, la famille B(e,n) est génératrice de E, ce qui entraine que
E = E,(e). Par conséquent, on en déduit aussi que :

‘ I’endomorphisme u est cyclique. ‘

On reprend dans cette question seulement I'exemple de la section C de la partie I et, pour tout réel «,
on pose U, = g+ «f. Montrons tout d’abord que u,, est diagonalisable. D’aprées la questions (2) et (5)
de la partie I, section (C'), on sait que la famille (V7, V5, V3) est une base de vecteurs propres de f pour
les valeurs propres respectives —2,0, 1, et qu’elle est aussi une base de vecteurs propres de g pour les
valeurs propres respectives 2,0, 2. Des lors, ceci nous donne que, pour tout o € R :

ua (V1) = g(Vi) + af (V1) = 2V1 — 2aV1 = (2 - 20) V3.
De la méme facon, on trouve que :
ua(Va) =0.Va et un(Vs) =2+ a)Vs.

En particulier, la famille (7, Vo, V3) est une base de vecteurs propres de u, pour les valeurs propres
respectives 2 — 2a;, 0, 2 + a. Par conséquent, on en déduit que, pour tout o € R :

‘l’endomorphisme U, est diagonalisable. ‘
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A présent, discutons, en fonction des valeurs de «, les cas ou u,, est cyclique. D’apres les deux questions
précédentes, on sait qu'un endomorphisme diagonalisable est cyclique si et seulement s’il admet n
valeurs propres distinctes. En particulier, ’endomorphisme u,, est cyclique si et seulement si ses valeurs
propres 2 —2a, 0,2+ « sont distinctes. Apres calculs, on voit que 2—2a = 0 si et seulement si a = 1, que
2—2a =2+ «a si et seulement si « = 0 et que 24+ a = 0 si et seulement si « = —2. En d’autres termes,
les valeurs propres 2 — 2a, 0,1 + 2« sont distinctes si et seulement si o # 1,0, —2. Par conséquent, on
en déduit que :

I’endomorphisme u,, est cyclique si et seulement si @ € R\ {-2,0,1}. ‘

Section B : Endomorphismes nilpotents qui sont cycliques.

Dans cette section, u est un endomorphisme nilpotent de F, d’indice de nilpotence r.

(1)

Soit e € E tel que u"!(e) # 0. Montrons que la famille (e, u(e),...,u""!(e)) est libre dans E. Pour ce
faire, considérons des réels «y, ..., a,-_1 tels que :

age + aqu(e) + ... + ap_1u""t(e) = 0.
On raisonne par ’absurde et on suppose que les «; ne sont pas tous nuls. Soit s le plus petit indice de
[0,r — 1] tel que a5 # 0. Alors, on voit par définition de s que :
asu®(e) + asutTe) + ...+ a,_u""(e) = 0.
En composant cette relation par u” 1%, on obtient que :
U (ot (€) 4+ gt e) + o+ oo (e)) = u T (0) = 0,

ce qui entraine par linéarité de u que :

asu" " He) + agut(e) & .o+ ap_u? T2 (e) = 0.

u

k _  k—r

Comme u est nilpotent d’indice de nilpotence r, on voit que u ou” = uF"" 00 = 0 pour tout

k > r. En particulier, I’équation ci-dessus nous donne que :

asu""t(e) = 0.
Comme u"~*(e) # 0, il s’ensuit que a; = 0, ce qui est impossible car a, # 0 par construction. Par
conséquent, on en déduit que :

la famille (e,u(e),...,u"""(e)) est libre.

Montrons tout d’abord que r < n. Comme (e, u(e), ..., u"~*(e)) est une famille libre d’un espace vectoriel
de dimension n, elle compte au plus n éléments. Mais comme cette famille en a r, on en déduit que :

A présent, montrons que r = n si et seulement si u est cyclique. Supposons tout d’abord que » = n. Alors
on voit d’apres ce qui précede qu'il existe un vecteur e de E tel que la famille (e, u(e), ..., u"il(e)) soit
libre. Comme il s’agit d’une famille libre a n éléments d’un espace vectoriel de dimension n, la famille
(e,u(e), ...7u"_1(e)) est une base de F. En particulier, elle est génératrice de E, ce qui signifie que
E = E,(e), et donc u est cyclique.

Réciproquement, supposons que u soit cyclique. Alors il existe un vecteur e de E tel que E = Ey(e).
En particulier, la famille (e, u(e),...,u""!(e)) est génératrice de E. Comme cette famille compte n
éléments et que dim(E) = n, c’est une base de E, et donc la famille (e, u(e),...,u™*(e)) est libre. Dés
lors, elle ne peut pas contenir le vecteur nul, ce qui entraine que u"~!(e) # 0, et donc u"~! # 0. En
particulier, comme u” = 0 par définition de I'indice de nilpotence, on voit que > n — 1, et donc r > n.
Mais comme r < n, il s’ensuit que r = n.

Par double implication, on en déduit que :

’u est cyclique si et seulement si r = n. ‘

Dans le cas r = n, écrivons la matrice de u dans la base B(e,n). Comme r = n, on voit que u™ = 0, ce
qui entraine que u"(e) = 0, et donc :

u(e) = Oxe+1xu(e)+..+0xu""te)
u(u(e)) = u?(e) = Oxe+0xule)+1xu?(e)+...+0xu"(e)

we) = u@le) = 0xed0xule)t .+ 0xunl(e)
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En particulier, la matrice de u dans la base B(e,n) de E est donnée par :

o 0 -+ --- 0 0 0
1 0 - -~ 0 0 O
0o 1 . (0)
A=|:
(0) 1 00
0 0 1 0

Section C : Un second exemple.

Dans cette section, F est le sous-espace vectoriel des fonctions polynomiales de degré < n — 1. Pour tout
k € [0,n — 1], on note X* la fonction 2 € R — z* et on rappelle que (Xk)keﬂo,n—l]] est une base de F.

(1)

Soit P € E. Montrons que, pour tout x € R, 'intégrale f0+oo P(z +t)e~tdt converge et que la fonction

z€R+— f0+°° P(x +t)e~'dt appartient & E. Pour ce faire, fixons un réel z. Comme deg(P) <n — 1,
la formule de Taylor pour les polynémes nous donne que, pour tout ¢t € R :

n—1 (k) T n—1 (k) x
P(x +1) :Z P k'( )(a:+t—a:)k = ZPTf)tk. (%)
k=0 ’ k=0 ’

Comme l'intégrale impropre fOJrOO tFe~tdt converge pour tout k € N comme valeur de la fonction

. +oo -1 p® _ .. s
Gamma d’Euler, I'intégrale [, o k!(z)tke tdt converge comme combinaison linéaire d’intégrales

convergentes. Par conséquent, on en déduit avec (*) que, pour tout x € R et pour tout P € E :

+o0
l'intégrale / P(z +t)e 'dt converge.
0

De plus, comme f;oo the~tdt = T'(k + 1) = k!, on a par linéarité de l'intégrale que, pour tout = € R :

+00 +oo N1 (k)
_ PY(z) . _
t k,—t
Plx+t)e 'dt = /0 ,;,0 1 te tdt

n—1
pk) +o0
= Y (x)/ the~tdt
0

0

k!

n—1
= > PW(x).
k=0

Comme la dérivée k-éme d’un polynéme de degré < n — 1 est un polynéme de degré < n — 1 pour tout
k € N, il s’ensuit d’apres le calcul ci-dessus que ZZ;S P() est un polynéme de degré < n — 1. Par
conséquent, on en déduit que, pour tout P € F :

+oo

la fonction € R — P(x +t)e”'dt appartient & E.
0

+oo
On note u : P € E — u(P) défini par : Vo € R, u(P)(z) = / P(z +t)e 'dt.
0

Vérifions que u est un endomorphisme de E. D’apreés la question précédente, on sait que u(P) appartient
a E pour tout P € F, et donc u est une application de E dans E. Reste a montrer que u est linéaire.
Pour ce faire, considérons deux éléments P,(Q de E et deux réels A, u. Par linéarité de l'intégrale, on
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()

trouve que, pour tout x € R :
“+0o0
WP+ uQ)(z) = / (AP + Q) ( + t)etdt
0

+o0 +oo
)\/ Pz +t)e tdt + p Q(z +t)e tdt
0 0

= Xu(P)(a) + u(Q) ().

Comme ceci est vrai pour tout x € R, il s’ensuit que w(AP + pu@Q) = Mu(P) + pu(Q), et donc u est
linéaire. Par conséquent, on en déduit que :

‘ I’application u est un endomorphisme de F. ‘

Soit P € E. Montrons que : Vz € R, w(P)(z) = P(x) + w(P’)(x). Pour ce faire, fixons un réel x. Les
fonctions a : t — P(z+1t) et b:t+— —e~! sont de classe C! sur Ry, et de plus on a a'(t) = P'(z + )
et v'(t) = e~! pour tout ¢t € R,. Dés lors, on trouve par intégration par parties que, pour tout ¢ > 0 :

’ P(x+t)e tdt = / a(t)v' (t)dt

0 0

= —Plz+ce “+Px)+ /OC P'(x+t)e tdt. (%)

Comme la fonction ¢ — P(x 4+ ¢) est un polyndme, elle est équivalente & son terme de plus haut degré.

En particulier, il existe un entier p et un réel a # 0 tel que P(z +¢) ~ ac, ce qui entraine que

c—r 400

P(z + c)e ¢ ~ acke™¢, et donc P(x + ¢)e ¢ tend vers 0 quand c tend vers +o0o par croissances
c—r+00

comparées. Par passage a la limite quand ¢ tend vers +oco dans la relation (*), on a pour tout x € R :

+o0 Foo
/ P(z +t)e tdt = P(z) + / P'(x +t)e tdt,
0 0

ce que l'on peut réécrire sous la forme suivante :
u(P)(z) = P(z) +u(P")(x).

Comme ceci est vrai pour tout € R, on en déduit que, pour tout P € E :

lu(P) = P+u(P').|

Montrons que, pour tout P € E, on a : u(P) = ZZ;; P®) D’apres la question précédente, on sait que
u(P) = P+ u(P’) pour tout P € E. En particulier, comme la dérivée k-éme d’un polyndme de degré
< n—1 est encore un polynéme de degré < n—1 pour tout k € N, on voit que u(P*)) = P*) o (Pk+1)
pour tout P € E et pour tout k£ € N. Deés lors, on trouve par télescopage que, pour tout P € E :

n—1 n—1

- PO =37 [u(P) = u(PH)] = u(P®) — u(P™) = u(P) - u(P™).

k=0 k=0

Comme P est un polynome de degré < n— 1, on voit que P("™) est le polynoéme nul, et donc u(P(”)) =0
car u est linéaire. Par conséquent, on en déduit que, pour tout P € E :

n—1
u(P) =Y _P".
k=0

Soit P € E. Montrons que, pour tout x € R :

+oo
u(P)(x) = e® P(s)e ?ds.

x
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Pour ce faire, on pose s = x +t. Alors v est une fonction affine de ¢, et donc le changement de variable
est licite. De plus, on a dr = ds, s = x sit = 0 et s tend vers +0o quand ¢ tend vers +oco. Dés lors, on
obtient par changement de variable que :

+oo +oo
P(s)e” ) dy = / e’ P(s)e *ds.

wpw = [Pt neta = [

Par linéarité de I'intégrale, on en déduit que, pour tout x € R :

+oo
u(P)(x) =e” P(s)e™%ds.

x

Montrons tout d’abord que, pour tout P € FE, la fonction f : x —— f;oo P(s)e™*ds est dérivable sur
R. Pour ce faire, on peut remarquer que, d’apres la relation de Chasles, on a pour tout x € R :

“+o0 +oo 0
/ P(s)e %ds :/ P(s)e *ds +/ P(s)e ?ds.
T 0 T

En particulier, si 'on pose K = f0+°o P(s)e *ds, alors on trouve que, pour tout x € R :

x
fle)=K —/ P(s)e™%ds.
0
A noter que le terme de droite dans I’égalité ci-dessus est une primitive de la fonction s — P(s)e™".
Comme cette fonction est continue sur R, la primitive en question est de classe C! sur R, et donc la
fonction f est de classe C' comme différence d’une constante et d’une fonction C!. En particulier, on
en déduit a fortiori que :

+oo
la fonction f: z +— / P(s)e™%ds est dérivable sur R.
xT

Montrons & présent que u(P) est dérivable sur R et que (u(P)) = u(P) — P. Pour tout z € R, on sait
d’apres la question précédente que u(P)(z) = f(x)e® pour tout z € R. En particulier, la fonction u(P)
est dérivable sur R comme produit de fonctions dérivables et de plus, on a pour tout z € R :

(w(P))' (z) = f'(x)e” + f(x)e” = —P(x)e” e + f(x)e” = —P(x) + f(z)e” = —P(z) + u(P)(x).

Par conséquent, on en déduit que :

la fonction u(P) est dérivable sur R et : (u(P)) = u(P) — P.

Montrons enfin que (u(P))’ = u(P’). D’aprés ce qui précéde et la question (3) de cette section, on a
pour tout P € F :

(w(P)) =u(P)— P =P +u(P)— P =u(P).

Par conséquent, on en déduit que :

Déterminons tout d’abord la matrice de u dans la base (Xk)ke[[o,n—l]] de E. D’apres la question (4) de
cette section, on a pour tout k € [0,n — 1] :

n—1 n—1
u(XF) =Y (XD = XF 4 kXN 4> T k(k - 1) (k— i+ )X
i=0 1=2

ce que l'on peut réécrire sous la forme suivante (en posant j =k — i) :

k k

U(Xk) = Z (k]i!i)le_i = ZEXj'

il
i=0 j=0 J:
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Par conséquent, on en déduit que la matrice M de u dans la base (X*) ke[o,n—1] de E est donnée par :

1 192 e . (n— 1)!/0!

0 1 2 v e .. (n—1)!/1!

0 0 1 (n—1)!/2!
Rk .

2 (0) 01 (n=1D!/(n-2)

0 0 -« -+ 0 0 1

Comme M est triangulaire supérieure, ses valeurs propres sont exactement ses coefficients diagonaux,
et donc Sp(M) = {1}. Mais comme M est la matrice de u dans une base de F, on en déduit que :

Sp(u) = {1}.
On pose v = u — Idg. Montrons que Jm(v) est le sous-espace vectoriel de E formé des fonctions
polynomiales de degré < n — 2. D’aprés la question précédente, on voit que, pour tout k € [0,n — 1] :

o(XF) =u(XP) - XF =) X,

En particulier, v(X*) est un polynome de degré k — 1, et donc de degré < n— 2 pour tout k € [0,n—1].
Par ailleurs, comme (Xk)ke[[o,n—l]] est une base de E, on trouve que :

Jm(v) = VeCt(U(XO),U(X1)7,,,71)(X"—1))
= Vect (Ovv(Xl),...,U(Xn_l))

= Vect (v(X1),...,v(X"71)).

En particulier, comme v(XF¥) est un polynéme de degré < n — 2 pour tout k € [1,n — 1], on voit que
Jm(v) C R,,_a[z]. En outre, comme v(X*) est un polynéme de degré k — 1 pour tout k € [1,n — 1], la
famille (v(X*))eq1,n—1] est échelonnée en degrés, et donc elle est libre. Dés lors, il s’ensuit que :

dim(Jm(v)) = n — 1 = dim(R,,_2[z]).

Par conséquent, on en déduit que :

| Im(v) = R, s[a] |

Montrons tout d’abord que v est nilpotent. Pour ce faire, on va commencer par démontrer que, pour
tout P € E de degré > 0, on a :

deg(v(P)) = deg(P) — 1. (%)
Pour ce faire, considérons un polynéme P = agX° + a1 X! + ... + a, X" de degré r > 0, avec a, # 0.
D’apres la question précédente, on trouve par linéarité de v que :
r r r k—1 k!
k k i
v(P)zv(ZakX ) :Zakv(X ):Zak ﬁX].
k=0 k=0 k=0  j=0

Par interversion des sommes, ceci nous donne que :

r—1

T r—2 r
v(P):Z Z ak];—'! Xj:rarX’”*l—i—Z Z ak% X7,

i=0 \k=j+1 7' 7=0 \k=j+1
Comme r > 0 et que a, # 0, il s’ensuit que v(P) est de degré r — 1, d’ou le résultat.

A présent, montrons que v est nilpotent. Comme v(P) = 0 si P est un polyndéme constant, on voit
avec la relation (%) que, pour tout P € E :

deg(v(P)) < deg(P) —1. (xx)

Par une récurrence facile et & I'aide de (*x), on peut vérifier que deg(v*(P)) < deg(P) — k pour tout
k € N et pour tout P € E. En particulier, on obtient que, pour tout P € E :

deg(v™(P)) <deg(P)—n<n—-1-n=-1.
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Deés lors, v™(P) est un polynome de degré strictement négatif, et donc v™(P) = 0. Comme ceci est
vral pour tout P € E, il s’ensuit que v™ = 0, et donc v est nilpotent d’indice de nilpotence < n. Par
conséquent, on en déduit que :

‘l’endomorphisme v est nilpotent. ‘

De la méme facon, on peut montrer par une récurrence facile et avec la relation (x) que deg(v* (X"~ 1)) =
n — k pour tout k € [0,n — 1]. En particulier, on trouve que :

deg(v" M (X" H)=n—-1-(n—1)=0.

ce qui entraine que v"~1(X"7!) est un polynéme constant non nul. En d’autres termes, on voit que
LX) #£ 0, et donc v~ ! n’est pas 'endomorphisme nul. En particulier, I'indice de nilpotence de
vest <net>n—1,et donc il est égal & n. Mais comme dim F = dimR,,_1[z] =n—1+1=mn, on en
déduit d’apres la question (2) de la partie II, section (B) que :

I’endomorphisme v est cyclique. ‘

Partie III : Décomposition de Frobenius et applications.

Dans cette partie, on se propose de démontrer, pour tout endomorphisme u de L£(E), la propriété suivante
notée (R) :

il existe p € [1,n] et des sous-espaces vectoriels non nuls Fi, ..., F,, de E, stables par u, tels
que £ = Fy @ ... ® F, et pour tout i € [1,p], up, est un endomorphisme cyclique de Fj.

Section A : Cas d’une homothétie.

(1)

Démontrons que la propriété (R) est réalisée si u est une homothétie. En effet, si u est une homothétie,
il existe un réel A tel que u = AIdg. Considérons alors une base quelconque B = (eq,...,e,) de E, et
posons p = n et F; = Vect(e;) pour tout ¢ € [1,n]. Par construction, (e;) est une famille génératrice de
F; pour tout i € [1,n]. De plus, comme B est une base de E, le vecteur e; est non nul. En particulier,
(e;) est une famille libre de F; pour tout i € [1,n], et donc (e;) est une base de F; pour tout i € [1,n].
Au passage, on voit que dim F; = 1 pour tout ¢ € [1,n]. Dés lors, comme la concaténation des bases
(e;) donne la base B de E, il s’ensuit que :

E= é\/ect(ei) = éE
i=1 i=1

A noter que chaque Fj est stable par u. En effet, considérons un vecteur x de F;. Comme v = A\ldg, on
voit que u(z) = Ar appartient & ;. Dés lors, comme up, est un endomorphisme sur I'espace vectoriel
F; qui est de dimension 1, on constate que u|g, est cyclique pour tout i € [1,n]. Par conséquent, on en
déduit que :

‘la propriété (R) est réalisée si u est une homothétie. ‘

Section B : Cas ou u n’est pas une homothétie.

(1)

Justifions qu’il existe un vecteur e non nul de F tel que d(e) # 1. D’apres la question (6) de la partie I,
section (A), on sait qu'un endomorphisme u de E est une homothétie si et seulement si d(e) = 1 pour
tout vecteur non nul e de E. Mais comme u n’est pas une homothétie par hypothese, il s’ensuit que :

‘il existe un vecteur e non nul de E tel que d(e) # 1. ‘

Pour le reste de la section, on choisit un vecteur non nul e de E tel que d = d(e) soit maximal (donc
d > 2) et on note, pour tout k € [0,d— 1], e, = u*(e). On note toujours B(e, d) = (eq, €1, ..., e4_1) ainsi
que des réels ag, ay, ...,aq_1 tels que :

d—1
ul(e) = Z azu'(e).
i=0

Enfin, on pose : Fy = E,(e).

Justifions que la propriété (R) est réalisée si d = n. D’apres la question (7) de la partie I, section (A),
on sait qu'un endomorphisme u de E est cyclique si et seulement s’il existe un vecteur non nul e de F
tel que d(e) = n. En particulier, comme d = n, 'endomorphisme u est cyclique. Il suffit dans ce cas de
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poser p =1 et F} = E et la propriété (R) est réalisée, puisque F; = F est clairement stable par u et
que ujp, = u est cyclique. Par conséquent, on en déduit que :

‘la propriété (R) est réalisée si d = n. ‘

Dans la suite de cette section, on suppose que d € [2,n — 1] (et donc n > 3). On compléte la famille
B(e,d) en une base B = (eg, €1, ..., €4—1, €dy .-, €n—1) de E.

Montrons que ’application ¢ : x = Z?:_Ol rper € B —— x4_1 est une forme linéaire non nulle de FE.
Par construction, on voit que ¢ est une application de F dans R, et qu’elle n’est pas identiquement
nulle car :

pleg—1) =p(0xeg+...+0xego+1xeq1+0xeqs+...+0xe,-1)=1F#0.

Reste a montrer que ¢ est linéaire. Pour ce faire, considérons deux réels A, u et deux vecteurs =,y € F,
et soient zg,...,Tp—1 €t Yo, ...,yn—1 les coordonnées respectives de ces vecteurs dans la base B. Par

définition, on voit que :
n—1 n—1
r = E rrer et y= g YrCk-
i=0 i=0

Des lors, ceci nous donne par linéarité de la somme que :

n—1 n—1 n—1
AT+ py = A Z ey + p Z Yker = Z(Axk + pyr) ek
1=0 1=0 =0

En particulier, on obtient que :

O(A\r 4 py) = Arg—1 + pya—1 = p(x) + pp(y),

et donc ¢ est linéaire. Par conséquent, on en déduit que :

‘l’application  est une forme linéaire non nulle sur E. ‘

On considere I'application @ : z € E +— (p(u™!(2)), p(u?™%()), ..., p(u(z)), p(z)) € RL

Vérifions que ® est linéaire. Pour ce faire, considérons deux réels A, u et deux vecteurs z,y € E. Comme
w est un endomorphisme, on voit d’aprés la question précédente que u et ¢ sont linéaires, et donc o u®
est linéaire pour tout £ € N comme composée d’applications linéaires. Des lors, on trouve que :

Az +py) = (T Oz 4 py)), .., e(u(Az + py)), Az + py))

(Ap(ut1(2) + pe(u?=1(y)), .., \p(u(z)) + pe(u(y)), Ae(z) + pey))
= AW (@), .., p(u(x)), o(x)) + 1 (e (Y)), .., (u(y)), ¢(y))

= A®(z) + pud(y).

Par conséquent, on en déduit que :

‘l’application @ est linéaire. ‘

On note G = ker(®) et ® la restriction de ® & Fy.
Calculons tout d’abord ®(eq). Par définition, on voit que :
B(en) = D(u’(e) = ®(e) = (p(u™(e)), p(u?72(€)); ... plule)), w(e)) -
Des lors, ceci nous donne par définition des e; que :
P(eo) = (pled—1), plea—2), - ple1), p(eo)) -

Or, on voit par construction de ¢ que application @ est nulle sur tous les vecteurs ey tels que k # d—1,
et que p(eq—1) = 1. Par conséquent, on en déduit que :

\cb(eo) =(1,0,...,0,0). \

Calculons ensuite ®(e1) = ®(u(eg)). Par définition, on voit que :

®(e1) = B(u'(e)) = ®(u(e)) = (p(u™ (u(e)), p(u?(ule))), ... p(u(u(e))), ¢(ule))) -

En d’autres termes, on peut écrire que :

®(e1) = (p(u’(e)), p(u?!(e)), ., p(u?(e)), p(u(e))) -



37

Des lors, ceci nous donne par définition des ej que :

D(e1) = (e(u’(e)), pled—1), - p(e2), p(e1)) .

Par hypothese, on sait qu’il existe des réels ag, ay,...,aq_1 tels que :
Yy

d—1
u’(e) = Zaiui(e).
i=0
En particulier, on trouve par linéarité de ¢ que :

®ler) = (o(u’(e)), p(ea-1), ..., ple2), (1))

d—1
= <90 (Z aiui(6)> 790(€d—1)7---790(62)790(61)>
1=0

d—1
= ( aip (ui(e)),w(ed-l),-~-,<p(ez),<p(61)>
=0

K2

d—1
(Z aip (ei) , p(ed—1), -, plez), @(61)>

Comme l'application ¢ est nulle sur tous les vecteurs e tels que k # d — 1 et que p(eq—1) = 1 par
construction, on obtient que :

®(e1)=(0+...+0+ag_1,1,0,...,0).

Par conséquent, on en déduit que :

\cb(el) = (ag-1,1,0, ...,0) \

Plus généralement, justifions que, pour tout k € [1,d — 1], il existe des réels Bo k, 51,k; ---, 1,k tels
que ®(ex) = (Bok, B1.k» s Br—1,%, 1,0, ...,0). Pour ce faire, fixons un entier k € [1,d—1]. Par définition,
on voit que :

®(er) = ®(u'(e) = (p(u’™" (u"(e))), p(u? (W (€))), ... p(uu’(e))), p(u*(e))) -

En d’autres termes, on peut écrire que :

®(er) = (9™ 7 (e)), p(u2(e)), ooy (W (e)), 0 (uF(e))) -

Des lors, ceci nous donne par définition des ej que :
Oler) = (™), (™2 (e)), . p(u?H(e), p(u2(e)), ory p(uFH (), (" ()))

= (e e)), p(ut*72(e)), ..., plea—1), pled—2), ., p(en+1), e(er)) -

Posons alors 3 x = p(u®k~1=¢(e)) pour tout i € [0,k — 1]. Comme l'application ¢ est nulle sur tous
les vecteurs ey, tels que k # d — 1 et que ¢(eq—1) = 1 par construction, on obtient que :

(I)(Gk) = (ﬂo,ka ﬂl,ka "'aﬂk—l,ka ceey 15 07 7070) .

Par conséquent, on en déduit que, pour tout k € [1,d — 1], il existe Bo k, 51k, ---» Bu—1,5 € R tels que :

‘ ®(er) = (Bok, Biks o Br—1,k:1,0,...,0). ‘

Ecrivons tout d’abord la matrice de ® de la base B(e,d) de Fy vers la base canonique de R¢. D’apres
la question précédente, on sait que :

Ble) = ®leg) = (1,0,..,0)
P(ule)) = P(er) = (Bo,1,1,0,...,0)

(b(ed—l) = (b(ed—l) = (ﬂo,d—laﬁl,d—h"'76d—2,d—17laoa"'ao)
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Par conséquent on en déduit que la matrice A de ® de la base B(e,d) de Fy vers la base canonique de

R? est donnée par :

1 Box -+ - - Boat
0 1 oo oo o Brag
: (0) o Ba—ga—
0 v i i 0 1

A présent, justifions que P est bijectif. Comme la matrice A est triangulaire supérieure et que ses
coefficients diagonaux sont tous non nuls, la matrice A est inversible. Mais comme A est la matrice de

® de la base B(e,d) de F; vers la base canonique de R, on en déduit que :

P est bijectif.

Montrons tout d’abord que. FE = F1®G. Comme <I> est un isomorphisme de F; vers R? d’apreés la question

précédente, I'application ® est surjective, Jm(®) = R? et dim(F}) = dim(R%) = d. En particulier,
comme ® est la restriction de I'application ®, on voit que Jm(®) C Jm(®) C R?, et donc Jm(®) = R<.
Comme G = ker(®), on obtient avec le théoréme du rang que :

dim(F) + dim(G) = dim ker(®) + dim Im(P) = dim(E).

Reste a montrer que F} et G sont en somme directe. Pour ce faire, considérons un vecteur x € F; N G.
Alors z appartient a Fy et & G. Comme G = ker(®), on voit que ®(x) = 0. De plus, comme x appartient
A F et que ® est la restriction de ® & Fy, ceci entraine que ®(z) = ®(z) = 0. Mais comme ® est bijective
d’apres la question précédente, il s’ensuit que = = 0. Par conséquent, on en déduit que F; NG = {0},

et donc :

A présent, justifions que G est stable par u. Pour ce faire, considérons un vecteur x de G. Si z = 0,
alors u(x) = 0 par linéarité de u, et donc u(x) € G. Dés lors, supposons que = # 0. Comme G = ker(®),
on voit que ®(z) = 0, c’est-a-dire :

®(z) = (p(u' (2)), o (@), ..., p(u(2)), (x)) = (0,..., 0).

En particulier, ceci entraine que p(x) = p(u(z)) = ... = p(u?=2(z)) = p(ui=t(z)) = 0, et donc :

p(u(r)) =

D’aprés la question (3) de la partie I, section (A), on sait que, pour tout k € N, le vecteur u*(z) est com-
)—1

binaison linéaire des vecteurs z, u(w), e ud®
néaire des vecteurs x, u(x), ..., u

= (P (u(2))) = (2 (u(z))) = 0.

(x). En particulier, le vecteur u(x) est combinaison li-

d(*)=1(z). Par maximalité de d = d(e), on sait aussi que d(z) < d, et donc

u(x) est aussi combinaison linéaire des vecteurs z, u(z), ...,u?"!(z), et ce car (x,u(x), ...,ud(x)_l(x))

est une sous-famille de (z,u(z), ...

,ud_l(m)). En d’autres termes, il existe des réels cq, ..., cq_1 tels que :

Par linéarité de 'application ¢ et sachant que p(z) = p(u(z)) = ... = p(ui=2(z)) = p(ui1(x)) =0,

on trouve alors que :

@ (u

Des lors, il s’ensuit que p(z) =

O (u(z)) = (p(u

En particulier, on voit que u(x
on en déduit que :

d—1 d—1
=g <Z ciui(x)> = Zciga (uz(x)) = ZciO =0.

p(u(z)) = .. = p(u?=?(2)) = p(u~(2)) = p(u’(x)) = 0, et donc :

Uz
)

), (™ (@), ey p(u?(2)), p(u(2))) = (0,...,0).

appartient & G = ker(®). Mais comme ceci est vrai pour tout = € G,

‘ G est stable par u. ‘
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Expliquons pourquoi u|g, est un endomorphisme cyclique de Fy. Comme u|p, est la restriction de u a
Fy, on voit que (u|Fl)k(e) = u¥(e) pour tout k € N. Dés lors, comme F; = E,(e), on voit que :

Fy = Vect (e,u(e), ...,u’ " (e)) = Vect (e, (w g, ) (), ..., (ujm, ) (e)) .
Comme d = card(B(e,d)) = dim(F}), il s’ensuit que I} = E (e), et donc :

U|F1)

‘u‘ F, est un endomorphisme cyclique de F;. ‘

Justifions que, pour tout vecteur non nul ¢’ de G, on a d(e¢’) < d. Par construction, on a choisi au
départ un vecteur e non nul de E tel que d(e) soit maximal, et on a posé d = d(e). Dés lors, on voit
que d(e) < d pour tout e € E. Mais comme G est le noyau de 'application ® : E — R%, on voit que
G est un sous-espace vectoriel de E, et donc d(e’) < d pour tout € € G. Par conséquent :

‘pour tout ¢’ € G, on a: d(e') < d.‘

Démontrons que la propriété (R) est bien réalisée pour tout espace vectoriel E de dimension finie, et ce
par une récurrence forte sur la dimension n de E. Pour n = 1, la propriété (R) est clairement vérifiée
pour tout espace vectoriel de dimension 1, car u est alors un endomorphisme d’un espace vectoriel £
de dimension 1, et donc il est cyclique par définition.

A présent, supposons que la propriété (R) soit bien réalisée pour tout espace vectoriel de dimension
k < n, et montrons qu’elle est vraie pour tout espace vectoriel de dimension n + 1. Soit u un endomor-
phisme d’un espace vectoriel E de dimension n + 1. Si u est une homothétie, alors (R) est bien vérifiée
d’apres la question (1) de la partie III, section (B). Si maintenant « n’est pas une homothétie, on choisit
un vecteur non nul e de E tel que d(e) soit maximal. Si d(e) = n + 1, alors on sait d’apres la question
(2) de la partie III, section (B) que la propriété (R) est bien réalisée pour E. Si 1 < d(e) < n + 1,
on sait d’aprés les questions de la partie III, section (B) qu’il existe un sous-espace vectoriel strict
G de E, stable par u, tel que E = Fi @ G et tel que up, soit cyclique. Comme dim(G) < n + 1, il
existe par hypothése de récurrence un entier p € [1,dim(G)] et des sous-espaces vectoriels Fy, ..., Fpi1
de G, stables par ujg et tels que G = F> @ ... @ F), et tels que, pour tout i € [2,p + 1], ux, est un
endomorphisme cyclique de F;. Deés lors, comme E = F; @ G, ceci entraine que :

E=FoHRhd.. ©Fy.

A noter que, comme 1 < p < dim(G) <n+1,onal <p+1<n+1 De plus, comme F,..., Fj11
sont stables par u)q, ces sous-espaces vectoriels sont stables par u car u|g est la restriction de u a G.
A noter aussi que, comme F; = E,(e), Fy est aussi stable par u d’aprés la question (4) de la partie I,
section (A). De plus, on sait d’apres la question (8) de la partie III, section (B) que 'endomorphisme
up, est cyclique. Comme u|g, est cyclique pour tout i € [2,p + 1], il s’ensuit que tous les ujp, sont
cycliques, et donc la propriété (R) est bien réalisée pour F, ce qui achéve la récurrence.

Par conséquent, on en déduit que :

‘la propriété (R) est vraie pour tout espace vectoriel de dimension finie. ‘

Section C : Premiére application (décomposition de Jordan des endomorphismes nilpotents).

(1)

Soit w € L(E). On suppose qu’il existe p € [1,n] et Fi, ..., F,, des sous-espaces vectoriels de £ non nuls
et stables par u tels que £ = F1 & ... & F),. Pour tout k € [1,p], on note Bg, une base de Fj. Soit B la
concaténation des bases Br,, Br,, ..., Br,. On rappelle que B est une base de E. Déterminons la forme
de la matrice de u dans la base B. Pour ce faire, fixons un entier k£ € [1,p]. Comme le sous-espace
vectoriel Fy, est stable par u, 'image de tout vecteur de Bp, par w est un vecteur de F}, et donc il s’écrit
comme combinaison linéaire des vecteurs de B, car Bp, est une base de Fj,. En particulier, si Ay est
la matrice de u|p, dans la base Bp,, alors la matrice A de u dans la base B aura la forme suivante :

A0 0o 0 0
0 A 0O 0 0
0 0 (0)
A= Ay
(0) 0 A,y 0
0 0 0 0 4,
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On parle alors de matrice diagonale par blocs.

(2) Soit w un endomorphisme nilpotent de E, d’indice de nilpotence p. Montrons qu’il existe une base B
de E dans laquelle la matrice T = (¢; j)1<i j<n de u est triangulaire supérieure et telle que, pour tout
i € [1,n], t;; = 0, pour tout i € [2,n], t;;—1 € {0,1} et tous les autres coefficients de T' sont nuls.
D’apres la propriété (R), il existe un entier p € [1,n] et des sous-espaces vectoriels non nuls 1, ..., Fj,
de E, stables par u, tels que E = F1 & ... ® F), et pour tout i € [1,p], ujr, est un endomorphisme
cyclique de F;. Pour tout ¢ € [1,p], on pose n; = dim(F;). Comme I’endomorphisme u est nilpotent
d’indice de nilpotence p, on sait que u? = 0, ce qui entraine par restriction que (ug,)? = 0, et donc
u)F, est nilpotent pour tout i € [1,p]. Des lors, comme up, est cyclique et nilpotent, on voit d’apres la
question (2) de la partie II, section (B) qu'il existe une base Br, de F; telle que la matrice T; de up,
dans la base Bf, soit de la forme :

0 0 0 00

1 0 0 00

0 1 (0)
E:

. (0) 1 00

0 0 0 10

Si B est la concaténation des bases Br, , Br, , ..., Br. , alors la matrice T' de u dans la base B sera diagonale
1 2 b P b
par blocs comme dans la question précédente, et se présentera comme suit :

1 O 0 0 0
0 Ty 0 0 0
0 O (0)

T = Ty
. (0) 0 Tp_l 0
0 O 0 0 T,

En d’autres termes, la matrice T sera de la forme :

0 --- 0
1 0 0
0 1 (0)

Ti = )

0
(0) 1

0 0 1 0

avec tous ses coefficients nuls, hormis ceux situés juste sous la diagonale principale qui seront égaux a
0 ou a 1. Par conséquent, on en déduit qu’il existe bien une base B de E dans laquelle :

la matrice T' = (t; j)1<i,j<n de u est triangulaire supérieure et
telle que, pour tout ¢ € [1,n], t;; = 0, pour tout ¢ € [2,n],
t;i—1 € {0,1} et tous les autres coefficients de T sont nuls.

Section D : Deuxiéme application (toute matrice carrée est semblable a sa transposée).

Dans cette section, on pose E = R™ et on note B, la base canonique de R™. Soit M € M, (R). On note

u

I’endomorphisme de E canoniquement associé & M. On se propose de montrer que M vérifie la propriété

suivante, notée (S) :

il existe deux matrices symétriques V,W € M, (R), avec W inversible, telles que M = VW.
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(1) Cas ou u est cyclique : il existe donc e € E tel que E = E,(e). On note toujours B(e,n) la base
(e,u(e),...,u" (e)) de E et A = matg(e ) (u). Il sagit de la matrice de Frobenius associée aux réels
A0, A1y« An—1 ¢

0 -+ -+ 0 0 a
1 0 -+ -+ 0 0 o
0 1 (0) :
A =
(0) 1 0 ap—2
0 0 0 1 an_q
On considere :
—a —az —az -+ —Qp_2 —ap_1 1
—as —as s —Qp—1 1 0
—as ... 0 0
S = 0
—Aan—2 —0n—-1 - ' - ' (O)
—Qn—-1 1 0 .
1 0 e 0 0 0

et on note f endomorphisme de F tel que S est la matrice de f dans la base B(e,n). On a donc :

fle)=— <i akukl(e)> +u™e) , f(u(e))=— (i: akukz(e)> +u"2(e)
k=1 P

et plus généralement :

Vie0,n—2], f(ule))=-— 2 akuk’jfl(e) 0
k=j+1

et enfin f (u""!(e)) =e.
Calculons tout d’abord u(f(e)). D’apres la forme de la matrice A, on sait que :

n—1
u"(e) = Z apu® (e).
k=0

Par linéarité de u, ceci nous donne que :

u(f(e) = u<— (i akuk*(e)) +u"-1<e>>



A présent, calculons u(f(u(e))). Comme précédemment, on trouve que :

n—1
u(f(ule))) = w (- (Z akuk_2(6)> +U"_1(6)>
k=2

Par conséquent, on en déduit apres un décalage d’indice i = k — 1 que :

() =~ 3 i u'(e) + (o).

Plus généralement, calculons u(f(u’(e))) pour tout j € [0,n — 2]. Comme précédemment, on a :

n—1

u(f(u’(e))) = u|— Z a7 (e) | +uni1(e)

Par conséquent, on en déduit apres le décalage d’indice i = k — j que :

u(f(W@ (€)== Y aijul(e) +u" I (e).
=1

Enfin, calculons u(f(u""'(e))). Comme f (u"~'(e)) = e, on en déduit que :

(2) D’apres la question précédente, la matrice de u o f dans la base B(e,n) est donnée par :

aop 0 o - 0 0 0

0 —a2 —az -+ —ap2 —ap1 1

0 —as —a4 - ' o 1 0
matB(e,n) (u © f) = :

0 —ans T (0)

0 —Qp—1 1 0 :

0 1 o - 0 0 0

Mais comme A et S sont les matrices respectives de u et f dans la base B(e,n), on en déduit que :

ap 0 0 e 0 0 0

0 —az —az -+ —ap_2 —ap_1 1

0 —as —ay .t ’ .t ’ 1 0
AS =

0 —Qp—2 (O)

0 —Qp—1 1 0

0 1 0 0 0 0

Par la suite, on pose S; = AS.
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Justifions que S est inversible. Comme les vecteurs colonnes de S forment une famille échelonnée avec
des coefficients non nuls sur la diagonale opposée, le rang de cette famille est égal & n, et donc rg(S) = n.
Mais comme une matrice carrée de taille n est inversible si et seulement si elle est de rang n, on en
déduit que :

la matrice S est inversible. ‘

On note alors Sy = S~ et on a donc A = S1.95, ot S; et S5 sont deux matrices symétriques.
On note P la matrice de passage de la base B,, vers la base B(e,n). Vérifions tout d’abord que :
M = PS,(*P)('"P) 1S, P .
Par des calculs simples, on voit que :
PS,(‘P)('P) ' SyP™! = PS 1,,S5P~ ' = PSS, P! = PAPL.
Comme P est la matrice de passage de la base B,, vers la base B(e,n) et que A est la matrice de u
dans la base B(e,n), on obtient d’aprés la formule de changement de bases que PAP~! est la matrice

de u dans la base B,,, c’est-a-dire la matrice M (car u est 'endomorphisme canoniquement associé a
M). Par conséquent, on en déduit que :

M = PS;(PP)(PP)"'5,P".|

A présent, montrons que M vérifie la propriété (S). Pour ce faire, on pose :
V =PSi('"P) et W =("P)"1S,P .
D’apres les calculs précédents, on voit que M = VW. De plus, comme S; est symétrique, on trouve
avec les propriétés de la transposition que :
'V =4PS\('P)) ="P'S,'"P = PS,'"P =V,
et donc la matrice V' est symétrique. De la méme fagon, on peut vérifier aussi que W est symétrique.

Enfin, comme W = (‘P)~1S, P!, que S, est inversible et quun produit de matrices inversibles est
inversible, il s’ensuit que W est inversible. Par conséquent, on en déduit que :

‘ M vérifie la propriété (S). ‘

Montrons alors que ‘M et M sont semblables. Plus précisément, déterminons une matrice symétrique
inversible @ telle que 'M = Q~'MQ. Pour ce faire, on pose Q = W1 (ce qui fait sens car W est
inversible d’apres la question précédente). Comme W est symétrique, son inverse est aussi symétrique.
Deés lors, comme V est aussi symétrique, on trouve par des calculs simples que :

M= VW)="WV =WV =WVIL =W H"'VWWw ! =Q 'VIWVQ = Q"' MQ.

Par conséquent, on en déduit que :

‘M et M sont semblables. ‘

Cas général : en s’appuyant sur le cas précédent et la propriété (R), montrons que, pour toute matrice
M de M,,(R), les matrices ‘M et M sont semblables. Pour ce faire, fixons une matrice M de M,,(R), et
soit u ’endomorphisme de R™ canoniquement associé a M. D’apres la propriété (R), il existe un entier
p € [1,n] et des sous-espaces vectoriels non nuls F1, ..., F}, de R”, stables par u, tels que R” = F1&...¢F),
et pour tout i € [1,p], u|p, est un endomorphisme cyclique de Fj. Pour tout k € [1,p], on note Bp,
une base de Fj,. Alors la concaténation B des bases Br,, Br,, ..., Br, donne une base de R™. D’apres la
question (1) de la partie III, section (C), la matrice A de u dans la base B est de la forme :

A, 0 - o 0 0 0
0 Ay -+ -+ 0 0 0
0o o0 . (0)
A= o A : ],
:(0) o0 Ay 0
0 0O -+ - 0 0 A,

ou A; est une matrice de M,,,(R) pour tout ¢ € [1,p] (avec n; = dim(F};)). Si P est la matrice de
passage de la base canonique de R™ vers la base B, alors on voit d’apres la formule de changement
de bases que M = PAP~!. De plus, comme A; est la matrice de u|p, dans la base Br, et que up,
est un endomorphisme cyclique, on sait d’aprés la question précédente que les matrices *4; et A;
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sont semblables. Pour tout ¢ € [1,p], on désigne par @; une matrice inversible de M,,, (R) telle que
A; = Qi'4;Q;*, et T'on pose :

Q1 0 0 0 0
0 Q2 0 0 0
0 0 (0)
Q Qk
o (0) 0 Qp—1 O
0 0 0 0 Qp
Il est alors facile de vérifier par le calcul que :
Q. 0 0 0 0 Q' 0 0 0 0
0 Q2 0 0 0 0 Q' 0 0 0
0 0 (0) 0 0 (0)
Qk Q' =1I,.
D(0) 0 Q-1 0 L (0) 0 @ 0
0 0 0 0 @ 0 0 0 0 .
En particulier, la matrice ) est inversible et de plus, on a :
Q' 0 0 0
0 Q' 0 0
0 0 (0)
Q—l _ lel
: (0 o0 Q) 0
0 0 . 0 ;1
De la méme facon, on peut vérifier que :
A, 0 0 0 0
0 Ay 0 0 0
0 0 (0)
A=Q Ay, QY
o (0) 0 'A,.4 0
0 0 0 0 ‘A,

ce qui entraine que A = Q'AQ™, et donc A = Q71 AQ. Partant du fait que M = PAP~! (et donc
A= P~'MP), on trouve alors que :

tM _ t(P—l)tAtP _ t(P—l)Q—lAQtP _ t(P_l)Q_lp_lMPQtP. (*)
Posons enfin R = PQ'P. Comme R est un produit de matrices inversibles, elle est aussi inversible. De
plus, on trouve par des calculs simples que :

R*l — (PQtP)_l —_ (tp)leflpfl — t(Pfl)Qflpfli
En particulier, ceci entraine avec I'égalité (x) que ‘M = R™!MR. Par conséquent, on en déduit que,
pour tout M € M, (R) :

‘les matrices ‘M et M sont semblables. ‘




