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Corrigé du devoir Surveillé de Mathématiques no5

1. Corrigé du sujet EDHEC-EML

Corrigé de l’exercice 1. Dans tout l’exercice, on désigne par n un entier ≥ 2. Soit A la matrice deMn(R)
dont les éléments diagonaux sont égaux à −n, les autres étant tous égaux à 1. On note J la matrice deMn(R)
dont tous les éléments sont égaux à 1 et I la matrice identité de Mn(R).

(1) Exprimons tout d’abord A en fonction de I et J . Par des calculs simples, on trouve que :

A =


−n 1 ... 1

1
. . .

. . .
...

...
. . .

. . . 1
1 ... 1 −n

 = (−1− n)


1 0 ... 0

0
. . .

. . .
...

...
. . .

. . . 0
0 ... 0 1

+


1 1 ... 1

1
. . .

. . .
...

...
. . .

. . . 1
1 ... 1 1

 .

Par conséquent, on en déduit que :

A = (−1− n)I + J.

A présent, écrivons A2 comme combinaison linéaire de I et J . Comme les matrices I et J commutent,
on obtient par des calculs simples que :

A2 = [(−1− n)I + J ]2 = (1 + n)2I2 + J2 − 2(n + 1)JI = (1 + n)2I + J2 − 2(n + 1)J.

Comme J2 = nJ , il s’ensuit que :

A2 = (1 + n)2I + J2 − 2(n + 1)J = (1 + n)2I + nJ − 2(n + 1)J = (1 + n)2I − (n + 2)J.

Par conséquent, on en déduit que :

A2 = (1 + n)2I − (n + 2)J.

(2) Déterminons tout d’abord un polynôme annulateur de A. Partant du fait que J = A + (n + 1)I, on
obtient par des calculs simples que :

J2 = [(1 + n)I + A]2 = (1 + n)2I2 + A2 + 2(n + 1)AI = (1 + n)2I + A2 + 2(n + 1)A.

Comme J2 = nJ , ceci entraine que :

J2 = (1 + n)2I + A2 + 2(n + 1)A = nJ = n[(n + 1)I + A] = n(n + 1)I + nA.

En particulier, il s’ensuit que :

0 = (1 + n)2I + A2 + 2(n + 1)A− n(n + 1)I − nA = A2 + (n + 2)A + (1 + n)I.

Par conséquent, on en déduit que :

P : x 7−→ x2 + (n + 2)x + (n + 1) est un polynôme annulateur de A.

A présent, donnons les valeurs propres possibles de A. Comme toute valeur propre de A est racine de
tout polynôme annulateur de A, il suffit de déterminer les racines de P . Par des calculs simples, on a
∆ = (n + 2)2 − 4(n + 1) = n2 + 4n + 4− 4n− 4 = n2, et donc les racines de P sont données par :

x1 = −n− 2 + n

2 = −1 et x2 = −n− 2− n

2 = −n− 1.

Par conséquent, on en déduit que :

les seules valeurs propres possibles de A sont − 1 et − n− 1.

(3) Montrons que la matrice A est inversible. D’après la question précédente, −1 et −n− 1 sont les seules
valeurs propres possibles de A, et donc 0 n’est pas valeur propre de A car n ≥ 2. Comme une matrice
est inversible si et seulement si 0 n’en est pas valeur propre, on en déduit que :

A est inversible.
1
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Par la suite, on considère un espace euclidien E de dimension n + 1, dont le produit scalaire est noté ⟨ , ⟩ et
la norme associée ∥ ∥. On désigne par (ε0, ..., εn) une base orthonormée de E, et l’on pose :

u = 1√
n + 1

n∑
k=0

εk et ∀i ∈ J0, nK, ei =
√

n + 1
n

(εi − ⟨εi, u⟩u) .

(1) Calculons la norme du vecteur u. Comme la famille (ε0, ..., εn) est orthonormée, tous les vecteurs εi

sont de norme 1 et deux à deux orthogonaux. Dès lors, on obtient avec le théorème de Pythagore que :

∥u∥2 =
(

1√
n + 1

)2 n∑
k=0
∥εk∥2 = 1

n + 1

n∑
k=0

1 = n + 1
n + 1 = 1.

Par conséquent, on en déduit en passant à la racine carrée que :

∥u∥ = 1.

(2) (a) Montrons que, pour tout i ∈ J0, nK, on a : ∥ei∥ = 1. Par bilinéarité et symétrie du produit scalaire,
on trouve que :

∥ei∥2 = ⟨ei, ei⟩

=
〈√

n + 1
n

(εi − ⟨εi, u⟩u) ,

√
n + 1

n
(εi − ⟨εi, u⟩u)

〉

=
(√

n + 1
n

)2

⟨εi − ⟨εi, u⟩u, εi − ⟨εi, u⟩u⟩

= n + 1
n
⟨εi − ⟨εi, u⟩u, εi − ⟨εi, u⟩u⟩

= n + 1
n

[⟨εi, εi⟩ − ⟨εi, u⟩⟨εi, u⟩ − ⟨εi, u⟩⟨u, εi⟩+ ⟨εi, u⟩⟨εi, u⟩⟨u, u⟩]

= n + 1
n

[
∥εi∥2 − ⟨εi, u⟩⟨εi, u⟩ − ⟨εi, u⟩⟨εi, u⟩+ ⟨εi, u⟩⟨εi, u⟩∥u∥2]

= n + 1
n

[
∥εi∥2 − 2⟨εi, u⟩2 + ⟨εi, u⟩2∥u∥2] .

Comme ∥u∥ = 1 d’après la question précédente, on obtient que :

∥ei∥2 = n + 1
n

[
∥εi∥2 − 2⟨εi, u⟩2 + ⟨εi, u⟩2∥u∥2]

= n + 1
n

[
∥εi∥2 − 2⟨εi, u⟩2 + ⟨εi, u⟩2

]
= n + 1

n

[
∥εi∥2 − ⟨εi, u⟩2

]
. (∗)

Comme la famille (ε0, ..., εn) est orthonormée, tous les vecteurs εi sont de norme 1 et deux à deux
orthogonaux. Dès lors, on trouve par bilinéarité du produit scalaire que :

⟨εi, u⟩ =
〈

εi,
1√

n + 1

n∑
k=0

εk

〉

= 1√
n + 1

n∑
k=0
⟨εi, εk⟩

= 1√
n + 1

[0 + ... + 0 + 1 + 0 + ... + 0]

= 1√
n + 1

.
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En particulier, on obtient avec la relation (∗) que :

∥ei∥2 = n + 1
n

[
∥εi∥2 − ⟨εi, u⟩2

]
= n + 1

n

[
1−

(
1√

n + 1

)2
]

= n + 1
n

[
1− 1

n + 1

]

= n + 1
n

[
n

n + 1

]
= 1.

Par conséquent, on en déduit en passant à la racine carrée que, pour tout i ∈ J0, nK :

∥ei∥ = 1.

(b) Montrons que, pour tout (i, j) ∈ J0, nK2 tel que i ̸= j, on a : ⟨ei, ej⟩ = − 1
n . Par bilinéarité et symétrie

du produit scalaire, on trouve que :

⟨ei, ej⟩ =
〈√

n + 1
n

(εi − ⟨εi, u⟩u) ,

√
n + 1

n
(εj − ⟨εj , u⟩u)

〉

=
(√

n + 1
n

)2

⟨εi − ⟨εi, u⟩u, εj − ⟨εj , u⟩u⟩

= n + 1
n
⟨εi − ⟨εi, u⟩u, εj − ⟨εj , u⟩u⟩

= n + 1
n

[⟨εi, εj⟩ − ⟨εj , u⟩⟨εi, u⟩ − ⟨εi, u⟩⟨u, εj⟩+ ⟨εi, u⟩⟨εj , u⟩⟨u, u⟩]

= n + 1
n

[
⟨εi, εj⟩ − ⟨εi, u⟩⟨εj , u⟩ − ⟨εi, u⟩⟨εj , u⟩+ ⟨εi, u⟩⟨εj , u⟩∥u∥2]

= n + 1
n

[
⟨εi, εj⟩ − 2⟨εi, u⟩⟨εj , u⟩+ ⟨εi, u⟩⟨εj , u⟩∥u∥2] .

Comme ∥u∥ = 1 d’après la question précédente, on obtient que :

⟨ei, ej⟩ = n + 1
n

[
⟨εi, εj⟩ − 2⟨εi, u⟩⟨εj , u⟩+ ⟨εi, u⟩⟨εj , u⟩∥u∥2]

= n + 1
n

[⟨εi, εj⟩ − 2⟨εi, u⟩⟨εj , u⟩+ ⟨εi, u⟩⟨εj , u⟩]

= n + 1
n

[⟨εi, εj⟩ − ⟨εi, u⟩⟨εj , u⟩] .

Comme la famille (ε0, ..., εn) est orthonormée, tous les vecteurs εi sont de norme 1 et deux à deux
orthogonaux. Dès lors, on trouve que :

⟨ei, ej⟩ = n + 1
n

[⟨εi, εj⟩ − ⟨εi, u⟩⟨εj , u⟩] = −n + 1
n
⟨εi, u⟩⟨εj , u⟩. (∗)
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Comme précédemment, on obtient par bilinéarité du produit scalaire que, pour tout l ∈ J0, nK :

⟨εl, u⟩ =
〈

εl,
1√

n + 1

n∑
k=0

εk

〉

= 1√
n + 1

n∑
k=0
⟨εl, εk⟩

= 1√
n + 1

[0 + ... + 0 + 1 + 0 + ... + 0]

= 1√
n + 1

.

En particulier, on trouve avec la relation (∗) que :

⟨ei, ej⟩ = −n + 1
n
⟨εi, u⟩⟨εj , u⟩

= −n + 1
n
× 1√

n + 1
× 1√

n + 1
= − 1

n
.

Par conséquent, on en déduit que, pour tout (i, j) ∈ J0, nK2 tel que i ̸= j :

⟨ei, ej⟩ = − 1
n

.

(c) Montrons que les vecteurs e0, ..., en appartiennent tous au sous-espace F = (Vect(u))⊥ de E. Par
bilinéarité du produit scalaire, on trouve que, pour tout i ∈ J0, nK :

⟨ei, u⟩ =
〈√

n + 1
n

(εi − ⟨εi, u⟩u) , u

〉

=
√

n + 1
n
⟨εi − ⟨εi, u⟩u, u⟩

=
√

n + 1
n

[⟨εi, u⟩ − ⟨εi, u⟩⟨u, u⟩]

Comme ⟨u, u⟩ = ∥u∥2 = 1 d’après la question (2)(a) de la première partie, on a pour tout i ∈ J0, nK :

⟨ei, u⟩ =
√

n + 1
n

[⟨εi, u⟩ − ⟨εi, u⟩] = 0.

Dès lors, tous les vecteurs ei sont orthogonaux à u. Par conséquent, on en déduit que :

les vecteurs e0, ..., en appartiennent tous à F = (Vect(u))⊥.

(d) Montrons que (e1, ..., en) est une base de F . D’après la question précédente, on sait que les vecteurs
e1, ..., en appartiennent tous à F . De plus, d’après les propriétés de l’orthogonal, on voit que :

dim F = dim(Vect(u))⊥ = dim E − dim Vect(u) = n + 1− dim Vect(u).

Comme u est de norme 1 d’après la question (1) de la deuxième partie, le vecteur u est non nul. En
particulier, la famille (u) est libre. Mais comme elle est génératrice dans Vect(u) par définition, la
famille (u) est une base de Vect(u), et donc :

dim F = n + 1− dim Vect(u) = n + 1− 1 = n.

Comme la famille (e1, ..., en) est de cardinal n, il suffit de montrer que cette famille est libre pour
obtenir que c’est une base de F . Pour ce faire, considérons des réels x1, ..., xn tels que :

x1e1 + ... + xnen = 0E .

Par bilinéarité du produit scalaire, on trouve que, pour tout j ∈ J0, nK :

x1⟨e1, ej⟩+ ... + xn⟨en, ej⟩ = ⟨x1e1 + ... + xnen, ej⟩ = ⟨0E , ej⟩ = 0.
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D’après les questions (2)(a) et (2)(b) de la deuxième partie, on obtient que, pour tout j ∈ J0, nK :

x1⟨e1, ej⟩+ ... + xn⟨en, ej⟩ = − 1
n

x1 − ... + xj − ...− 1
n

xn = 0.

En multipliant cette égalité par −n, on trouve que, pour tout j ∈ J0, nK :

x1 + ... + xj−1 − nxj + xj+1... + xn = 0.

En particulier, si X est le vecteur colonne de composantes x1, ..., xn, alors on voit avec les relations
ci-dessus que AX = 0, où A est la matrice donnée dans la première partie. Comme A est inversible
d’après la question (3) de la première partie, le système AX = 0 admet 0 comme unique solution,
et donc x1 = ... = xn = 0. Par conséquent, la famille (e1, ..., en) est libre, et donc :

(e1, ..., en) est une base de F.

(3) On considère l’application f de F × F dans R définie pour tout (x, y) ∈ F × F par :

f(x, y) =
n∑

k=0
⟨x, ek⟩⟨y, ek⟩ −

n + 1
n
⟨x, y⟩.

(a) Montrons que f est une forme bilinéaire symétrique. Commençons par établir la symétrie. Par
symétrie du produit scalaire, on trouve que, pour tout (x, y) ∈ F × F :

f(y, x) =
n∑

k=0
⟨y, ek⟩⟨x, ek⟩ −

n + 1
n
⟨y, x⟩

=
n∑

k=0
⟨x, ek⟩⟨y, ek⟩ −

n + 1
n
⟨x, y⟩ = f(x, y),

et donc f est symétrique. Dès lors, pour montrer que f est bilinéaire, il suffit de vérifier que f
est linéaire à gauche. Pour ce faire, considérons des vecteurs x1, x2, y ∈ F et des réels λ1, λ2. Par
bilinéarité du produit scalaire et par linéarité de la somme, on obtient que :

f(λ1x1 + λ2x2, y) =
n∑

k=0
⟨λ1x1 + λ2x2, ek⟩⟨y, ek⟩ −

n + 1
n
⟨λ1x1 + λ2x2, y⟩

=
n∑

k=0
[λ1⟨x1, ek⟩+ λ2⟨x2, ek⟩]⟨y, ek⟩ −

n + 1
n

[λ1⟨x1, y⟩+ λ2⟨x2, y⟩]

= λ1

n∑
k=0
⟨x1, ek⟩⟨y, ek⟩+ λ2

n∑
k=0
⟨x2, ek⟩⟨y, ek⟩ − λ1

n + 1
n
⟨x1, y⟩ − λ2

n + 1
n
⟨x2, y⟩

= λ1

[
n∑

k=0
⟨x1, ek⟩⟨y, ek⟩ −

n + 1
n
⟨x1, y⟩

]
+ λ2

[
n∑

k=0
⟨x2, ek⟩⟨y, ek⟩ −

n + 1
n
⟨x2, y⟩

]

= λ1f(x1, y) + λ2f(x2, y).

Dès lors, il s’ensuit que f est linéaire à gauche. Par conséquent, on en déduit que :

f est une forme bilinéaire symétrique.

(b) Déterminons f(ei, ej) pour tout (i, j) ∈ J1, nK2. Pour ce faire, on distingue deux cas. Tout d’abord,
si i = j, alors on obtient par définition de f que :

f(ei, ej) = f(ei, ei) =
n∑

k=0
⟨ei, ek⟩⟨ei, ek⟩ −

n + 1
n
⟨ei, ei⟩.
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D’après les questions précédentes, on sait que ⟨ei, ek⟩ est égal à 1 si k = i et à − 1
n si k ̸= i. Dès lors,

il s’ensuit que, pour tout i ∈ J1, nK :

f(ei, ei) =
∑

0≤k≤n, k ̸=i

⟨ei, ek⟩⟨ei, ek⟩+ ⟨ei, ei⟩2 −
n + 1

n
⟨ei, ei⟩

=
∑

0≤k≤n, k ̸=i

(
− 1

n

)2
+ 1− n + 1

n

= n

(
1
n

)2
+ 1− n + 1

n

= 1
n

+ 1− n + 1
n

= 0.

A présent, si i ̸= j, alors on obtient par définition de f que :

f(ei, ej) =
n∑

k=0
⟨ei, ek⟩⟨ej , ek⟩ −

n + 1
n
⟨ei, ej⟩.

D’après les questions précédentes, on sait que ⟨ei, ek⟩ est égal à 1 si k = i et à − 1
n si k ̸= i. Dès lors,

il s’ensuit que, pour tout (i, j) ∈ J1, nK2 tel que i ̸= j :

f(ei, ej) =
∑

0≤k≤n, k ̸=i,j

⟨ei, ek⟩⟨ej , ek⟩+ ⟨ei, ei⟩⟨ej , ei⟩+ ⟨ei, ej⟩⟨ej , ej⟩ −
n + 1

n
⟨ei, ej⟩

=
∑

0≤k≤n, k ̸=i,j

(
− 1

n

)2
+
(

1×− 1
n

)
+
(
− 1

n
× 1
)
−
(

n + 1
n
×− 1

n

)

= (n− 1)
(

1
n

)2
− 1

n
− 1

n
+ n + 1

n2

= n− 1 + n + 1
n2 − 2

n
= 0.

Par conséquent, on en déduit que, pour tout (i, j) ∈ J1, nK2 :

f(ei, ej) = 0.

(c) Montrons que, pour tout (x, y) ∈ F × F , on a :
n∑

k=0
⟨x, ek⟩⟨y, ek⟩ = n + 1

n
⟨x, y⟩.

Au vu de l’expression de f , il suffit de montrer que f(x, y) = 0. Pour ce faire, considérons deux vec-
teurs quelconques x, y de F . D’après la question (2)(d) de la deuxième partie, on sait que (e1, ..., en)
est une base de F . Dès lors, il existe des réels a1, ..., an, b1, ..., bn tels que :

x =
n∑

i=1
aiei et y =

n∑
j=1

bjej .

Comme f est bilinéaire d’après la question (3)(a), on trouve avec la question précédente que :

f(x, y) = f

 n∑
i=1

aiei,

n∑
j=1

bjej

 =
n∑

i=1

n∑
j=1

aibjf (ei, ej) =
n∑

i=1

n∑
j=1

aibj × 0 = 0.

Par conséquent, on en déduit que, pour tout (x, y) ∈ F × F :

n∑
k=0
⟨x, ek⟩⟨y, ek⟩ = n + 1

n
⟨x, y⟩.
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(d) Montrons que, pour tout x ∈ F , on a :

∥x∥2 = n

n + 1

n∑
k=0
⟨x, ek⟩2.

Partant du résultat de la question précédente, on trouve en prenant x = y que :
n∑

k=0
⟨x, ek⟩2 =

n∑
k=0
⟨x, ek⟩⟨x, ek⟩ = n + 1

n
⟨x, x⟩ = n + 1

n
∥x∥2.

Par conséquent, on en déduit en multipliant cette égalité par n
n+1 que, pour tout x ∈ F :

∥x∥2 = n

n + 1

n∑
k=0
⟨x, ek⟩2.

Corrigé de l’exercice 2. Un mobile se déplace aléatoirement sur un axe dont l’origine est le point O
d’abscisse 0. Au départ (instant 0), le mobile est situé sur le point O. Le mobile se déplace selon la règle
suivante : à l’instant n ∈ N∗, il se place de façon équiprobable sur les points d’abscisses 0, 1, ..., n. Pour
tout entier naturel n, on note Xn l’abscisse de ce point à l’instant n (on a donc X0 = 0). On admet que,
pour tout entier naturel n, Xn est une variable aléatoire définie sur un espace probabilisé (Ω,A, P ) que l’on
cherchera pas à déterminer. On admet aussi que (Xn)n∈N est une suite de variables aléatoires mutuellement
indépendantes.

(1) (a) Déterminons la loi de Xn pour tout entier n ̸= 0. Comme le mobile se place de façon équiprobable
sur les points d’abscisses 0, 1, ..., n à l’instant n et que Xn est la position du mobile à l’instant n, il
s’ensuit que :

Xn ↪→ U(J0, nK).

(b) Montrons que, pour tout n ∈ N∗, Xn admet une espérance et une variance et donnons-les. Comme
Xn suit la loi uniforme sur J0, nK d’après ce qui précède, il s’ensuit d’après le cours que :

Xn admet une espérance et une variance et de plus : E(Xn) = n

2 , V (Xn) = n(n + 2)
12 .

(2) On note Y le rang du premier retour à l’origine du mobile et on admet que Y est une variable aléatoire
définie elle aussi sur (Ω,A, P ).
(a) Exprimons l’événement [Y = n] à l’aide de X1, ..., Xn pour tout n ∈ N∗. Par définition, l’événement

[Y = n] est réalisé si et seulement si le mobile ne revient à l’origine qu’à l’instant n et jamais
auparavant, c’est-à-dire si les événements [X1 ̸= 0], ..., [Xn−1 ̸= 0], [Xn = 0] sont simultanément
réalisés, et donc :

[Y = n] = [X1 ̸= 0] ∩ ... ∩ [Xn−1 ̸= 0] ∩ [Xn = 0].

(b) Montrons que la loi de Y est définie par : ∀n ∈ N∗, P (Y = n) = 1
n(n+1) . Remarquons tout d’abord

que Y ne peut prendre que des valeurs entières > 0 par construction, et donc Y (Ω) ⊂ N∗. De
plus, comme Xk ↪→ U(J0, kK) pour tout k ∈ J1, n− 1K et que les variables aléatoires X1, ..., Xn sont
indépendantes par hypothèse, on voit que, pour tout n ∈ N∗ :

P (Y = n) = P ([X1 ̸= 0] ∩ ... ∩ [Xn−1 ̸= 0] ∩ [Xn = 0])

= P ([X1 ̸= 0])...P ([Xn−1 ̸= 0])P ([Xn = 0])

= (1− P ([X1 = 0])) ... (1− P ([Xn−1 = 0])) P ([Xn = 0])

=
(

1− 1
1 + 1

)
...

(
1− 1

n

)
1

n + 1

=
(

1
2

)(
2
3

)
...

(
n− 1

n

)
1

n + 1 .

Dès lors, ceci entraine par télescopage que, pour tout n ∈ N∗ :

P (Y = n) = 1
n(n + 1) .
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Comme toutes ces probabilités sont non nulles, il s’ensuit que Y (Ω) = N∗. Par conséquent :

la loi de Y est donnée par : ∀n ∈ N∗, P (Y = n) = 1
n(n + 1) .

(c) Vérifions par le calcul que l’on a :
∑+∞

n=1 P (Y = n) = 1. Comme 1
n(n+1) = 1

n−
1

n+1 pour tout n ∈ N∗,
on trouve par télescopage que, pour tout p ∈ N∗ :

p∑
n=1

P (Y = n) =
p∑

n=1

1
n(n + 1) =

p∑
n=1

1
n
− 1

n + 1 = 1− 1
p + 1 .

Comme le terme de droite dans l’égalité ci-dessus tend vers 1 quand p tend vers +∞, on a :
+∞∑
n=1

P (Y = n) = lim
p→+∞

p∑
n=1

P (Y = n) = 1.

Par conséquent, on en déduit que :
+∞∑
n=1

P (Y = n) = 1.

(d) Montrons que la variable aléatoire Y n’admet pas d’espérance. Par définition, la variable aléatoire Y
admet une espérance si et seulement si la série

∑
n≥1 nP (Y = n) converge absolument, c’est-à-dire

converge (puisqu’elle est à termes positifs). Or, pour tout n ∈ N∗, on voit que :

nP (Y = n) = n× 1
n(n + 1) = 1

n + 1 .

Comme la série harmonique diverge d’après le cours, on obtient par décalage que la série
∑

n≥1
1

n+1
diverge, et donc

∑
n≥1 nP (Y = n) diverge aussi. Par conséquent, on en déduit que :

la variable aléatoire Y n’admet pas d’espérance.

(3) (a) Montrons que, pour tout k ∈ N∗, on a : 1
k+1 ≤ ln(k + 1) − ln(k) ≤ 1

k . Comme la fonction ln est
continue sur [k, k + 1] et dérivable sur ]k, k + 1[ pour tout k ∈ N∗, le théorème des accroissements
finis entraine l’existence d’un réel c ∈]k, k + 1[ tel que :

ln(k + 1)− ln(k) = ln(k + 1)− ln(k)
k + 1− k

= 1
c

.

Comme k < c < k + 1, on voit que 1
k+1 ≤

1
c ≤

1
k , et donc on a pour tout k ∈ N∗ :

1
k + 1 ≤ ln(k + 1)− ln(k) ≤ 1

k
.

(b) Montrons que : ∀j ≥ 2, ln(j) ≤
∑j−1

k=1
1
k ≤ ln(j) + 1− 1

j . Par sommation sur k de l’égalité ci-dessus,
on trouve que, pour tout j ≥ 2 :

j−1∑
k=1

1
k + 1 ≤

j−1∑
k=1

ln(k + 1)− ln(k) ≤
j−1∑
k=1

1
k

.

Par télescopage, ceci nous donne que, pour tout j ≥ 2 :
j−1∑
k=1

1
k + 1 ≤ ln(j)− ln(1) ≤

j−1∑
k=1

1
k

.

En effectuant le changement d’indice l = k + 1 dans la somme de gauche et sachant que ln(1) = 0,
il vient que, pour tout j ≥ 2 :

j∑
l=2

1
l
≤ ln(j) ≤

j−1∑
k=1

1
k

.

A noter que l’on peut réécrire cet encadrement sous la forme suivante, pour tout j ≥ 2 :
j−1∑
k=1

1
k
− 1 + 1

j
≤ ln(j) ≤

j−1∑
k=1

1
k

.
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En scindant cet encadrement en deux inégalités, on trouve que, pour tout j ≥ 2 :

j−1∑
k=1

1
k
− 1 + 1

j
≤ ln(j) et ln(j) ≤

j−1∑
k=1

1
k

.

En réécrivant la première inégalité, on obtient que, pour tout j ≥ 2 :

j−1∑
k=1

1
k
≤ ln(j) + 1− 1

j
et ln(j) ≤

j−1∑
k=1

1
k

.

En rassemblant à nouveau ces deux inégalités, on en déduit que, pour tout j ≥ 2 :

ln(j) ≤
j−1∑
k=1

1
k
≤ ln(j) + 1− 1

j
.

(c) Montrons que :
∑j−1

k=1
1
k ∼

j→+∞
ln(j). Partant de l’encadrement de la question précédente, on obtient

par division que, pour tout j ≥ 2 :

1 ≤
∑j−1

k=1
1
k

ln(j) ≤ 1 + 1
ln(j) −

1
j ln(j) .

Comme 1
ln(j) et 1

j ln(j) tendent vers 0 quand j tend vers +∞, il s’ensuit d’après le théorème des
gendarmes que : ∑j−1

k=1
1
k

ln(j) −→
j→+∞

1.

Par conséquent, on en déduit que :

j−1∑
k=1

1
k
∼

j→+∞
ln(j).

(4) On note Z le rang du deuxième retour à l’origine du mobile et on admet que Z est une variable aléatoire
définie elle aussi sur (Ω,A, P ).

(a) Déterminons pour tout i ≥ j la probabilité P[Y =i](Z = j). Pour ce faire, supposons que l’événement
[Y = i] soit réalisé. Alors le premier retour à l’origine se fait à l’instant i, et il est impossible que le
deuxième se fasse à un instant j ≤ i. Par conséquent, on en déduit que :

∀i ≥ j, P[Y =i](Z = j) = 0.

(b) Etablissons que, pour tout i ≤ j − 1, on a : P[Y =i](Z = j) = i+1
j(j+1) . Pour ce faire, on commence

par exprimer l’événement [Y = i] ∩ [Z = j] à l’aide de X1, ..., Xj . Par définition, l’événement
[Y = i]∩[Z = j] est réalisé si et seulement si le mobile revient une première fois à l’origine à l’instant
i, puis ne repasse pas par l’origine aux instants i+1, ..., j−1 et enfin revient à l’origine à l’instant j,
c’est-à-dire si les événements [X1 ̸= 0], ..., [Xi−1 ̸= 0], [Xi = 0], [Xi+1 ̸= 0], ..., [Xj−1 ̸= 0], [Xj = 0]
sont simultanément réalisés, et donc :

[Y = i] ∩ [Z = j] =
i−1⋂
k=1

[Xk ̸= 0] ∩ [Xi = 0] ∩
j−1⋂

k=i+1
[Xk ̸= 0] ∩ [Xj = 0].
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Comme Xk ↪→ U(J0, kK) pour tout k ∈ Ji + 1, jK et que les variables aléatoires X1, ..., Xj sont
indépendantes par hypothèse, on voit que, pour tout i ≤ j − 1 :

P ([Y = i] ∩ [Z = j]) = P

(
i−1⋂
k=1

[Xk ̸= 0] ∩ [Xi = 0] ∩
j−1⋂

k=i+1
[Xk ̸= 0] ∩ [Xj = 0]

)

=
i−1∏
k=1

P ([Xk ̸= 0])P ([Xi = 0])
j−1∏

k=i+1
P ([Xk ̸= 0])P ([Xj = 0])

= P ([Y = i])
j−1∏

k=i+1
P ([Xk ̸= 0])P ([Xj = 0])

= P ([Y = i])
j−1∏

k=i+1
(1− P ([Xk = 0])) P ([Xj = 0])

= P ([Y = i])
j−1∏

k=i+1

(
1− 1

k + 1

)
1

j + 1

= P ([Y = i])
j−1∏

k=i+1

(
k

k + 1

)
1

j + 1 .

Dès lors, ceci entraine par télescopage que, pour tout i ≤ j − 1 :

P ([Y = i] ∩ [Z = j]) = P ([Y = i])
(

i + 1
j

)
1

j + 1 = P ([Y = i]) i + 1
j(j + 1) .

En particulier, ceci nous donne après division que, pour tout i ≤ j − 1 :

P[Y =i](Z = j) = P ([Y = i] ∩ [Z = j])
P ([Y = i]) = i + 1

j(j + 1) .

Par conséquent, on en déduit que, pour tout i ≤ j − 1 :

P[Y =i](Z = j) = i + 1
j(j + 1) .

(c) Ecrivons pour tout entier j ≥ 2 la probabilité P (Z = j) comme une somme finie. D’après la
formule des probabilités totales appliquée à l’événement [Z = j] et au système complet d’événements
([Y = i])i∈N∗ , on trouve que, pour tout j ≥ 2 :

P (Z = j) =
+∞∑
i=1

P (Y = i)P[Y =i](Z = j).

Comme P[Y =i](Z = j) = 0 pour tout i ≥ j d’après la question (4)(a), on a pour tout j ≥ 2 :

P (Z = j) =
j−1∑
i=1

P (Y = i)P[Y =i](Z = j).

Comme P[Y =i](Z = j) = i+1
j(j+1) et P (Y = i) = 1

i(i+1) pour tout i ≤ j−1 d’après les questions (2)(b)
et (4)(b), on trouve que, pour tout j ≥ 2 :

P (Z = j) =
j−1∑
i=1

1
i(i + 1) ×

i + 1
j(j + 1) .

Par conséquent, on en déduit après simplification que, pour tout j ≥ 2 :

P (Z = j) = 1
j(j + 1)

j−1∑
i=1

1
i
.
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(d) Montrons que la variable Z n’admet pas d’espérance. D’après la question (3)(c), on sait que :

j−1∑
k=1

1
k
∼

j→+∞
ln(j).

Comme un polynôme est équivalent au voisinage de +∞ à son terme de plus haut degré, on voit
que j(j + 1) ∼+∞ j2. Dès lors, on trouve d’après les règles de calcul des équivalents et la question
précédente que :

jP (Z = j) = j

j(j + 1)

j−1∑
i=1

1
i
∼

j→+∞

j ln(j)
j2 ∼

j→+∞

ln(j)
j

.

Comme jP (Z = j) > 0 pour tout j ≥ 2, les séries
∑

j≥2 jP (Z = j) et
∑

j≥2
ln(j)

j sont de même
nature d’après le critère d’équivalence des séries à termes positifs. Par ailleurs, comme ln(j) tend
vers +∞ quand j tend vers +∞, on voit que :

1
j

=
j→+∞

o

(
ln(j)

j

)
.

Si la série
∑

j≥2
ln(j)

j à termes positifs convergeait, alors la série harmonique
∑

j≥2
1
j convergerait

aussi d’après le critère de négligeabilité, ce qui est impossible. Dès lors, la série
∑

j≥2
ln(j)

j diverge,
ce qui entraine la divergence de la série

∑
j≥2 jP (Z = j), et donc :

Z n’admet pas d’espérance.

(5) Informatique
On rappelle qu’en Python, la commande rd.randint(a,b+1) permet de simuler une variable aléatoire
suivant la loi uniforme à valeurs dans Ja, bK.

(a) Ecrivons une fonction en Python calculant et affichant la valeur de l’abscisse du mobile après son
n-ème déplacement lorsque la valeur de n est entrée au clavier par l’utilisateur. Pour ce faire, on
procèdera comme suit :

import numpy as np
import numpy.random as rd

def simul1(n):
x=rd.randint(0,n+1)
return x

(b) Complétons la fonction en Python suivante pour qu’elle permette d’afficher dans cet ordre les valeurs
prises par les variables aléatoires Y et Z.

import numpy as np
import numpy.random as rd

def simul2():
n=0
a=0
while a<2:

n=n+1
if rd.randint(0,n+1):

a=a+1
if a==1:

y=n
return ........

Pour ce faire, on procèdera comme suit :
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import numpy as np
import numpy.random as rd

def simul2():
n=0
a=0
while a<2:

n=n+1
if rd.randint(0,n+1)==0:

a=a+1
if a==1:

y=n
return y,n

Corrigé du problème 1.
Partie I : Etude d’un exemple

Dans cette partie, on considère les matrices A =

 4 0 0
−5 9 0
−5 5 4

 et I3 =

1 0 0
0 1 0
0 0 1

.

(1) Trouvons en fonction de I3 et de A deux matrices P1 et P2 de M3(R) telles que P1 + P2 = I3 et
4P1 + 9P2 = A, puis explicitons les coefficients de P1 et de P2. Partant des relations P1 + P2 = I3 et
4P1 + 9P2 = A, on obtient en multipliant la première par 4 que 4P1 + 4P2 = 4I3 et 4P1 + 9P2 = A. Par
différence, on trouve que 5P2 = A− 4I3, et donc :

P2 = 1
5A− 4

5I3.

De même, en multipliant la première relation par 9, on obtient que 9P1 + 9P2 = 9I3 et 4P1 + 9P2 = A.
Par différence, on trouve que 5P1 = −A + 9I3, et donc :

P1 = −1
5A + 9

5I3.

Par conséquent, on en déduit que :

P1 = −1
5A + 9

5I3 et P2 = 1
5A− 4

5I3.

Par des calculs simples, on trouve alors que :

P1 =

1 0 0
1 0 0
1 −1 1

 et P2 =

 0 0 0
−1 1 0
−1 1 0

 .

(2) (a) Calculons les matrices P 2
1 , P1P2, P2P1, P 2

2 . Par des calculs simples, on trouve que :

P 2
1 =

1 0 0
1 0 0
1 −1 1

1 0 0
1 0 0
1 −1 1

 =

1 0 0
1 0 0
1 −1 1

 = P1

P1P2 =

1 0 0
1 0 0
1 −1 1

 0 0 0
−1 1 0
−1 1 0

 =

0 0 0
0 0 0
0 0 0

 = 0

P2P1 =

 0 0 0
−1 1 0
−1 1 0

1 0 0
1 0 0
1 −1 1

 =

0 0 0
0 0 0
0 0 0

 = 0

P 2
2 =

 0 0 0
−1 1 0
−1 1 0

 0 0 0
−1 1 0
−1 1 0

 =

 0 0 0
−1 1 0
−1 1 0

 = P2.

.

Par conséquent, on en déduit que :

P 2
1 = P1 , P1P2 = 0 , P2P1 = 0 , P 2

2 = P2.
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(b) Montrons par récurrence la propriété P définie pour tout k ∈ N par :
P(k) : ”Ak = 4kP1 + 9kP2”.

Tout d’abord, on voit que P(0) est vraie car, par construction de P1 et P2 :
A0 = I3 = P1 + P2 = 40P1 + 90P2.

A présent, supposons P(k) vraie et montrons que P(k + 1) l’est aussi. Par hypothèse de récurrence,
on sait que Ak = 4kP1 + 9kP2. Comme A = 4P1 + 9P2 par construction, ceci entraine que :

Ak+1 = AkA =
(
4kP1 + 9kP2

)
(4P1 + 9P2) = 4k+1P 2

1 + 9× 4kP1P2 + 4× 9kP2P1 + 9k+1P 2
2 .

Comme P 2
1 = P1, P1P2 = P2P1 = 0 et P 2

2 = P2 d’après la question précédente, on trouve que :
Ak+1 = 4k+1P 2

1 + 9× 4kP1P2 + 4× 9kP2P1 + 9k+1P 2
2 = 4k+1P1 + 9k+1P2,

et donc P(k + 1) est vraie. D’après le principe de récurrence, la propriété P est vraie à tout ordre
k ∈ N. Par conséquent, on en déduit que, pour tout k ∈ N :

Ak = 4kP1 + 9kP2.

(3) Trouvons une matrice B ∈M3(R), dont on explicitera les coefficients, telle que B2 = A. En s’inspirant
de la question précédente et en remarquant que

√
4 = 2 et

√
9 = 3, on peut supposer que B = 2P1 +3P2

vérifie la relation B2 = A. C’est ce que l’on va vérifier. Par des calculs simples, on trouve que :
B2 = B ×B = (2P1 + 3P2) (2P1 + 3P2) = 4P 2

1 + 6P1P2 + 6P2P1 + 9P 2
2 .

Comme P 2
1 = P1, P1P2 = P2P1 = 0 et P 2

2 = P2 d’après la question (2)(a), on obtient que :
B2 = 4P 2

1 + 6P1P2 + 6P2P1 + 9P 2
2 = 4P1 + 9P2 = A.

Par conséquent, on en déduit après calculs que :

la matrice B = 2P1 + 3P2 =

 2 0 0
−1 3 0
−1 1 2

 vérifie la relation : B2 = A.

(4) Déterminons les valeurs propres de A. Comme la matrice A est triangulaire inférieure, ses valeurs
propres sont ses coefficients diagonaux, et donc :

Sp(A) = {4, 9}

Dans toute la suite du problème, on désigne par E un R-espace vectoriel de dimension finie ≥ 1 et par
f un endomorphisme de E. On note e l’endomorphisme identité de E et 0̃ l’endomorphisme nul de E. On
suppose qu’il existe un entier m ≥ 1, des réels λ1, ..., λm deux à deux distincts et des endomorphismes non
nuls p1, ..., pm de E tels que : ∀k ∈ J0, mK, fk =

∑m
i=1 λk

i pi. Enfin, on considère les polynômes :

N : x 7−→
m∏

l=1
(x− λl) et pour tout i ∈ J1, mK, Mi : x 7−→

∏
1≤l≤m, l ̸=i

(x− λl) et Li = 1
Mi(λi)

Mi.

On admet que (P ×Q)(f) = P (f) ◦Q(f) pour tous P, Q ∈ R[x].

Partie II : Etude des puissances de f

(1) Montrons que, pour tout P ∈ Rm[x], on a : P (f) =
∑m

i=1 P (λi)pi. Comme P est un élément de Rm[x],
il existe des réels a0, a1, ..., am tels que P : x 7−→ a0 + a1x + ... + amxm. Dès lors, on obtient par
interversion des sommes que :

m∑
i=1

P (λi)pi =
m∑

i=1

(
m∑

k=0
akλk

i

)
pi =

m∑
k=0

ak

(
m∑

i=1
λk

i pi

)
.

Comme
∑m

i=1 λk
i pi = fk pour tout k ∈ J0, mK, il s’ensuit que :

m∑
i=1

P (λi)pi =
m∑

k=0
ak

(
m∑

i=1
λk

i pi

)
=

m∑
k=0

akfk = P (f).

Par conséquent, on en déduit que, pour tout P ∈ Rm[x] :

P (f) =
m∑

i=1
P (λi)pi.
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(2) Montrons l’égalité : N(f) = 0̃. Comme N : x 7−→
∏m

l=1(x− λl), le polynôme N est à coefficients réels
de degré m, et donc N appartient à Rm[x]. D’après la question précédente, on obtient que :

N(f) =
m∑

i=1
N(λi)pi.

Mais comme N(λi) = 0 pour tout i ∈ J1, mK par construction, il s’ensuit que :

N(f) =
m∑

i=1
0× pi = 0̃.

Par conséquent, on en déduit que :

N(f) = 0̃.

(3) (a) Montrons que, pour tout (i, j) ∈ J1, mK2, Li(λj) est égal à 1 si i = j et à 0 sinon. Pour ce faire, on
procède à une distinction de cas. Tout d’abord, si i = j, alors on trouve que :

Li(λj) = Li(λi) = 1
Mi(λi)

Mi(λi) = 1.

A présent, supposons que i ̸= j. Comme Mi : x 7−→
∏

1≤l≤m, l ̸=i(x− λl) et que i ̸= j, le réel λj est
racine de Mi, ce qui entraine que :

Li(λj) = 1
Mi(λi)

Mi(λj) = 1
Mi(λi)

× 0 = 0.

Par conséquent, on en déduit que, tout (i, j) ∈ J1, mK2 :

Li(λj) = 1 si i = j et Li(λj) = 0 si i ̸= j.

(b) Montrons que, pour tout i ∈ J1, mK, on a : Li(f) = pi. Comme Li = 1
Mi(λi) Mi et que Mi : x 7−→∏

1≤l≤m, l ̸=i(x− λl), le polynôme Li est à coefficients réels de degré m− 1, et donc Li appartient à
Rm[x]. D’après la question (1) de la partie II, on obtient que :

Li(f) =
m∑

j=1
Li(λj)pj .

Comme Li(λj) = 1 si i = j et Li(λj) = 0 si i ̸= j, il s’ensuit que :

Li(f) =
∑

1≤j≤m, j ̸=i

Li(λj)pj + Li(λi)pi =
∑

1≤j≤m, j ̸=i

0× pj + 1× pi = pi.

Par conséquent, on en déduit que, pour tout i ∈ J1, mK :

Li(f) = pi.

(4) (a) Montrons que : e =
∑m

i=1 pi. Comme fk =
∑m

i=1 λk
i pi pour tout k ∈ J0, mK, on a pour k = 0 que :

e = f0 =
m∑

i=1
λ0

i pi =
m∑

i=1
1× pi.

Par conséquent, on en déduit que :

e =
m∑

i=1
pi.

(b) Montrons que E est la somme des m sous-espaces vectoriels Im(p1), ....,Im(pm). Comme tous les
ensembles Im(pi) sont des sous-espaces vectoriels de E, on a clairement l’inclusion :

m∑
i=1

Im(pi) ⊂ E.

Par ailleurs, on obtient avec la question précédente que, pour tout x ∈ E :

x = e(x) =
(

m∑
i=1

pi

)
(x) =

m∑
i=1

pi(x).
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Comme pi(x) appartient à Im(pi) pour tout i ∈ J1, mK, on voit que x appartient à
∑m

i=1 Im(pi).
Comme ceci est vrai pour tout x ∈ E, il s’ensuit que :

E ⊂
m∑

i=1
Im(pi).

Par conséquent, on en déduit par double inclusion que :

E =
m∑

i=1
Im(pi).

(5) Soit i un élément de J1, mK.
(a) Vérifions que, pour tout x ∈ R : N(x) = Mi(λi)(x − λi)Li(x). Par des calculs simples, on trouve

que, pour tout x ∈ R :

N(x) =
m∏

l=1
(x− λl) = (x− λi)

∏
1≤l≤m, l ̸=i

(x− λl) = (x− λi)Mi(x).

Comme Li = 1
Mi(λi) Mi, on obtient que, pour tout x ∈ R :

N(x) = (x− λi)Mi(x) = (x− λi)×Mi(λi)×
1

Mi(λi)
Mi(x) = (x− λi)×Mi(λi)× Li(x).

Par conséquent, on en déduit que, pour tout x ∈ R :

N(x) = Mi(λi)(x− λi)Li(x).

(b) Montrons que : Im(pi) ⊂ ker(f −λie). D’après la question (2) de la partie II, on sait que N(f) = 0̃,
ce qui entraine avec la question précédente que :

Mi(λi)(f − λie) ◦ Li(f) = 0̃.

Comme Mi(λi) est un réel non nul, on obtient que :

(f − λie) ◦ Li(f) = 0̃.

Comme Li(f) = pi d’après la question (3)(b) de la partie II, on trouve que :

(f − λie) ◦ pi = 0̃.

Considérons un élément x de Im(pi). Alors il existe un élément y de E tel que pi(y) = x. Avec la
relation ci-dessus, on obtient que :

(f − λie)(x) = (f − λie)(pi(y)) = (f − λie) ◦ pi(y) = 0̃(y) = 0E ,

et donc x appartient à ker(f − λie). Comme ceci est vrai pour tout x ∈ Im(pi), on en déduit que :

Im(pi) ⊂ ker(f − λie).

(6) Montrons que f est diagonalisable, que les valeurs propres de f sont les réels λ1, ..., λm et que, pour
tout i ∈ J1, mK, le sous-espace propre de f associé à λi est égal à Im(pi). Tout d’abord, on peut
remarquer que Im(pi) ̸= {0E} pour tout i ∈ J1, mK, et ce car pi ̸= 0̃ pour tout i ∈ J1, mK par
hypothèse de départ. Comme Im(pi) ⊂ ker(f − λie) d’après la question précédente, on obtient que
ker(f − λie) ̸= {0E} pour tout i ∈ J1, mK, et donc les réels λ1, ..., λm sont valeurs propres de f .
On désigne alors par Eλ1(f), ..., Eλm(f) les sous-espaces propres associés respectivement aux valeurs
propres λ1, ..., λm. Comme Im(pi) ⊂ ker(f−λie) = Eλi(f) pour tout i ∈ J1, mK et que E =

∑m
i=1 Im(pi)

d’après la question (4)(b) de la partie II, on obtient que E ⊂
∑m

i=1 Eλi(f), et donc :

E =
m∑

i=1
Eλi

(f).

Comme les sous-espaces propres d’un endomorphisme sont toujours en somme directe, il s’ensuit que :

E =
m⊕

i=1
Eλi(f).

Par conséquent, on en déduit que :

f est diagonalisable et ses valeurs propres sont les réels λ1, ..., λm.
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A présent, fixons un indice i ∈ J1, mK. Comme Im(pi) ⊂ ker(f − λie) et que ker(f − λie) = Eλi
(f), on

voit que Im(pi) ⊂ Eλi(f). Réciproquement, considérons un élément x de Eλi(f). Comme f(x) = λix
et que pi = Li(f) d’après la question (3)(b) de la partie II, on voit d’après le cours que :

pi(x) = Li(f)(x) = Li(λi)x.

Comme pi est une application linéaire et que Li(λi) ̸= 0, ceci entraine que :

x = 1
Li(λi)

pi(x) = pi

(
1

Li(λi)
x

)
,

et donc le vecteur x appartient à Im(pi). Comme ceci est vrai pour tout x ∈ Eλi
(f), il s’ensuit que

Eλi(f) ⊂ Im(pi), et donc Eλi(f) = Im(pi) par double inclusion. Par conséquent, on en déduit que,
pour tout i ∈ J1, mK :

Eλi(f) = Im(pi).

(7) (a) Montrons que, pour tout (i, j) ∈ J1, mK2 tel que i ̸= j, on a : pi ◦ pj = 0̃. Pour ce faire, fixons deux
indices i, j ∈ J1, mK tels que i ̸= j. D’après la question (3)(a) de la partie II, on sait que Li(f) = pi

et Lj(f) = pj . Comme Mk : x 7−→
∏

1≤l≤m, l ̸=k(x − λl) et que Lk : x 7−→ 1
Mk(λk) Mk(x) pour tout

k ∈ J1, mK par définition, on trouve que, pour tout x ∈ R :

LiLj(x) = 1
Mi(λi)

Mi(x) 1
Mj(λj)Mj(x)

= 1
Mi(λi)Mj(λj)

∏
1≤l≤m, l ̸=i

(x− λl)
∏

1≤l≤m, l ̸=j

(x− λl)

= 1
Mi(λi)Mj(λj)

 ∏
1≤l≤m, l ̸=i,j

(x− λl)

 (x− λj)
∏

1≤l≤m, l ̸=j

(x− λl)

= 1
Mi(λi)Mj(λj)

 ∏
1≤l≤m, l ̸=i,j

(x− λl)

 ∏
1≤l≤m

(x− λl)

= 1
Mi(λi)Mj(λj)

 ∏
1≤l≤m, l ̸=i,j

(x− λl)

N(x).

En particulier, il existe un polynôme Q ∈ R[x] tel que LiLj = QN . Comme N(f) = 0̃ d’après la
question (2) de la partie II, il s’ensuit que :

pi ◦ pj = Li(f) ◦ Lj(f) = (LiLj)(f) = (QN)(f) = Q(f) ◦N(f) = Q(f) ◦ 0̃ = 0̃.

Par conséquent, on en déduit que, pour tout (i, j) ∈ J1, mK2 tel que i ̸= j :

pi ◦ pj = 0̃.

(b) Montrons que : ∀i ∈ J1, mK, pi ◦ pi = pi. Comme e =
∑m

i=1 pi d’après le résultat de la question
(4)(a), on trouve que, pour tout i ∈ J1, mK :

pi ◦ pi = pi ◦

e−
∑

1≤j≤m, j ̸=i

pj

 = pi ◦ e−
∑

1≤j≤m, j ̸=i

pi ◦ pj .

Comme pi ◦ e = pi et que pi ◦ pj = 0̃ pour tout (i, j) ∈ J1, mK2 tel que i ̸= j d’après la question
précédente, il s’ensuit que :

pi ◦ pi = pi ◦ e−
∑

1≤j≤m, j ̸=i

pi ◦ pj = pi −
∑

1≤j≤m, j ̸=i

0̃ = pi.

Par conséquent, on en déduit que, pour tout i ∈ J1, mK :

pi ◦ pi = pi.
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(c) Etablissons que, pour tout i ∈ J1, mK, on a : pi ◦ f = λipi. Comme f =
∑m

j=1 λjpj par hypothèse de
départ, on trouve que, pour tout i ∈ J1, mK :

pi ◦ f = pi ◦

 m∑
j=1

λjpj

 =
m∑

j=1
λjpi ◦ pj .

Comme pi ◦ pi = pi pour tout i ∈ J1, mK et que pi ◦ pj = 0̃ pour tout (i, j) ∈ J1, mK2 tel que i ̸= j
d’après les questions précédentes, il s’ensuit que :

pi ◦ f =
∑

1≤j≤m, j ̸=i

λjpi ◦ pj + λipi ◦ pi = 0̃ + λipi.

Par conséquent, on en déduit que, pour tout i ∈ J1, mK :

pi ◦ f = λipi.

(8) Montrons tout d’abord par récurrence la propriété P définie pour tout k ∈ N par :

P(k) : ”fk =
m∑

i=1
λk

i pi”.

Tout d’abord, on voit que P(0), ...,P(m) sont vraies car fk =
∑m

i=1 λk
i pi pour tout k ∈ J0, mK par

hypothèse de départ. A présent, supposons P(k) vraie et montrons que P(k+1) l’est aussi. Par hypothèse
de récurrence, on sait que fk =

∑m
i=1 λk

i pi. Comme f =
∑m

j=1 λjpj par hypothèse de départ, ceci
entraine que :

fk+1 = fk ◦ f =
(

m∑
i=1

λk
i pi

) m∑
j=1

λjpj

 =
m∑

i=1

m∑
j=1

λk
i λjpi ◦ pj .

Comme pi ◦ pj = 0̃ pour tout (i, j) ∈ J1, mK2 tel que i ̸= j, et ce d’après la question (7)(a) de la partie
II, on obtient que :

fk+1 =
m∑

i=1

 m∑
j=1

λk
i λjpi ◦ pj

 =
m∑

i=1
λk

i λipi ◦ pi =
m∑

i=1
λk+1

i pi ◦ pi.

Comme pi ◦ pi = pi pour tout i ∈ J1, mK d’après la question (7)(b) de la partie II, on trouve que :

fk+1 =
m∑

i=1
λk+1

i pi ◦ pi =
m∑

i=1
λk+1

i pi,

et donc P(k+1) est vraie. D’après le principe de récurrence, la propriété P est vraie à tout ordre k ∈ N.
Par conséquent, on en déduit que, pour tout k ∈ N :

fk =
m∑

i=1
λk

i pi.

A présent, montrons que, pour tout P ∈ R[x] : P (f) =
∑m

i=0 P (λi)pi. Pour ce faire, on considère un
élément quelconque P de R[x]. Alors il existe des réels a0, a1, ..., an tels que P : x 7−→ a0+a1x+...+anxn.
Par interversion des sommes, on trouve que :

m∑
i=1

P (λi)pi =
m∑

i=1

(
n∑

k=0
akλk

i

)
pi =

n∑
k=0

ak

(
m∑

i=1
λk

i pi

)
.

Comme
∑m

i=1 λk
i pi = fk pour tout k ∈ N d’après ce qui précède, il s’ensuit que :

m∑
i=1

P (λi)pi =
n∑

k=0
ak

(
m∑

i=1
λk

i pi

)
=

n∑
k=0

akfk = P (f).

Par conséquent, on en déduit que, pour tout P ∈ R[x] :

P (f) =
m∑

i=1
P (λi)pi.
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Partie III : Intervention de produits scalaires

Dans cette partie, on munit le R-espace vectoriel d’un produit scalaire ⟨ , ⟩. On considère l’application
φ de E × E dans R définie pour tout (x, y) ∈ E × E par :

φ(x, y) =
m∑

i=1
⟨pi(x), pi(y)⟩.

(1) Montrons que φ est un produit scalaire sur E. Pour ce faire, on va vérifier que φ est une forme bilinéaire
symétrique définie positive :

Première étape : φ est symétrique.

En effet, comme ⟨ , ⟩ est symétrique, on a pour tous x, y ∈ E :

φ(y, x) =
m∑

i=1
⟨pi(y), pi(x)⟩ =

m∑
i=1
⟨pi(x), pi(y)⟩ = φ(x, y),

d’où il s’ensuit que φ est symétrique.

Deuxième étape : φ est bilinéaire.

En effet, comme ⟨ , ⟩ est bilinéaire et que pi est linéaire pour tout i ∈ J1, mK, on obtient par linéarité
de la somme que, pour tous x1, x2, y ∈ E et pour tous λ1, λ2 ∈ R :

φ(λ1x1 + λ2x2, y) =
m∑

i=1
⟨pi(λ1x1 + λ2x2), pi(y)⟩

=
m∑

i=1
⟨λ1pi(x1) + λ2pi(x2), pi(y)⟩

=
m∑

i=1
λ1⟨pi(x1), pi(y)⟩+ λ2⟨pi(x2), pi(y)⟩

= λ1

m∑
i=1
⟨pi(x1), pi(y)⟩+ λ2

m∑
i=1
⟨pi(x2), pi(y)⟩

= λ1φ(x1, y) + λ2φ(x2, y),

ce qui entraine que φ est linéaire à gauche, et donc bilinéaire par symétrie.

Troisième étape : φ est définie positive.

En effet, comme ⟨ , ⟩ est définie positive, on a pour tout x ∈ E :

φ(x, x) =
m∑

i=1
⟨pi(x), pi(x)⟩ =

m∑
i=1
∥pi(x)∥2 ≥ 0,

et donc φ est positive. De plus, si φ(x, x) = 0, alors on voit que ∥pi(x)∥2 = 0 pour tout i ∈ J1, mK
(car une somme de réels positifs est nulle si et seulement si chacun des réels est nul). En particulier,
on constate que ∥pi(x)∥ = 0 pour tout i ∈ J1, mK, et donc pi(x) = 0E pour tout i ∈ J1, mK d’après les
propriétés de la norme. Comme e =

∑m
i=1 pi d’après la question (4)(a) de la partie II, il s’ensuit que :

x = e(x) =
(

m∑
i=1

pi

)
(x) =

m∑
i=1

pi(x) =
m∑

i=1
0E = 0E ,

et donc φ est définie. En particulier, la forme bilinéaire φ est définie positive.

Par conséquent, on en déduit que :

φ est un produit scalaire sur E.
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(2) Montrons que, pour tous x, y ∈ E, on a : φ(f(x), y) = φ(x, f(y)). Comme ⟨ , ⟩ est bilinéaire, on obtient
d’après la question (7)(c) de la partie II que, pour tous x, y ∈ E :

φ(f(x), y) =
m∑

i=1
⟨pi(f(x)), pi(y)⟩

=
m∑

i=1
⟨(pi ◦ f)(x), pi(y)⟩

=
m∑

i=1
⟨λipi(x), pi(y)⟩

=
m∑

i=1
⟨pi(x), λipi(y)⟩

=
m∑

i=1
⟨pi(x), (pi ◦ f)(y)⟩

= φ(x, f(y)).

Par conséquent, on en déduit que, pour tous x, y ∈ E :

φ(f(x), y) = φ(x, f(y)).

2. Sujet type HEC-ESSEC Maths I

Corrigé du problème 2. Ce problème étudie quelques propriétés des endomorphismes cycliques d’un espace
vectoriel E de dimension finie, ainsi que la décomposition de Frobenius d’un élément de L(E). Dans tout le
problème :

— n est un entier ≥ 2 ;
— E est un espace vectoriel de dimension n ;
— L(E) désigne l’ensemble des endomorphismes de E ;
— on rappelle qu’une homothétie est une application du type λIdE , où λ ∈ R ;
— un sous-espace vectoriel F de E est dit stable par un endomorphisme u de E si, pour tout x ∈ F , on

a u(x) ∈ F . On note alors u|F l’endomorphisme de F défini pour tout x ∈ F par u|F (x) = u(x). Cet
endomorphisme est appelé l’endomorphisme de F induit par u ;

— si u est un endomorphisme de E et si e est un vecteur de E, on note Eu(e) le sous-espace vectoriel de
E défini par :

Eu(e) = Vect
(
uk(e)|k ∈ J0, n− 1K

)
= Vect

(
e, u(e), ..., un−1(e)

)
.

Si k ∈ N∗, on note B(e, k) la famille
(
e, u(e), ..., uk−1(e)

)
.

— on dit qu’un endomorphisme u de E est cyclique s’il existe e ∈ E tel que E = Eu(e) ; on considèrera
qu’en dimension 1, tout endomorphisme est cyclique ;

— soit A ∈ Mn(R) ; on dit que A est une matrice de Frobenius ou matrice compagnon s’il existe
des réels a0, ..., an−1 tels que :

A =



0 0 · · · · · · 0 0 a0
1 0 · · · · · · 0 0 a1

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 0 an−2

0 0 · · · · · · 0 1 an−1


,

et de plus, le polynôme PA : x 7−→ xn − an−1xn−1 − ... − a1x − a0 est appelé le polynôme caracté-
ristique de A ;
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— on dit qu’un endomorphisme u de E est nilpotent s’il existe un entier k ≥ 1 tel que uk = 0. Dans ce
cas, r = min{k ∈ N∗| uk = 0} est appelé l’indice de nilpotence de u ;

— enfin, on admet que toute partie non vide et majorée A de N admet un plus grand élément (∗) ; cet
élément est appelé le maximum de A et noté max{k ∈ A}.

Le problème comporte trois parties. Dans la première partie, on étudie les premières propriétés des endomor-
phismes cycliques et on traite quelques exemples. Dans la seconde partie, on étudie le cas des endomorphismes
diagonalisables et nilpotents. Enfin, dans la troisième partie, on obtient une décomposition d’un endomor-
phisme, appelée décomposition de Frobenius, et on en déduit quelques propriétés élémentaires ; on montre
en particulier que toute matrice carrée est semblable à sa transposée.

Partie I : Premières propriétés.

Soit u un endomorphisme de E et soit e un vecteur non nul de E.

Section A : Etude des sous-espaces Eu(e).

(1) Justifions que la famille B(e, n + 1) est liée. Par définition, on voit que B(e, n + 1) = (e, u(e), ..., un(e)),
et donc la famille B(e, n + 1) compte n + 1 éléments. Mais comme dim(E) = n, cette famille ne peut
pas être libre, et donc :

la famille B(e, n + 1) est liée.

(2) On pose d(e) = max{k ∈ N∗| B(e, k) est libre}. Justifions l’existence de d(e). Pour ce faire, on pose :
A = {k ∈ N∗| B(e, k) est libre}.

Comme e ̸= 0, la famille B(e, 1) = (e) est formée d’un seul vecteur non nul. En particulier, elle est
libre et l’ensemble A est non vide car il contient l’entier 1. De plus, on voit par définition que B(e, k) =(
e, u(e), ..., uk−1(e)

)
, et donc la famille B(e, k) compte k éléments. Dès lors, comme dim(E) = n, cette

famille ne peut pas être libre si k ≥ n + 1, et donc l’ensemble A est majoré par n. Mais comme toute
partie non vide et majorée A de N admet un plus grand élément, on en déduit que :

d(e) = max{k ∈ N∗| B(e, k) est libre} existe.

(3) Montrons tout d’abord qu’il existe des scalaires a0, a1, ..., ad(e)−1 tels que :

ud(e)(e) = a0e + a1u(e) + ... + ad(e)−1ud(e)−1(e) =
d(e)−1∑

i=0
aiu

i(e).

Par définition, d(e) est le plus grand entier k tel que la famille B(e, k) soit libre. Comme d(e)+1 > d(e),
on voit en particulier que la famille B(e, d(e)+1) n’est pas libre, et donc il existe des réels b0, b1, ..., bd(e)
non tous nuls tels que :

b0e + b1u(e) + ... + bd(e)−1ud(e)−1(e) + bd(e)u
d(e)(e) = 0.

Si bd(e) était égal à 0, alors on aurait :

b0e + b1u(e) + ... + bd(e)−1ud(e)−1(e) = 0,

et donc b0 = b1 = ... = bd(e)−1 = 0 car la famille B(e, d(e)) est libre. En particulier, tous les bi seraient
nuls, ce qui est impossible car ils sont non tous nuls par hypothèse. Dès lors, on voit que bd(e) ̸= 0, et
on obtient avec la relation précédente que :

ud(e)(e) = − b0

bd(e)
e− b1

bd(e)
u(e)− ...−

bd(e)−1

bd(e)
ud(e)−1(e).

Si l’on pose ai = − bi

bd(e)
pour tout i ∈ J0, d(e)− 1K, alors on vient de montrer que :

∃a0, ..., ad(e)−1 ∈ R, ud(e)(e) = a0e + a1u(e) + ... + ad(e)−1ud(e)−1(e).

A présent, montrons par récurrence la propriété P définie pour tout entier k ≥ d(e) par :

P(k) : ”le vecteur uk(e) est combinaison linéaire des vecteurs de
(

e, u(e), ..., ud(e)−1(e)
)

”.

Tout d’abord, on voit que P(d(e)) est vraie d’après ce qui précède. A présent, supposons la propriété
P(k) vraie pour un certain entier k ≥ d(e), et montrons que P(k + 1) est aussi vraie. Par hypothèse de
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récurrence, on sait que le vecteur uk(e) est combinaison linéaire des vecteurs e, u(e), ..., ud(e)−1(e), et
donc il existe des réels c0, c1, ..., cd(e)−1 tels que :

uk(e) = c0e + c1u(e) + ... + cd(e)−1ud(e)−1(e).

Fixons des réels a0, a1, ..., ad(e)−1 tels que ud(e)(e) = a0e + a1u(e) + ... + ad(e)−1ud(e)−1(e). Par linéarité
de u, on trouve que :
uk+1(e) = u

(
c0e + c1u(e) + ... + cd(e)−1ud(e)−1(e)

)
= c0u(e) + c1u2(e) + ... + cd(e)−2ud(e)−1(e) + cd(e)−1ud(e)(e)

= c0u(e) + c1u2(e) + ... + cd(e)−2ud(e)−1(e) + cd(e)−1
(
a0e + a1u(e) + ... + ad(e)−1ud(e)−1(e)

)
= cd(e)−1a0e + (c0 + cd(e)−1a1)u(e) + (c1 + cd(e)−1a2)u2(e) + ... + (cd(e)−2 + cd(e)−1ad(e)−1)ud(e)−1(e),

d’où il s’ensuit que uk+1(e) est combinaison linéaire des vecteurs e, u(e), ..., ud(e)−1(e), et donc P(k +1)
est vraie. D’après le principe de récurrence, la propriété P est vraie à tout ordre k ≥ d(e), et donc on
a pour tout k ≥ d(e) :

uk(e) est combinaison linéaire des vecteurs e, u(e), ..., ud(e)−1(e).

Enfin, montrons que B(e, d(e)) est une base de Eu(e). Pour tout k ∈ J0, d(e)− 1K, le vecteur uk(e) est
un élément de B(e, d(e)), et donc il appartient à Vect(B(e, d(e))). De plus, on sait d’après ce qui précède
que, pour tout k ≥ d(e), le vecteur uk(e) appartient à Vect(B(e, d(e))). En d’autres termes, on voit que,
pour tout k ∈ N, le vecteur uk(e) appartient à Vect(B(e, d(e))). En particulier, on a l’inclusion suivante
par définition de Eu(e) :

Eu(e) = Vect
(
uk(e)|k ∈ J0, n− 1K

)
⊂ Vect (B(e, d(e))) .

Comme de plus tout élément de B(e, d(e)) appartient au sous-espace vectoriel Eu(e), on a aussi :
Vect (B(e, d(e))) ⊂ Eu(e).

Par double inclusion, il s’ensuit que :
Eu(e) = Vect (B(e, d(e))) .

En particulier, la famille B(e, d(e)) est génératrice de Eu(e). Mais comme elle est libre par définition
de d(e), on en déduit que :

B(e, d(e)) est une base de Eu(e).

(4) Montrons tout d’abord que Eu(e) est stable par l’endomorphisme u. Pour ce faire, considérons un
vecteur x de Eu(e). D’après la question précédente, on sait que B(e, d(e)) est une base de Eu(e), et
donc il existe des réels a0, ..., ad(e)−1 tels que :

x = c0e + c1u(e) + ... + cd(e)−1ud(e)−1(e).
De plus, toujours d’après la question précédente, il existe des réels a0, ..., ad(e)−1 tels que :

ud(e)(e) = a0e + a1u(e) + ... + ad(e)−1ud(e)−1(e).
Par linéarité de u, on trouve que :
u(x) = u

(
c0e + c1u(e) + ... + cd(e)−1ud(e)−1(e)

)
= c0u(e) + c1u2(e) + ... + cn−2un−1(e) + cd(e)−1ud(e)(e)

= c0u(e) + c1u2(e) + ... + cd(e)−2ud(e)−1(e) + cd(e)−1
(
a0e + a1u(e) + ... + ad(e)−1ud(e)−1(e)

)
= cd(e)−1a0e + (c0 + cd(e)−1a1)u(e) + (c1 + cd(e)−1a2)u2(e) + ... + (cd(e)−2 + cd(e)−1ad(e)−1)ud(e)−1(e),

En particulier, u(x) est combinaison linéaire des éléments de B(e, d(e)). Comme B(e, d(e)) est une base
de Eu(e), il s’ensuit que u(x) appartient à Eu(e). Mais comme ceci est vrai pour tout x ∈ Eu(e), on en
déduit que :

Eu(e) est stable par u.

Montrons à présent que tout sous-espace vectoriel F de E contenant e et stable par u contient Eu(e).
Par définition, si F est stable par u et contient e, il contient u(e). Par une récurrence facile, on peut



22

vérifier que F contient uk(e) pour tout k ∈ N. En particulier, F contient les vecteurs e, u(e), ..., un−1(e).
Mais comme F est un sous-espace vectoriel de E, il s’ensuit que :

Eu(e) = Vect
(
e, u(e), ..., un−1(e)

)
⊂ F.

Par conséquent, on en déduit que :

tout sous-espace vectoriel F stable par u et contenant e contient Eu(e).

(5) Déterminons à quelle condition nécessaire et suffisante portant sur l’entier d(e) le vecteur e est un
vecteur propre pour u. Tout d’abord, si e est vecteur propre de u pour une valeur propre λ, alors on
voit que u(e) = λe et e ̸= 0. D’après le cours, on constate que uk(e) = λke pour tout k ∈ N. En
particulier, tous les vecteurs uk(e) sont colinéaires à e pour tout k ≥ 1, et la famille B(e, k) est liée
pour tout k ≥ 2. De plus, si k = 1, alors la famille B(e, 1) = (e) est libre car elle est formée d’un seul
vecteur non nul. Dès lors, il s’ensuit par définition de d(e) que :

d(e) = max{k ∈ N∗| B(e, k) est libre} = 1.

Réciproquement, supposons que d(e) = 1. Par définition de d(e), la famille B(e, d(e) + 1) = B(e, 2) =
(e, u(e)) n’est pas libre, et donc les vecteurs e, u(e) sont colinéaires. Comme e ̸= 0 par hypothèse, il
existe un réel λ tel que u(e) = λe, et donc e est vecteur propre de u. Par conséquent, on en déduit que :

e est vecteur propre de u si et seulement si d(e) = 1.

(6) Montrons que u est une homothétie si et seulement si, pour tout vecteur non nul e de E, on a d(e) = 1.
Tout d’abord, supposons que u soit une homothétie. Alors il existe un réel λ tel que u = λIdE . En
particulier, on voit que u(e) = λe pour tout vecteur non nul e de E, et donc tout vecteur e ̸= 0 est
vecteur propre de u. D’après la question précédente, il s’ensuit que d(e) = 1 pour tout e de E \ {0}.

Réciproquement, supposons que d(e) = 1 pour tout vecteur e non nul de E. Fixons un base B =
(e1, ..., en) de E. D’après la question précédente et comme ei ̸= 0, le vecteur ei est vecteur propre de
u pour une certaine valeur propre λi, et ce pour tout i ∈ J1, nK. Fixons alors deux indices i, j ∈ J1, nK2

tels que i ̸= j. Comme ei + ej ̸= 0, il existe un réel λi,j tel que u(ei + ej) = λi,j(ei + ej). Par linéarité
de u, ceci nous donne que :

u(ei + ej) = λi,jei + λi,jej = u(ei) + u(ej) = λiei + λjej .

En particulier, on obtient que :

(λi,j − λi)ei + (λi,j − λj)ej = 0.

Comme B = (e1, ..., en) est une base de E et que i ̸= j, la famille (ei, ej) est libre comme sous-famille
d’une famille libre, et donc la relation précédente entraine que λi,j − λi = λi,j − λj = 0. En particulier,
on voit que λi = λj . Comme ceci est vrai pour tous i, j ∈ J1, nK2 tels que i ̸= j, tous les λi sont égaux
entre eux. Si l’on désigne par λ leur valeur commune, alors on voit que u(ei) = λei pour tout i ∈ J1, nK.
En particulier, les endomorphismes u et λIdE coincident sur la base B de E, d’où il s’ensuit qu’ils sont
égaux, et donc u est une homothétie. Par conséquent, on en déduit que :

u est une homothétie si et seulement si d(e) = 1 pour tout vecteur e non nul de E.

(7) Montrons que u est un endomorphisme cyclique si et seulement s’il existe un vecteur non nul e de E
tel que d(e) = n. Tout d’abord, supposons que u soit un endomorphisme cyclique. Alors il existe un
vecteur e ∈ E tel que E = Eu(e). En particulier, on voit que E = Vect(e, u(e), ..., un−1(e)), et donc
la famille B(e, n) est génératrice de E. Comme cette famille compte n éléments et que dim(E) = n,
B(e, n) est une base de E. En particulier, cette famille est libre, et donc e ̸= 0. De plus, on voit par
définition de d(e) que d(e) ≥ n. A noter que, comme B(e, k) compte k éléments et que dim(E) = n, la
famille B(e, k) ne peut pas être libre si k > n. Dès lors, ceci entraine que d(e) ≤ n, et donc d(e) = n.
En d’autres termes, on vient de montrer qu’il existait un vecteur e ̸= 0 tel que d(e) = n.

Etablissons à présent la réciproque. Pour ce faire, supposons qu’il existe un vecteur non nul e de E
tel que d(e) = n. Alors la famille B(e, n) est libre par définition de E. Comme cette famille compte n
éléments et que dim(E) = n, B(e, n) est une base de E. En particulier, cette famille est génératrice de
E, et donc on voit que :

Eu(e) = Vect
(
e, u(e), ..., un−1(e)

)
= Vect (B(e, n)) = E.

Comme Eu(e) = E, il s’ensuit que u est cyclique. Par conséquent, on en déduit que :

u est cyclique si et seulement s’il existe un vecteur non nul e de E tel que d(e) = n.
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Section B : Premières propriétés des endomorphismes cycliques.

On suppose dans cette section que u est un endomorphisme cyclique de E, et donc qu’il existe un vecteur
non nul e de E tel que E = Eu(e).

(1) On note A la matrice de u dans la base B(e, n) de E. Vérifions que A est une matrice de Frobenius.
D’après la question (3) de la partie I, section A, il existe des réels a0, a1, ..., ad(e)−1 tels que :

ud(e)(e) = a0e + a1u(e) + ... + ad(e)−1ud(e)−1(e).
Comme d(e) = n, ceci entraine que :

un(e) = a0e + a1u(e) + ... + an−1un−1(e).
En particulier, on voit que :

u(e) = 0× e + 1× u(e) + ... + 0× un−1(e)
u(u(e)) = u2(e) = 0× e + 0× u(e) + 1× u2(e) + ... + 0× un−1(e)
...
un(e) = u(un−1(e)) = a0 × e + a1 × u(e) + ... + an−1 × un−1(e)

.

En particulier, la matrice A de u dans la base B(e, n) de E est donnée par :

A =



0 0 · · · · · · 0 0 a0
1 0 · · · · · · 0 0 a1

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 0 an−2

0 0 · · · · · · 0 1 an−1


.

Par conséquent, on en déduit que :

A est une matrice de Frobenius.

(2) On note PA : x 7−→ xn−an−1xn−1− ...−a1x−a0 son polynôme caractéristique. Calculons (PA(u))(e).
Par définition, on voit que :
(PA(u))(e) =

(
un − an−1un−1 − ...− a1u− a0IdE

)
(e) = un(e)− an−1un−1(e)− ...− a1u(e)− a0e.

Mais comme un(e) = a0e + a1u(e) + ... + an−1un−1(e) d’après la question précédente, il s’ensuit que :

(PA(u))(e) = 0.

Calculons à présent (PA(u))
(
uk(e)

)
pour k ∈ J1, n− 1K. Comme PA(u) et uk sont deux polynômes en

le même endomorphisme u, ils commutent. Dès lors, par linéarité de u, on a pour tout k ∈ J1, n− 1K :

(PA(u))
(
uk(e)

)
= uk ◦ PA(u)(e) = uk (PA(u)(e)) = uk(0) = 0.

Par conséquent, on en déduit que, pour tout k ∈ J1, n− 1K :

(PA(u))
(
uk(e)

)
= 0.

Montrons enfin que PA est un polynôme annulateur de u. D’après les calculs précédents, on voit que
(PA(u))

(
uk(e)

)
= 0 pour tout k ∈ J0, n − 1K. En particulier, l’endomorphisme (PA(u)) est nul sur la

base B(e, n) de E, et donc c’est l’endomorphisme nul. Par conséquent, on en déduit que :

PA est un polynôme annulateur de u.

(3) Vérifions que la famille (IdE , u, ..., un−1) est libre dans L(E). Pour ce faire, considérons des réels
b0, ..., bn−1 tels que b0IdE + b1u + ... + bn−1un−1 = 0. En évaluant cette égalité sur le vecteur e,
on trouve que :(

b0IdE + b1u + ... + bn−1un−1) (e) = b0e + b1u(e) + ... + bn−1un−1(e) = 0(e) = 0.

Comme la famille B(e, n) est une base de E, elle est libre et la relation ci-dessus entraine que b0 = b1 =
... = bn−1 = 0. Par conséquent, on en déduit que :

(IdE , u, ..., un−1) est une famille libre.
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(4) Montrons que PA est un polynôme annulateur non nul de u de degré minimal. D’après la question (2)
de la partie I, section B, on sait déjà que PA est un polynôme annulateur non nul de u. Reste à vérifier
qu’il est de degré minimal. Pour ce faire, considérons un polynôme Q de degré ≤ n− 1. Par définition,
il existe des réels b0, ..., bn−1 tels que Q : x 7−→ b0 + b1x + ... + bn−1xn−1. Si l’on suppose que Q(u) = 0,
alors on trouve que :

Q(u) = b0IdE + b1u + ... + bn−1un−1 = 0.

Comme la famille (IdE , u, ..., un−1) est libre d’après la question précédente, il s’ensuit que b0 = b1 = ... =
bn−1 = 0, et donc Q est le polynôme nul. En d’autres termes, il n’existe pas de polynôme annulateur
non nul de u de degré ≤ n− 1. Par conséquent, on en déduit que :

PA est un polynôme annulateur non nul de degré minimal de u.

(5) Soit λ ∈ R. Montrons tout d’abord que λ est valeur propre de u si et seulement si λ est racine de PA.
D’après le cours, on sait que, si λ est valeur propre de u, alors λ est racine de tout polynôme annulateur
de u. En particulier, λ est racine de PA d’après la question précédente.

Réciproquement, supposons que λ soit racine de PA. Alors il existe un polynôme Q de Rn−1[x] tel
que PA(x) = (x − λ)Q(x) pour tout x ∈ R. A noter que, comme PA ̸= 0, on a Q ̸= 0. Comme PA est
annulateur de u, on trouve que :

PA(u) = (u− λIdE) ◦Q(u) = 0.

Raisonnons par l’absurde et supposons que λ ne soit pas une valeur propre de u. Alors l’endomorphisme
u− λIdE est injectif, et donc il est bijectif car E est de dimension finie. En particulier, on trouve que :

(u− λIdE)−1 ◦ (u− λIdE) ◦Q(u) = IdE ◦Q(u) = Q(u) = (u− λIdE)−1 ◦ 0 = 0.

Dès lors, il s’ensuit que Q est annulateur de u, mais ceci est impossible d’après la question précédente
car Q est non nul et de degré ≤ n− 1. En d’autres termes, on vient de montrer que, si λ est racine de
PA, alors λ est valeur propre de u. Par double implication, on en déduit que :

λ est valeur propre de u si et seulement si λ est racine de PA.

A présent, vérifions que le sous-espace propre de u associé à la valeur propre λ est de dimension 1.
Comme λ est valeur propre de u, on a dim(Eλ(u)) ≥ 1. De plus, comme le rang d’un endomorphisme
est égal à celui de sa matrice dans n’importe quelle base, on trouve que :

rg (u− λIdE) = rg (A− λIn) = rg





−λ 0 · · · · · · 0 0 a0
1 −λ · · · · · · 0 0 a1

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 −λ an−2

0 0 · · · · · · 0 1 an−1 − λ




.

Comme les (n − 1) premières colonnes de cette matrice forment une famille échelonnée, elles forment
une famille libre et le rang ci-dessus est ≥ n − 1. Dès lors, comme rg (u− λIdE) ≥ n − 1, on obtient
avec le théorème du rang que :

dim(Eλ(u)) = dim(ker(u− λIdE)) = n− rg (u− λIdE) ≤ n− (n− 1) = 1.

d’où il s’ensuit que dim(Eλ(u)) ≤ 1. Mais comme dim(Eλ(u)) ≥ 1, on en déduit que dim(Eλ(u)) = 1.
Par conséquent :

tout sous-espace propre de u est de dimension 1.

(6) Déterminons une caractérisation portant sur PA pour que u soit diagonalisable. D’après le cours, on
sait que, pour tout endomorphisme u de E :

u est diagonalisable ⇐⇒
∑

λ∈Sp(u)

dim(Eλ(u)) = n.

D’après la question précédente, on sait aussi que tous les sous-espaces propres de u sont de dimension
1. En particulier, l’équivalence ci-dessus se ramène à :

u est diagonalisable ⇐⇒
∑

λ∈Sp(u)

1 = card (Sp(u)) = n.
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En d’autres termes, u est diagonalisable si et seulement si son spectre compte n éléments. Mais comme
le spectre de u est exactement égal à l’ensemble des racines de PA d’après la question précédente, on
en déduit que, si u est un endomorphisme cyclique, alors :

u est diagonalisable si et seulement si PA admet n racines distinctes.

Section C : Un premier exemple.

Dans cette section, on suppose que E = R3 et on note B3 la base canonique de E. On note aussi f et g
les endomorphismes de E dont les matrices dans la base B3 sont respectivement :

F =

0 0 1
0 0 −1
1 −1 −1

 et G =

 1 −1 0
−1 1 0
0 0 2

 .

On admet que f est diagonalisable, et on notera λ1, λ2, λ3 avec λ1 ≤ λ2 ≤ λ3 les valeurs propres de f rangées
par ordre croissant.

(1) Déterminons une base de diagonalisation (V1, V2, V3) de f telle que, pour tout i ∈ J1, 3K, f(Vi) = λiVi et
telle que la première coordonnée de Vi dans la base B3 soit 1. Pour ce faire, on commence par calculer
les valeurs propres de f . Par définition :

λ ∈ Sp(f) ⇐⇒ rg(f − λIdR3) < 3 ⇐⇒ rg(F − λI3) < 3.

En d’autres termes, on voit que :

λ ∈ Sp(f) ⇐⇒ rg

−λ 0 1
0 −λ −1
1 −1 −1− λ

 < 3.

En permutant les lignes L1 et L3, on trouve que :

rg

−λ 0 1
0 −λ −1
1 −1 −1− λ

 = rg

 1 −1 −1− λ
0 −λ −1
−λ 0 1

 .

En effectuant l’opération élémentaire L3 ←− L3 + λL1, on obtient que :

rg

−λ 0 1
0 −λ −1
1 −1 −1− λ

 = rg

1 −1 −1− λ
0 −λ −1
0 −λ −λ2 − λ + 1

 .

Enfin, en effectuant l’opération élémentaire L3 ←− L3 − L2, on trouve que :

rg

−λ 0 1
0 −λ −1
1 −1 −1− λ

 = rg

1 −1 −1− λ
0 −λ −1
0 0 −λ2 − λ + 2

 .

En particulier, on voit que :

λ ∈ Sp(f) ⇐⇒ −λ = 0 ou λ2 + λ− 2 = 0

⇐⇒ λ = 0 ou (λ− 1)(λ + 2) = 0

⇐⇒ λ = 0 ou λ = 1 ou λ = −2

Par conséquent, on en déduit que Sp(f) = {−2, 0, 1}, et donc :

λ1 = −2, λ2 = 0, λ3 = 1.

A présent, calculons le sous-espace propre E−2(f). Par définition, si x est un vecteur de R3 et si X est
son vecteur colonne des coordonnées dans la base canonique de R3, on a :

x ∈ E−2(f) ⇐⇒ f(x) = −2x ⇐⇒ AX = −2X.

En d’autres termes, on voit que :

x ∈ E−2(f) ⇐⇒

0 0 1
0 0 −1
1 −1 −1

x1
x2
x3

 = −2

x1
x2
x3

 ,
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ce qui nous ramène à résoudre le système : 2x1 + x3 = 0
2x2 − x3 = 0

x1 − x2 + x3 = 0
.

En effectuant l’opération élémentaire L3 ←− 2L3 − L1, on trouve que : 2x1 + x3 = 0
2x2 − x3 = 0
−2x2 + x3 = 0

.

Enfin, en effectuant l’opération élémentaire L3 ←− L3 + L2, on obtient que : 2x1 + x3 = 0
2x2 − x3 = 0

0 = 0
.

Si l’on choisit x1 comme paramètre, on trouve que x1 = x1, x2 = −x1, x3 = −2x1, et donc :
x ∈ E−2(f) ⇐⇒ ∃x1 ∈ R, x = x1(1,−1,−2).

Dès lors, il s’ensuit que :
E−2(f) = Vect((1,−1,−2)).

Ensuite, calculons le sous-espace propre E0(f). Par définition et avec les mêmes notations que celles
utilisées plus haut, on a :

x ∈ E0(f) ⇐⇒ f(x) = 0 ⇐⇒ AX = 0.

En d’autres termes, on voit que :

x ∈ E0(f) ⇐⇒

0 0 1
0 0 −1
1 −1 −1

x1
x2
x3

 =

0
0
0

 ,

ce qui nous ramène à résoudre le système : x3 = 0
−x3 = 0

x1 − x2 − x3 = 0
.

Si l’on choisit x1 comme paramètre, on trouve que x1 = x1, x2 = x1, x3 = 0, et donc :
x ∈ E0(f) ⇐⇒ ∃x1 ∈ R, x = x1(1, 1, 0).

Dès lors, il s’ensuit que :
E0(f) = Vect((1, 1, 0)).

Enfin, calculons le sous-espace propre E1(f). Par définition, on voit que :
x ∈ E1(f) ⇐⇒ f(x) = x ⇐⇒ AX = X.

En d’autres termes, on voit que :

x ∈ E1(f) ⇐⇒

0 0 1
0 0 −1
1 −1 −1

x1
x2
x3

 =

x1
x2
x3

 ,

ce qui nous ramène à résoudre le système : −x1 + x3 = 0
−x2 − x3 = 0

x1 − x2 − 2x3 = 0
.

En effectuant l’opération élémentaire L3 ←− L3 + L1, on trouve que : −x1 + x3 = 0
−x2 − x3 = 0
−x2 − x3 = 0

.

Enfin, en effectuant l’opération élémentaire L3 ←− L3 − L2, on obtient que : −x1 + x3 = 0
−x2 − x3 = 0

0 = 0
.
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Si l’on choisit x1 comme paramètre, on trouve que x1 = x1, x2 = −x1, x3 = x1, et donc :
x ∈ E1(f) ⇐⇒ ∃x1 ∈ R, x = x1(1,−1, 1).

Dès lors, il s’ensuit que :
E1(f) = Vect((1,−1, 1)).

Par conséquent, on en déduit qu’une base de diagonalisation (V1, V2, V3) de f qui respecte les conditions
demandées est donnée par :

(V1, V2, V3) = ((1,−1,−2), (1, 1, 0), (1,−1, 1)).

(2) On pose V = V1 + V2 + V3. Déterminons tout d’abord d(V ). D’après la question précédente, on a :
V = (1,−1,−2) + (1, 1, 0) + (1,−1, 1) = (3,−1,−1).

Comme la famille B(V, k) compte k éléments et que dimR3 = 3, on voit que cette famille est liée pour
tout k ≥ 4, et donc d(V ) ≤ 3 par définition. De plus, par des calculs matriciels, on trouve que :0 0 1

0 0 −1
1 −1 −1

 3
−1
−1

 =

−1
1
5

 ,

et donc f(V ) = (−1, 1, 5). De même, on obtient que :0 0 1
0 0 −1
1 −1 −1

2 3
−1
−1

 =

0 0 1
0 0 −1
1 −1 −1

−1
1
5

 =

 5
−5
−7

 ,

et donc f2(V ) = (5,−5,−7). En particulier, on voit que :

rg(V, f(V ), f2(V )) = rg

 3 −1 5
−1 1 −5
−1 5 −7

 .

En échangeant les colonnes C1 et C2, on trouve que :

rg(V, f(V ), f2(V )) = rg

−1 3 5
1 −1 −5
−5 −1 −7

 .

En effectuant les opérations élémentaires C2 ←− C2 + 3C1 et C3 ←− C3 + 5C1 , on obtient que :

rg(V, f(V ), f2(V )) = rg

−1 0 0
1 2 0
−5 −16 −32

 = 3.

Comme rg(V, f(V ), f2(V )) = 3 = dimR3, la famille (V, f(V ), f2(V )) est génératrice de R3. Mais comme
cette famille compte 3 éléments et que dimR3 = 3, c’est une base de R3. En particulier, elle est libre
et d(V ) ≥ 3. Comme d(V ) ≤ 3 d’après ce qui précède, on en déduit que :

d(V ) = 3.

Comme d(V ) = 3, on en déduit aussi d’après la question (7) de la partie I, section (A) que :

l’endomorphisme f est cyclique.

(3) Déterminons un polynôme annulateur non nul de g de degré minimal. Par des calculs simples, on a :

G2 =

 1 −1 0
−1 1 0
0 0 2

2

=

 2 −2 0
−2 4 0
0 0 4

 = 2G.

En particulier, ceci nous donne que g2− 2g = 0, et donc P : x 7−→ x2− 2x est annulateur de g. A noter
que g n’admet pas de polynôme annulateur non nul de degré ≤ 1. Sinon, il existerait des réels a0, a1
non tous nuls tels que a0IdR3 + a1g = 0, ce qui entrainerait que a0I3 + a1G = 0, et donc les matrices I3
et G seraient colinéaires, ce qui n’est manifestement pas le cas ici vu la forme de G, d’où contradiction.
Par conséquent, on en déduit que :

P : x 7−→ x2 − 2x est un polynôme annulateur de g de degré minimal.

Montrons par l’absurde que l’endomorphisme g n’est pas cyclique. Pour ce faire, on suppose qu’il l’est.
D’après la question (7) de la partie I, section (A), il existe un vecteur e ̸= 0 tel que d(e) = 3. En
particulier, la famille B(e, g) = (e, g(e), g2(e)) est libre. Comme g2 = 2g d’après ce qui précède, on
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voit que g2(e) = 2g(e), et donc (e, g(e), g2(e)) = (e, g(e), 2g(e)). En particulier, cette famille ne peut
pas être libre car ses deux derniers vecteurs sont colinéaires, d’où contradiction. Par conséquent, on en
déduit que :

l’endomorphisme g n’est pas cyclique.

(4) Vérifions que (V1, V2, V3) est une base de vecteurs propres de g. Par des calculs matriciels élémentaires,
on trouve que :

G

 1
−1
−2

 =

 1 −1 0
−1 1 0
0 0 2

 1
−1
−2

 =

 2
−2
−4

 ,

et donc g(V1) = (2,−2,−4)) = 2V1. Comme de plus V1 ̸= (0, 0, 0), on voit que V1 est vecteur propre de
g pour la valeur propre 2. De même, on obtient que :

G

1
1
0

 =

 1 −1 0
−1 1 0
0 0 2

1
1
0

 =

0
0
0

 ,

et donc g(V2) = (0, 0, 0) = 0× V2. Comme de plus V2 ̸= (0, 0, 0), on voit que V2 est vecteur propre de g
pour la valeur propre 0. En outre, on trouve que :

G

 1
−1
1

 =

 1 −1 0
−1 1 0
0 0 2

 1
−1
1

 =

 2
−2
2

 ,

et donc g(V3) = (2,−2, 2) = 2V3. Comme de plus V3 ̸= (0, 0, 0), on voit que V1 est vecteur propre de
g pour la valeur propre 2. Par conséquent, comme (V1, V2, V3) est une base de R3 d’après les questions
précédentes, on en déduit que :

(V1, V2, V3) est une base de vecteurs propres de g.

Partie II : Etude de deux cas particuliers.

Section A : Endomorphismes diagonalisables qui sont cycliques.

Dans cette section, on considère un endomorphisme u de E et on suppose que u diagonalisable. On note
λ1, ..., λp une liste des valeurs propres distinctes de u.

(1) Etablissons que l’endomorphisme v = (u−λ1IdE)◦...◦(u−λpIdE) est l’endomorphisme nul. Pour ce faire,
considérons une base B = (e1, ..., en) de vecteurs propres de u (laquelle existe car u est diagonalisable).
Soit ei un vecteur de cette base et soit λki la valeur propre associée. Comme u(ei) = λkiei et que les
endomorphismes sont linéaires, on trouve que :

v(ei) = (u− λ1IdE) ◦ ... ◦ (u− λpIdE)(ei)

= (u− λ1IdE) ◦ ... ◦ (u− λki−1IdE) ◦ (u− λki+1IdE)... ◦ (u− λpIdE) ◦ (u− λkiIdE)(ei)

= (u− λ1IdE) ◦ ... ◦ (u− λki−1IdE) ◦ (u− λki+1IdE)... ◦ (u− λpIdE)(u(ei)− λki
ei)

= (u− λ1IdE) ◦ ... ◦ (u− λki−1IdE) ◦ (u− λki+1IdE)... ◦ (u− λpIdE)(0) = 0.

Comme ceci est vrai pour tout i ∈ J1, nK, l’endomorphisme v est nul sur la base B. Par conséquent, on
en déduit que :

(u− λ1IdE) ◦ ... ◦ (u− λpIdE) est l’endomorphisme nul.

(2) Montrons que la famille (IdE , u, ..., up) est liée dans L(E). Pour ce faire, on considère le polynôme
P : x 7−→ (x − λ1)...(x − λp). Par définition, on voit que P est un polynôme de degré p et unitaire,
c’est-à-dire dont le coefficient dominant est égal à 1. En d’autres termes, on peut écrire P sous la forme :

P : x 7−→ a0 + a1x + ... + ap−1xp−1 + xp,

où a0, a1, ..., ap−1 sont des réels. De plus, on sait d’après la question précédente que P est annulateur
de u, et donc :

P (u) = a0IdE + a1u + ... + ap−1up−1 + up = 0.

Comme le coefficient devant up est non nul car égal à 1, on en déduit que :

la famille (IdE , u, ..., up) est liée.
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(3) Déterminons la valeur de p si u est cyclique. D’après la question (7) de la partie I, section A, il existe
un vecteur e de E tel que d(e) = n. En particulier, la famille B(e, n) = (e, u(e), ..., un−1(e)) est libre.
Or, on sait d’après la question précédente qu’il existe des réels a0, a1, ..., ap−1 tels que :

a0IdE + a1u + ... + ap−1up−1 + up = 0.

En évaluant cette égalité sur le vecteur e, on trouve que :
a0e + a1u(e) + ... + ap−1up−1(e) + up(e) = 0.

Comme le coefficient devant up(e) est non nul car égal à 1, il s’ensuit que la famille B(e, p + 1) =
(e, u(e), ..., up(e)) n’est pas libre. Si p était < n, alors la famille B(e, p + 1) serait une sous-famille de la
famille libre B(e, n). En particulier, elle serait libre, ce qui est impossible d’après ce qui précède, et donc
p ≥ n. Par ailleurs, comme u est un endomorphisme d’un espace vectoriel de dimension n, il admet au
plus n valeurs propres distinctes, et donc p ≤ n. Par conséquent, on en déduit que :

si u est cyclique, alors p = n.

On suppose jusqu’à la fin de cette section que p = n, et on note (e1, ..., en) une base de vecteurs propres
de u telle que, pour tout i ∈ J1, nK, u(ei) = λiei.

(4) Soit e =
∑n

i=1 ei. Montrons tout d’abord que la famille B(e, n) est libre. Pour ce faire, considérons des
réels α0, ..., αn−1 tels que :

α0e + α1u(e) + ... + αn−1un−1(e) = 0. (∗)
Comme u(ei) = λiei pour tout i ∈ J1, nK, on voit que uk(ei) = λk

i ei pour tout k ∈ N et pour tout
i ∈ J1, nK. En particulier, ceci nous donne par linéarité de u que, pour tout k ∈ N :

uk(e) = uk

(
n∑

i=1
ei

)
=

n∑
i=1

uk(ei) =
n∑

i=1
λk

i ei.

Dès lors, la relation (∗) entraine que :

α0

n∑
i=1

ei + α1

n∑
i=1

λiei + ... + αn−1

n∑
i=1

λn−1
i ei = 0,

ce que l’on peut réécrire sous la forme :
n∑

i=1

(
α0 + α1λi + ... + αn−1λn−1

i

)
ei = 0. (∗∗)

Comme (e1, ..., en) est une base de E, elle est libre et ceci entraine que α0 + α1λi + ... + αn−1λn−1
i = 0

pour tout i ∈ J1, nK. En particulier, le polynôme P : x 7−→ α0 + α1x + ... + αn−1xn−1 admet λ1, ..., λn

pour racines. Comme P admet n racines distinctes et qu’il est de degré ≤ n − 1, il s’ensuit que P est
le polynôme nul, et donc α0 = α1 = ... = αn−1 = 0. Par conséquent, on en déduit que :

la famille B(e, n) =
(
e, u(e), ..., un−1(e)

)
est libre.

Comme la famille B(e, n) est libre, qu’elle compte n éléments et que dim(E) = n, ceci nous donne que
B(e, n) est une base de E. En particulier, la famille B(e, n) est génératrice de E, ce qui entraine que
E = Eu(e). Par conséquent, on en déduit aussi que :

l’endomorphisme u est cyclique.

(5) On reprend dans cette question seulement l’exemple de la section C de la partie I et, pour tout réel α,
on pose uα = g + αf . Montrons tout d’abord que uα est diagonalisable. D’après la questions (2) et (5)
de la partie I, section (C), on sait que la famille (V1, V2, V3) est une base de vecteurs propres de f pour
les valeurs propres respectives −2, 0, 1, et qu’elle est aussi une base de vecteurs propres de g pour les
valeurs propres respectives 2, 0, 2. Dès lors, ceci nous donne que, pour tout α ∈ R :

uα(V1) = g(V1) + αf(V1) = 2V1 − 2αV1 = (2− 2α)V1.

De la même façon, on trouve que :
uα(V2) = 0.V2 et uα(V3) = (2 + α)V3.

En particulier, la famille (V1, V2, V3) est une base de vecteurs propres de uα pour les valeurs propres
respectives 2− 2α, 0, 2 + α. Par conséquent, on en déduit que, pour tout α ∈ R :

l’endomorphisme uα est diagonalisable.
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A présent, discutons, en fonction des valeurs de α, les cas où uα est cyclique. D’après les deux questions
précédentes, on sait qu’un endomorphisme diagonalisable est cyclique si et seulement s’il admet n
valeurs propres distinctes. En particulier, l’endomorphisme uα est cyclique si et seulement si ses valeurs
propres 2−2α, 0, 2+α sont distinctes. Après calculs, on voit que 2−2α = 0 si et seulement si α = 1, que
2− 2α = 2 + α si et seulement si α = 0 et que 2 + α = 0 si et seulement si α = −2. En d’autres termes,
les valeurs propres 2 − 2α, 0, 1 + 2α sont distinctes si et seulement si α ̸= 1, 0,−2. Par conséquent, on
en déduit que :

l’endomorphisme uα est cyclique si et seulement si α ∈ R \ {−2, 0, 1} .

Section B : Endomorphismes nilpotents qui sont cycliques.

Dans cette section, u est un endomorphisme nilpotent de E, d’indice de nilpotence r.

(1) Soit e ∈ E tel que ur−1(e) ̸= 0. Montrons que la famille
(
e, u(e), ..., ur−1(e)

)
est libre dans E. Pour ce

faire, considérons des réels α0, ..., αr−1 tels que :
α0e + α1u(e) + ... + αr−1ur−1(e) = 0.

On raisonne par l’absurde et on suppose que les αi ne sont pas tous nuls. Soit s le plus petit indice de
J0, r − 1K tel que αs ̸= 0. Alors, on voit par définition de s que :

αsus(e) + αs+1us+1(e) + ... + αr−1ur−1(e) = 0.

En composant cette relation par ur−1−s, on obtient que :
ur−1−s

(
αsus(e) + αs+1us+1(e) + ... + αr−1ur−1(e)

)
= ur−1−s(0) = 0,

ce qui entraine par linéarité de u que :
αsur−1(e) + αs+1ur(e) + ... + αr−1u2r−2−s(e) = 0.

Comme u est nilpotent d’indice de nilpotence r, on voit que uk = uk−r ◦ ur = uk−r ◦ 0 = 0 pour tout
k ≥ r. En particulier, l’équation ci-dessus nous donne que :

αsur−1(e) = 0.

Comme ur−1(e) ̸= 0, il s’ensuit que αs = 0, ce qui est impossible car αs ̸= 0 par construction. Par
conséquent, on en déduit que :

la famille
(
e, u(e), ..., ur−1(e)

)
est libre.

(2) Montrons tout d’abord que r ≤ n. Comme
(
e, u(e), ..., ur−1(e)

)
est une famille libre d’un espace vectoriel

de dimension n, elle compte au plus n éléments. Mais comme cette famille en a r, on en déduit que :
r ≤ n.

A présent, montrons que r = n si et seulement si u est cyclique. Supposons tout d’abord que r = n. Alors
on voit d’après ce qui précède qu’il existe un vecteur e de E tel que la famille

(
e, u(e), ..., un−1(e)

)
soit

libre. Comme il s’agit d’une famille libre à n éléments d’un espace vectoriel de dimension n, la famille(
e, u(e), ..., un−1(e)

)
est une base de E. En particulier, elle est génératrice de E, ce qui signifie que

E = Eu(e), et donc u est cyclique.
Réciproquement, supposons que u soit cyclique. Alors il existe un vecteur e de E tel que E = Eu(e).

En particulier, la famille
(
e, u(e), ..., un−1(e)

)
est génératrice de E. Comme cette famille compte n

éléments et que dim(E) = n, c’est une base de E, et donc la famille
(
e, u(e), ..., un−1(e)

)
est libre. Dès

lors, elle ne peut pas contenir le vecteur nul, ce qui entraine que un−1(e) ̸= 0, et donc un−1 ̸= 0. En
particulier, comme ur = 0 par définition de l’indice de nilpotence, on voit que r > n− 1, et donc r ≥ n.
Mais comme r ≤ n, il s’ensuit que r = n.

Par double implication, on en déduit que :

u est cyclique si et seulement si r = n.

Dans le cas r = n, écrivons la matrice de u dans la base B(e, n). Comme r = n, on voit que un = 0, ce
qui entraine que un(e) = 0, et donc :

u(e) = 0× e + 1× u(e) + ... + 0× un−1(e)
u(u(e)) = u2(e) = 0× e + 0× u(e) + 1× u2(e) + ... + 0× un−1(e)
...
un(e) = u(un−1(e)) = 0× e + 0× u(e) + ... + 0× un−1(e)

.
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En particulier, la matrice de u dans la base B(e, n) de E est donnée par :

A =



0 0 · · · · · · 0 0 0
1 0 · · · · · · 0 0 0

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 0 0

0 0 · · · · · · 0 1 0


.

Section C : Un second exemple.

Dans cette section, E est le sous-espace vectoriel des fonctions polynomiales de degré ≤ n − 1. Pour tout
k ∈ J0, n− 1K, on note Xk la fonction x ∈ R 7−→ xk et on rappelle que (Xk)k∈J0,n−1K est une base de E.

(1) Soit P ∈ E. Montrons que, pour tout x ∈ R, l’intégrale
∫ +∞

0 P (x + t)e−tdt converge et que la fonction
x ∈ R 7−→

∫ +∞
0 P (x + t)e−tdt appartient à E. Pour ce faire, fixons un réel x. Comme deg(P ) ≤ n− 1,

la formule de Taylor pour les polynômes nous donne que, pour tout t ∈ R :

P (x + t) =
n−1∑
k=0

P (k)(x)
k! (x + t− x)k =

n−1∑
k=0

P (k)(x)
k! tk. (∗)

Comme l’intégrale impropre
∫ +∞

0 tke−tdt converge pour tout k ∈ N comme valeur de la fonction
Gamma d’Euler, l’intégrale

∫ +∞
0

∑n−1
k=0

P (k)(x)
k! tke−tdt converge comme combinaison linéaire d’intégrales

convergentes. Par conséquent, on en déduit avec (∗) que, pour tout x ∈ R et pour tout P ∈ E :

l’intégrale
∫ +∞

0
P (x + t)e−tdt converge.

De plus, comme
∫ +∞

0 tke−tdt = Γ(k + 1) = k!, on a par linéarité de l’intégrale que, pour tout x ∈ R :∫ +∞

0
P (x + t)e−tdt =

∫ +∞

0

n−1∑
k=0

P (k)(x)
k! tke−tdt

=
n−1∑
k=0

P (k)(x)
k!

∫ +∞

0
tke−tdt

=
n−1∑
k=0

P (k)(x)
k! k!

=
n−1∑
k=0

P (k)(x).

Comme la dérivée k-ème d’un polynôme de degré ≤ n− 1 est un polynôme de degré ≤ n− 1 pour tout
k ∈ N, il s’ensuit d’après le calcul ci-dessus que

∑n−1
k=0 P (k) est un polynôme de degré ≤ n − 1. Par

conséquent, on en déduit que, pour tout P ∈ E :

la fonction x ∈ R 7−→
∫ +∞

0
P (x + t)e−tdt appartient à E.

On note u : P ∈ E 7−→ u(P ) défini par : ∀x ∈ R, u(P )(x) =
∫ +∞

0
P (x + t)e−tdt.

(2) Vérifions que u est un endomorphisme de E. D’après la question précédente, on sait que u(P ) appartient
à E pour tout P ∈ E, et donc u est une application de E dans E. Reste à montrer que u est linéaire.
Pour ce faire, considérons deux éléments P, Q de E et deux réels λ, µ. Par linéarité de l’intégrale, on
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trouve que, pour tout x ∈ R :

u(λP + µQ)(x) =
∫ +∞

0
(λP + µQ)(x + t)e−tdt

= λ

∫ +∞

0
P (x + t)e−tdt + µ

∫ +∞

0
Q(x + t)e−tdt

= λu(P )(x) + µu(Q)(x).

Comme ceci est vrai pour tout x ∈ R, il s’ensuit que u(λP + µQ) = λu(P ) + µu(Q), et donc u est
linéaire. Par conséquent, on en déduit que :

l’application u est un endomorphisme de E.

(3) Soit P ∈ E. Montrons que : ∀x ∈ R, u(P )(x) = P (x) + u(P ′)(x). Pour ce faire, fixons un réel x. Les
fonctions a : t 7−→ P (x + t) et b : t 7−→ −e−t sont de classe C1 sur R+, et de plus on a a′(t) = P ′(x + t)
et b′(t) = e−t pour tout t ∈ R+. Dès lors, on trouve par intégration par parties que, pour tout c ≥ 0 :∫ c

0
P (x + t)e−tdt =

∫ c

0
a(t)b′(t)dt

= [a(t)b(t)]c0 −
∫ c

0
a′(t)b(t)dt

=
[
−P (x + t)e−t

]c
0 −

∫ c

0
−P ′(x + t)e−tdt

= −P (x + c)e−c + P (x) +
∫ c

0
P ′(x + t)e−tdt. (∗)

Comme la fonction c 7−→ P (x+ c) est un polynôme, elle est équivalente à son terme de plus haut degré.
En particulier, il existe un entier p et un réel α ̸= 0 tel que P (x + c) ∼

c→+∞
αck, ce qui entraine que

P (x + c)e−c ∼
c→+∞

αcke−c, et donc P (x + c)e−c tend vers 0 quand c tend vers +∞ par croissances
comparées. Par passage à la limite quand c tend vers +∞ dans la relation (∗), on a pour tout x ∈ R :∫ +∞

0
P (x + t)e−tdt = P (x) +

∫ +∞

0
P ′(x + t)e−tdt,

ce que l’on peut réécrire sous la forme suivante :

u(P )(x) = P (x) + u(P ′)(x).

Comme ceci est vrai pour tout x ∈ R, on en déduit que, pour tout P ∈ E :

u(P ) = P + u(P ′).

(4) Montrons que, pour tout P ∈ E, on a : u(P ) =
∑n−1

k=0 P (k). D’après la question précédente, on sait que
u(P ) = P + u(P ′) pour tout P ∈ E. En particulier, comme la dérivée k-ème d’un polynôme de degré
≤ n−1 est encore un polynôme de degré ≤ n−1 pour tout k ∈ N, on voit que u(P (k)) = P (k)+u(P (k+1))
pour tout P ∈ E et pour tout k ∈ N. Dès lors, on trouve par télescopage que, pour tout P ∈ E :

n−1∑
k=0

P (k) =
n−1∑
k=0

[
u(P (k))− u(P (k+1))

]
= u(P (0))− u(P (n)) = u(P )− u(P (n)).

Comme P est un polynôme de degré ≤ n−1, on voit que P (n) est le polynôme nul, et donc u(P (n)) = 0
car u est linéaire. Par conséquent, on en déduit que, pour tout P ∈ E :

u(P ) =
n−1∑
k=0

P (k).

(5) Soit P ∈ E. Montrons que, pour tout x ∈ R :

u(P )(x) = ex

∫ +∞

x

P (s)e−sds.
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Pour ce faire, on pose s = x + t. Alors v est une fonction affine de t, et donc le changement de variable
est licite. De plus, on a dx = ds, s = x si t = 0 et s tend vers +∞ quand t tend vers +∞. Dès lors, on
obtient par changement de variable que :

u(P )(x) =
∫ +∞

0
P (x + t)e−tdt =

∫ +∞

x

P (s)e−(s−x)du =
∫ +∞

x

exP (s)e−sds.

Par linéarité de l’intégrale, on en déduit que, pour tout x ∈ R :

u(P )(x) = ex

∫ +∞

x

P (s)e−sds.

(6) Montrons tout d’abord que, pour tout P ∈ E, la fonction f : x 7−→
∫ +∞

x
P (s)e−sds est dérivable sur

R. Pour ce faire, on peut remarquer que, d’après la relation de Chasles, on a pour tout x ∈ R :∫ +∞

x

P (s)e−sds =
∫ +∞

0
P (s)e−sds +

∫ 0

x

P (s)e−sds.

En particulier, si l’on pose K =
∫ +∞

0 P (s)e−sds, alors on trouve que, pour tout x ∈ R :

f(x) = K −
∫ x

0
P (s)e−sds.

A noter que le terme de droite dans l’égalité ci-dessus est une primitive de la fonction s 7−→ P (s)e−s.
Comme cette fonction est continue sur R, la primitive en question est de classe C1 sur R, et donc la
fonction f est de classe C1 comme différence d’une constante et d’une fonction C1. En particulier, on
en déduit a fortiori que :

la fonction f : x 7−→
∫ +∞

x

P (s)e−sds est dérivable sur R.

Montrons à présent que u(P ) est dérivable sur R et que (u(P ))′ = u(P )− P . Pour tout x ∈ R, on sait
d’après la question précédente que u(P )(x) = f(x)ex pour tout x ∈ R. En particulier, la fonction u(P )
est dérivable sur R comme produit de fonctions dérivables et de plus, on a pour tout x ∈ R :

(u(P ))′ (x) = f ′(x)ex + f(x)ex = −P (x)e−xex + f(x)ex = −P (x) + f(x)ex = −P (x) + u(P )(x).

Par conséquent, on en déduit que :

la fonction u(P ) est dérivable sur R et : (u(P ))′ = u(P )− P.

Montrons enfin que (u(P ))′ = u(P ′). D’après ce qui précède et la question (3) de cette section, on a
pour tout P ∈ E :

(u(P ))′ = u(P )− P = P + u(P ′)− P = u(P ′).

Par conséquent, on en déduit que :

(u(P ))′ = u(P ′).

(7) Déterminons tout d’abord la matrice de u dans la base (Xk)k∈J0,n−1K de E. D’après la question (4) de
cette section, on a pour tout k ∈ J0, n− 1K :

u(Xk) =
n−1∑
i=0

(Xk)(i) = Xk + kXk−1 +
n−1∑
i=2

k(k − 1)...(k − i + 1)Xk−i,

ce que l’on peut réécrire sous la forme suivante (en posant j = k − i) :

u(Xk) =
k∑

i=0

k!
(k − i)!X

k−i =
k∑

j=0

k!
j! Xj .
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Par conséquent, on en déduit que la matrice M de u dans la base (Xk)k∈J0,n−1K de E est donnée par :

M =



1 1 2 · · · · · · · · · (n− 1)!/0!
0 1 2 · · · · · · · · · (n− 1)!/1!
0 0 1 (n− 1)!/2!
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... (0)

. . . 0 1 (n− 1)!/(n− 2)!
0 0 · · · · · · 0 0 1


.

Comme M est triangulaire supérieure, ses valeurs propres sont exactement ses coefficients diagonaux,
et donc Sp(M) = {1}. Mais comme M est la matrice de u dans une base de E, on en déduit que :

Sp(u) = {1}.

(8) On pose v = u − IdE . Montrons que Im(v) est le sous-espace vectoriel de E formé des fonctions
polynomiales de degré ≤ n− 2. D’après la question précédente, on voit que, pour tout k ∈ J0, n− 1K :

v(Xk) = u(Xk)−Xk =
k−1∑
j=0

k!
j! Xj .

En particulier, v(Xk) est un polynôme de degré k−1, et donc de degré ≤ n−2 pour tout k ∈ J0, n−1K.
Par ailleurs, comme (Xk)k∈J0,n−1K est une base de E, on trouve que :

Im(v) = Vect
(
v(X0), v(X1), ..., v(Xn−1)

)
= Vect

(
0, v(X1), ..., v(Xn−1)

)
= Vect

(
v(X1), ..., v(Xn−1)

)
.

En particulier, comme v(Xk) est un polynôme de degré ≤ n − 2 pour tout k ∈ J1, n − 1K, on voit que
Im(v) ⊂ Rn−2[x]. En outre, comme v(Xk) est un polynôme de degré k − 1 pour tout k ∈ J1, n− 1K, la
famille (v(Xk))k∈J1,n−1K est échelonnée en degrés, et donc elle est libre. Dès lors, il s’ensuit que :

dim(Im(v)) = n− 1 = dim(Rn−2[x]).
Par conséquent, on en déduit que :

Im(v) = Rn−2[x].

(9) Montrons tout d’abord que v est nilpotent. Pour ce faire, on va commencer par démontrer que, pour
tout P ∈ E de degré > 0, on a :

deg(v(P )) = deg(P )− 1. (∗)
Pour ce faire, considérons un polynôme P = a0X0 + a1X1 + ... + arXr de degré r > 0, avec ar ̸= 0.
D’après la question précédente, on trouve par linéarité de v que :

v(P ) = v

(
r∑

k=0
akXk

)
=

r∑
k=0

akv(Xk) =
r∑

k=0
ak

k−1∑
j=0

k!
j! Xj .

Par interversion des sommes, ceci nous donne que :

v(P ) =
r−1∑
j=0

 r∑
k=j+1

ak
k!
j!

Xj = rarXr−1 +
r−2∑
j=0

 r∑
k=j+1

ak
k!
j!

Xj .

Comme r > 0 et que ar ̸= 0, il s’ensuit que v(P ) est de degré r − 1, d’où le résultat.
A présent, montrons que v est nilpotent. Comme v(P ) = 0 si P est un polynôme constant, on voit

avec la relation (∗) que, pour tout P ∈ E :
deg(v(P )) ≤ deg(P )− 1. (∗∗)

Par une récurrence facile et à l’aide de (∗∗), on peut vérifier que deg(vk(P )) ≤ deg(P ) − k pour tout
k ∈ N et pour tout P ∈ E. En particulier, on obtient que, pour tout P ∈ E :

deg(vn(P )) ≤ deg(P )− n ≤ n− 1− n = −1.
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Dès lors, vn(P ) est un polynôme de degré strictement négatif, et donc vn(P ) = 0. Comme ceci est
vrai pour tout P ∈ E, il s’ensuit que vn = 0, et donc v est nilpotent d’indice de nilpotence ≤ n. Par
conséquent, on en déduit que :

l’endomorphisme v est nilpotent.

De la même façon, on peut montrer par une récurrence facile et avec la relation (∗) que deg(vk(Xn−1)) =
n− k pour tout k ∈ J0, n− 1K. En particulier, on trouve que :

deg(vn−1(Xn−1)) = n− 1− (n− 1) = 0.

ce qui entraine que vn−1(Xn−1) est un polynôme constant non nul. En d’autres termes, on voit que
vn−1(Xn−1) ̸= 0, et donc vn−1 n’est pas l’endomorphisme nul. En particulier, l’indice de nilpotence de
v est ≤ n et > n− 1, et donc il est égal à n. Mais comme dim E = dimRn−1[x] = n− 1 + 1 = n, on en
déduit d’après la question (2) de la partie II, section (B) que :

l’endomorphisme v est cyclique.

Partie III : Décomposition de Frobenius et applications.

Dans cette partie, on se propose de démontrer, pour tout endomorphisme u de L(E), la propriété suivante
notée (R) :

il existe p ∈ J1, nK et des sous-espaces vectoriels non nuls F1, ..., Fp de E, stables par u, tels
que E = F1 ⊕ ...⊕ Fp et pour tout i ∈ J1, pK, u|Fi

est un endomorphisme cyclique de Fi.

Section A : Cas d’une homothétie.

(1) Démontrons que la propriété (R) est réalisée si u est une homothétie. En effet, si u est une homothétie,
il existe un réel λ tel que u = λIdE . Considérons alors une base quelconque B = (e1, ..., en) de E, et
posons p = n et Fi = Vect(ei) pour tout i ∈ J1, nK. Par construction, (ei) est une famille génératrice de
Fi pour tout i ∈ J1, nK. De plus, comme B est une base de E, le vecteur ei est non nul. En particulier,
(ei) est une famille libre de Fi pour tout i ∈ J1, nK, et donc (ei) est une base de Fi pour tout i ∈ J1, nK.
Au passage, on voit que dim Fi = 1 pour tout i ∈ J1, nK. Dès lors, comme la concaténation des bases
(ei) donne la base B de E, il s’ensuit que :

E =
n⊕

i=1
Vect(ei) =

n⊕
i=1

Fi.

A noter que chaque Fi est stable par u. En effet, considérons un vecteur x de Fi. Comme u = λIdE , on
voit que u(x) = λx appartient à Fi. Dès lors, comme u|Fi

est un endomorphisme sur l’espace vectoriel
Fi qui est de dimension 1, on constate que u|Fi

est cyclique pour tout i ∈ J1, nK. Par conséquent, on en
déduit que :

la propriété (R) est réalisée si u est une homothétie.

Section B : Cas où u n’est pas une homothétie.

(1) Justifions qu’il existe un vecteur e non nul de E tel que d(e) ̸= 1. D’après la question (6) de la partie I,
section (A), on sait qu’un endomorphisme u de E est une homothétie si et seulement si d(e) = 1 pour
tout vecteur non nul e de E. Mais comme u n’est pas une homothétie par hypothèse, il s’ensuit que :

il existe un vecteur e non nul de E tel que d(e) ̸= 1.

Pour le reste de la section, on choisit un vecteur non nul e de E tel que d = d(e) soit maximal (donc
d ≥ 2) et on note, pour tout k ∈ J0, d−1K, ek = uk(e). On note toujours B(e, d) = (e0, e1, ..., ed−1) ainsi
que des réels a0, a1, ..., ad−1 tels que :

ud(e) =
d−1∑
i=0

aiu
i(e).

Enfin, on pose : F1 = Eu(e).
(2) Justifions que la propriété (R) est réalisée si d = n. D’après la question (7) de la partie I, section (A),

on sait qu’un endomorphisme u de E est cyclique si et seulement s’il existe un vecteur non nul e de E
tel que d(e) = n. En particulier, comme d = n, l’endomorphisme u est cyclique. Il suffit dans ce cas de
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poser p = 1 et F1 = E et la propriété (R) est réalisée, puisque F1 = E est clairement stable par u et
que u|F1 = u est cyclique. Par conséquent, on en déduit que :

la propriété (R) est réalisée si d = n.

Dans la suite de cette section, on suppose que d ∈ J2, n − 1K (et donc n ≥ 3). On complète la famille
B(e, d) en une base B = (e0, e1, ..., ed−1, ed, ..., en−1) de E.

(3) Montrons que l’application φ : x =
∑n−1

i=0 xkek ∈ E 7−→ xd−1 est une forme linéaire non nulle de E.
Par construction, on voit que φ est une application de E dans R, et qu’elle n’est pas identiquement
nulle car :

φ(ed−1) = φ(0× e0 + ... + 0× ed−2 + 1× ed−1 + 0× ed + ... + 0× en−1) = 1 ̸= 0.

Reste à montrer que φ est linéaire. Pour ce faire, considérons deux réels λ, µ et deux vecteurs x, y ∈ E,
et soient x0, ..., xn−1 et y0, ..., yn−1 les coordonnées respectives de ces vecteurs dans la base B. Par
définition, on voit que :

x =
n−1∑
i=0

xkek et y =
n−1∑
i=0

ykek.

Dès lors, ceci nous donne par linéarité de la somme que :

λx + µy = λ

n−1∑
i=0

xkek + µ

n−1∑
i=0

ykek =
n−1∑
i=0

(λxk + µyk)ek.

En particulier, on obtient que :
φ(λx + µy) = λxd−1 + µyd−1 = λφ(x) + µφ(y),

et donc φ est linéaire. Par conséquent, on en déduit que :

l’application φ est une forme linéaire non nulle sur E.

On considère l’application Φ : x ∈ E 7−→
(
φ(ud−1(x)), φ(ud−2(x)), ..., φ(u(x)), φ(x)

)
∈ Rd.

(4) Vérifions que Φ est linéaire. Pour ce faire, considérons deux réels λ, µ et deux vecteurs x, y ∈ E. Comme
u est un endomorphisme, on voit d’après la question précédente que u et φ sont linéaires, et donc φ◦uk

est linéaire pour tout k ∈ N comme composée d’applications linéaires. Dès lors, on trouve que :
Φ(λx + µy) =

(
φ(ud−1(λx + µy)), ..., φ(u(λx + µy)), φ(λx + µy)

)
=

(
λφ(ud−1(x)) + µφ(ud−1(y)), ..., λφ(u(x)) + µφ(u(y)), λφ(x) + µφ(y)

)
= λ

(
φ(ud−1(x)), ..., φ(u(x)), φ(x)

)
+ µ

(
φ(ud−1(y)), ..., φ(u(y)), φ(y)

)
= λΦ(x) + µΦ(y).

Par conséquent, on en déduit que :

l’application φ est linéaire.

On note G = ker(Φ) et Φ̃ la restriction de Φ à F1.
(5) Calculons tout d’abord Φ(e0). Par définition, on voit que :

Φ(e0) = Φ(u0(e)) = Φ(e) =
(
φ(ud−1(e)), φ(ud−2(e)), ..., φ(u(e)), φ(e)

)
.

Dès lors, ceci nous donne par définition des ek que :
Φ(e0) = (φ(ed−1), φ(ed−2), ..., φ(e1), φ(e0)) .

Or, on voit par construction de φ que l’application φ est nulle sur tous les vecteurs ek tels que k ̸= d−1,
et que φ(ed−1) = 1. Par conséquent, on en déduit que :

Φ(e0) = (1, 0, ..., 0, 0) .

Calculons ensuite Φ(e1) = Φ(u(e0)). Par définition, on voit que :
Φ(e1) = Φ(u1(e)) = Φ(u(e)) =

(
φ(ud−1(u(e))), φ(ud−2(u(e))), ..., φ(u(u(e))), φ(u(e))

)
.

En d’autres termes, on peut écrire que :
Φ(e1) =

(
φ(ud(e)), φ(ud−1(e)), ..., φ(u2(e)), φ(u(e))

)
.
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Dès lors, ceci nous donne par définition des ek que :

Φ(e1) =
(
φ(ud(e)), φ(ed−1), ..., φ(e2), φ(e1)

)
.

Par hypothèse, on sait qu’il existe des réels a0, a1, ..., ad−1 tels que :

ud(e) =
d−1∑
i=0

aiu
i(e).

En particulier, on trouve par linéarité de φ que :

Φ(e1) =
(
φ(ud(e)), φ(ed−1), ..., φ(e2), φ(e1)

)
=

(
φ

(
d−1∑
i=0

aiu
i(e)
)

, φ(ed−1), ..., φ(e2), φ(e1)
)

=
(

d−1∑
i=0

aiφ
(
ui(e)

)
, φ(ed−1), ..., φ(e2), φ(e1)

)

=
(

d−1∑
i=0

aiφ (ei) , φ(ed−1), ..., φ(e2), φ(e1)
)

Comme l’application φ est nulle sur tous les vecteurs ek tels que k ̸= d − 1 et que φ(ed−1) = 1 par
construction, on obtient que :

Φ(e1) = (0 + ... + 0 + ad−1, 1, 0, ..., 0) .

Par conséquent, on en déduit que :

Φ(e1) = (ad−1, 1, 0, ..., 0) .

Plus généralement, justifions que, pour tout k ∈ J1, d − 1K, il existe des réels β0,k, β1,k, ..., βk−1,k tels
que Φ(ek) = (β0,k, β1,k, ..., βk−1,k, 1, 0, ..., 0). Pour ce faire, fixons un entier k ∈ J1, d−1K. Par définition,
on voit que :

Φ(ek) = Φ(uk(e)) =
(
φ(ud−1(uk(e))), φ(ud−2(uk(e))), ..., φ(u(uk(e))), φ(uk(e))

)
.

En d’autres termes, on peut écrire que :

Φ(ek) =
(
φ(ud+k−1(e)), φ(ud+k−2(e)), ..., φ(uk+1(e)), φ(uk(e))

)
.

Dès lors, ceci nous donne par définition des ek que :

Φ(ek) =
(
φ(ud+k−1(e)), φ(ud+k−2(e)), ..., φ(ud−1(e)), φ(ud−2(e)), ..., φ(uk+1(e)), φ(uk(e))

)
=

(
φ(ud+k−1(e)), φ(ud+k−2(e)), ..., φ(ed−1), φ(ed−2), ..., φ(ek+1), φ(ek)

)
.

Posons alors βi,k = φ(ud+k−1−i(e)) pour tout i ∈ J0, k − 1K. Comme l’application φ est nulle sur tous
les vecteurs ek tels que k ̸= d− 1 et que φ(ed−1) = 1 par construction, on obtient que :

Φ(ek) = (β0,k, β1,k, ..., βk−1,k, ..., 1, 0, ..., 0, 0) .

Par conséquent, on en déduit que, pour tout k ∈ J1, d− 1K, il existe β0,k, β1,k, ..., βk−1,k ∈ R tels que :

Φ(ek) = (β0,k, β1,k, ..., βk−1,k, 1, 0, ..., 0).

(6) Ecrivons tout d’abord la matrice de Φ̃ de la base B(e, d) de F1 vers la base canonique de Rd. D’après
la question précédente, on sait que :

Φ(e) = Φ(e0) = (1, 0, ..., 0)
Φ(u(e)) = Φ(e1) = (β0,1, 1, 0, ..., 0)
...
Φ(ed−1) = Φ(ed−1) = (β0,d−1, β1,d−1, ..., βd−2,d−1, 1, 0, ..., 0)

.
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Par conséquent on en déduit que la matrice A de Φ̃ de la base B(e, d) de F1 vers la base canonique de
Rd est donnée par :

A =



1 β0,1 · · · · · · · · · β0,d−1
0 1 · · · · · · · · · β1,d−1
...

. . .
. . .

...
...

. . .
. . .

...
... (0)

. . .
. . . βd−2,d−1

0 · · · · · · · · · 0 1


.

A présent, justifions que Φ̃ est bijectif. Comme la matrice A est triangulaire supérieure et que ses
coefficients diagonaux sont tous non nuls, la matrice A est inversible. Mais comme A est la matrice de
Φ̃ de la base B(e, d) de F1 vers la base canonique de Rd, on en déduit que :

Φ̃ est bijectif.

(7) Montrons tout d’abord que E = F1⊕G. Comme Φ̃ est un isomorphisme de F1 vers Rd d’après la question
précédente, l’application Φ̃ est surjective, Im(Φ̃) = Rd et dim(F1) = dim(Rd) = d. En particulier,
comme Φ̃ est la restriction de l’application Φ, on voit que Im(Φ̃) ⊂ Im(Φ) ⊂ Rd, et donc Im(Φ) = Rd.
Comme G = ker(Φ), on obtient avec le théorème du rang que :

dim(F1) + dim(G) = dim ker(Φ) + dim Im(Φ) = dim(E).

Reste à montrer que F1 et G sont en somme directe. Pour ce faire, considérons un vecteur x ∈ F1 ∩G.
Alors x appartient à F1 et à G. Comme G = ker(Φ), on voit que Φ(x) = 0. De plus, comme x appartient
à F1 et que Φ̃ est la restriction de Φ à F1, ceci entraine que Φ̃(x) = Φ(x) = 0. Mais comme Φ̃ est bijective
d’après la question précédente, il s’ensuit que x = 0. Par conséquent, on en déduit que F1 ∩G = {0},
et donc :

E = F1 ⊕G.

A présent, justifions que G est stable par u. Pour ce faire, considérons un vecteur x de G. Si x = 0,
alors u(x) = 0 par linéarité de u, et donc u(x) ∈ G. Dès lors, supposons que x ̸= 0. Comme G = ker(Φ),
on voit que Φ(x) = 0, c’est-à-dire :

Φ(x) =
(
φ(ud−1(x)), φ(ud−2(x)), ..., φ(u(x)), φ(x)

)
= (0, ..., 0).

En particulier, ceci entraine que φ(x) = φ(u(x)) = ... = φ(ud−2(x)) = φ(ud−1(x)) = 0, et donc :

φ(u(x)) = ... = φ(ud−3(u(x))) = φ(ud−2(u(x))) = 0.

D’après la question (3) de la partie I, section (A), on sait que, pour tout k ∈ N, le vecteur uk(x) est com-
binaison linéaire des vecteurs x, u(x), ..., ud(x)−1(x). En particulier, le vecteur ud(x) est combinaison li-
néaire des vecteurs x, u(x), ..., ud(x)−1(x). Par maximalité de d = d(e), on sait aussi que d(x) ≤ d, et donc
ud(x) est aussi combinaison linéaire des vecteurs x, u(x), ..., ud−1(x), et ce car

(
x, u(x), ..., ud(x)−1(x)

)
est une sous-famille de

(
x, u(x), ..., ud−1(x)

)
. En d’autres termes, il existe des réels c0, ..., cd−1 tels que :

ud(x) =
d−1∑
i=0

ciu
i(x).

Par linéarité de l’application φ et sachant que φ(x) = φ(u(x)) = ... = φ(ud−2(x)) = φ(ud−1(x)) = 0,
on trouve alors que :

φ
(
ud(x)

)
= φ

(
d−1∑
i=0

ciu
i(x)

)
=

d−1∑
i=0

ciφ
(
ui(x)

)
=

d−1∑
i=0

ci0 = 0.

Dès lors, il s’ensuit que φ(x) = φ(u(x)) = ... = φ(ud−2(x)) = φ(ud−1(x)) = φ(ud(x)) = 0, et donc :

Φ(u(x)) =
(
φ(ud(x)), φ(ud−1(x)), ..., φ(u2(x)), φ(u(x))

)
= (0, ..., 0).

En particulier, on voit que u(x) appartient à G = ker(Φ). Mais comme ceci est vrai pour tout x ∈ G,
on en déduit que :

G est stable par u.
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(8) Expliquons pourquoi u|F1 est un endomorphisme cyclique de F1. Comme u|F1 est la restriction de u à
F1, on voit que (u|F1)k(e) = uk(e) pour tout k ∈ N. Dès lors, comme F1 = Eu(e), on voit que :

F1 = Vect
(
e, u(e), ..., ud−1(e)

)
= Vect

(
e, (u|F1)(e), ..., (u|F1)d−1(e)

)
.

Comme d = card(B(e, d)) = dim(F1), il s’ensuit que F1 = E(u|F1 )(e), et donc :

u|F1 est un endomorphisme cyclique de F1.

(9) Justifions que, pour tout vecteur non nul e′ de G, on a d(e′) ≤ d. Par construction, on a choisi au
départ un vecteur e non nul de E tel que d(e) soit maximal, et on a posé d = d(e). Dès lors, on voit
que d(e) ≤ d pour tout e ∈ E. Mais comme G est le noyau de l’application Φ : E 7−→ Rd, on voit que
G est un sous-espace vectoriel de E, et donc d(e′) ≤ d pour tout e′ ∈ G. Par conséquent :

pour tout e′ ∈ G, on a : d(e′) ≤ d.

(10) Démontrons que la propriété (R) est bien réalisée pour tout espace vectoriel E de dimension finie, et ce
par une récurrence forte sur la dimension n de E. Pour n = 1, la propriété (R) est clairement vérifiée
pour tout espace vectoriel de dimension 1, car u est alors un endomorphisme d’un espace vectoriel E
de dimension 1, et donc il est cyclique par définition.

A présent, supposons que la propriété (R) soit bien réalisée pour tout espace vectoriel de dimension
k ≤ n, et montrons qu’elle est vraie pour tout espace vectoriel de dimension n + 1. Soit u un endomor-
phisme d’un espace vectoriel E de dimension n + 1. Si u est une homothétie, alors (R) est bien vérifiée
d’après la question (1) de la partie III, section (B). Si maintenant u n’est pas une homothétie, on choisit
un vecteur non nul e de E tel que d(e) soit maximal. Si d(e) = n + 1, alors on sait d’après la question
(2) de la partie III, section (B) que la propriété (R) est bien réalisée pour E. Si 1 < d(e) < n + 1,
on sait d’après les questions de la partie III, section (B) qu’il existe un sous-espace vectoriel strict
G de E, stable par u, tel que E = F1 ⊕ G et tel que u|F1 soit cyclique. Comme dim(G) < n + 1, il
existe par hypothèse de récurrence un entier p ∈ J1, dim(G)K et des sous-espaces vectoriels F2, ..., Fp+1
de G, stables par u|G et tels que G = F2 ⊕ ... ⊕ Fp et tels que, pour tout i ∈ J2, p + 1K, u|Fi

est un
endomorphisme cyclique de Fi. Dès lors, comme E = F1 ⊕G, ceci entraine que :

E = F1 ⊕ F2 ⊕ ...⊕ Fp+1.

A noter que, comme 1 ≤ p ≤ dim(G) < n + 1, on a 1 ≤ p + 1 ≤ n + 1. De plus, comme F2, ..., Fp+1
sont stables par u|G, ces sous-espaces vectoriels sont stables par u car u|G est la restriction de u à G.
A noter aussi que, comme F1 = Eu(e), F1 est aussi stable par u d’après la question (4) de la partie I,
section (A). De plus, on sait d’après la question (8) de la partie III, section (B) que l’endomorphisme
u|F1 est cyclique. Comme u|Fi

est cyclique pour tout i ∈ J2, p + 1K, il s’ensuit que tous les u|Fi
sont

cycliques, et donc la propriété (R) est bien réalisée pour E, ce qui achève la récurrence.
Par conséquent, on en déduit que :

la propriété (R) est vraie pour tout espace vectoriel de dimension finie.

Section C : Première application (décomposition de Jordan des endomorphismes nilpotents).

(1) Soit u ∈ L(E). On suppose qu’il existe p ∈ J1, nK et F1, ..., Fp des sous-espaces vectoriels de E non nuls
et stables par u tels que E = F1 ⊕ ...⊕ Fp. Pour tout k ∈ J1, pK, on note BFk

une base de Fk. Soit B la
concaténation des bases BF1 ,BF2 , ...,BFp . On rappelle que B est une base de E. Déterminons la forme
de la matrice de u dans la base B. Pour ce faire, fixons un entier k ∈ J1, pK. Comme le sous-espace
vectoriel Fk est stable par u, l’image de tout vecteur de BFk

par u est un vecteur de Fk, et donc il s’écrit
comme combinaison linéaire des vecteurs de BFk

car BFk
est une base de Fk. En particulier, si Ak est

la matrice de u|Fk
dans la base BFk

, alors la matrice A de u dans la base B aura la forme suivante :

A =



A1 0 · · · · · · 0 0 0
0 A2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . Ak

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 Ap−1 0

0 0 · · · · · · 0 0 Ap


.



40

On parle alors de matrice diagonale par blocs.
(2) Soit u un endomorphisme nilpotent de E, d’indice de nilpotence p. Montrons qu’il existe une base B

de E dans laquelle la matrice T = (ti,j)1≤i,j≤n de u est triangulaire supérieure et telle que, pour tout
i ∈ J1, nK, ti,i = 0, pour tout i ∈ J2, nK, ti,i−1 ∈ {0, 1} et tous les autres coefficients de T sont nuls.
D’après la propriété (R), il existe un entier p ∈ J1, nK et des sous-espaces vectoriels non nuls F1, ..., Fp

de E, stables par u, tels que E = F1 ⊕ ... ⊕ Fp et pour tout i ∈ J1, pK, u|Fi
est un endomorphisme

cyclique de Fi. Pour tout i ∈ J1, pK, on pose ni = dim(Fi). Comme l’endomorphisme u est nilpotent
d’indice de nilpotence p, on sait que up = 0, ce qui entraine par restriction que (u|Fi

)p = 0, et donc
u|Fi

est nilpotent pour tout i ∈ J1, pK. Dès lors, comme u|Fi
est cyclique et nilpotent, on voit d’après la

question (2) de la partie II, section (B) qu’il existe une base BFi
de Fi telle que la matrice Ti de u|Fi

dans la base BFi
soit de la forme :

Ti =



0 0 · · · · · · 0 0 0
1 0 · · · · · · 0 0 0

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 0 0

0 0 · · · · · · 0 1 0


.

Si B est la concaténation des bases BF1 ,BF2 , ...,BFp
, alors la matrice T de u dans la base B sera diagonale

par blocs comme dans la question précédente, et se présentera comme suit :

T =



T1 0 · · · · · · 0 0 0
0 T2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . Tk

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 Tp−1 0

0 0 · · · · · · 0 0 Tp


.

En d’autres termes, la matrice T sera de la forme :

Ti =



0 · · · · · · · · · · · · · · · · · · 0
1 0 0

0 1
. . . (0)

...
...

. . .
. . .

. . .
...

...
. . . 0

. . .
...

... (0)
. . . 1

. . .
...

...
. . .

. . .
. . .

...
0 · · · · · · · · · · · · 0 1 0


,

avec tous ses coefficients nuls, hormis ceux situés juste sous la diagonale principale qui seront égaux à
0 ou à 1. Par conséquent, on en déduit qu’il existe bien une base B de E dans laquelle :

la matrice T = (ti,j)1≤i,j≤n de u est triangulaire supérieure et
telle que, pour tout i ∈ J1, nK, ti,i = 0, pour tout i ∈ J2, nK,
ti,i−1 ∈ {0, 1} et tous les autres coefficients de T sont nuls.

Section D : Deuxième application (toute matrice carrée est semblable à sa transposée).

Dans cette section, on pose E = Rn et on note Bn la base canonique de Rn. Soit M ∈ Mn(R). On note
u l’endomorphisme de E canoniquement associé à M . On se propose de montrer que M vérifie la propriété
suivante, notée (S) :

il existe deux matrices symétriques V, W ∈Mn(R), avec W inversible, telles que M = V W .
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(1) Cas où u est cyclique : il existe donc e ∈ E tel que E = Eu(e). On note toujours B(e, n) la base(
e, u(e), ..., un−1(e)

)
de E et A = matB(e,n)(u). Il s’agit de la matrice de Frobenius associée aux réels

a0, a1, ..., an−1 :

A =



0 0 · · · · · · 0 0 a0
1 0 · · · · · · 0 0 a1

0 1
. . . (0)

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 1 0 an−2

0 0 · · · · · · 0 1 an−1


.

On considère :

S =



−a1 −a2 −a3 · · · −an−2 −an−1 1

−a2 −a3 · · · . .
.
−an−1 1 0

−a3 · · · . .
.

. .
.

. .
.

0 0
... . .

.
. .

.
. .

.
. .

.
0

−an−2 −an−1 . .
.

. .
.

(0)
...

−an−1 1 0
...

1 0 · · · · · · 0 0 0


et on note f l’endomorphisme de E tel que S est la matrice de f dans la base B(e, n). On a donc :

f(e) = −
(

n−1∑
k=1

akuk−1(e)
)

+ un−1(e) , f (u(e)) = −
(

n−1∑
k=2

akuk−2(e)
)

+ un−2(e)

et plus généralement :

∀j ∈ J0, n− 2K, f (u(e)) = −

 n−1∑
k=j+1

akuk−j−1(e)

+ un−j−1(e)

et enfin f
(
un−1(e)

)
= e.

Calculons tout d’abord u(f(e)). D’après la forme de la matrice A, on sait que :

un(e) =
n−1∑
k=0

akuk(e).

Par linéarité de u, ceci nous donne que :

u(f(e)) = u

(
−

(
n−1∑
k=1

akuk−1(e)
)

+ un−1(e)
)

= −
n−1∑
k=1

aku ◦ uk−1(e) + u ◦ un−1(e)

= −
n−1∑
k=1

akuk(e) + un(e)

= −
n−1∑
k=1

akuk(e) +
n−1∑
k=0

akuk(e)

= a0u0(e).

Par conséquent, on en déduit que :
u(f(e)) = a0e.
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A présent, calculons u(f(u(e))). Comme précédemment, on trouve que :

u(f(u(e))) = u

(
−

(
n−1∑
k=2

akuk−2(e)
)

+ un−1(e)
)

= −
n−1∑
k=2

akuk−1(e) + u ◦ un−1(e)

= −
n−1∑
k=2

akuk−1(e) + un(e).

Par conséquent, on en déduit après un décalage d’indice i = k − 1 que :

u(f(u(e))) = −
n−2∑
i=1

ai−1ui(e) + un(e).

Plus généralement, calculons u(f(uj(e))) pour tout j ∈ J0, n− 2K. Comme précédemment, on a :

u(f(uj(e))) = u

−
 n−1∑

k=j+1
akuk−j−1(e)

+ un−j−1(e)



= −
n−1∑

k=j+1
akuk−j(e) + un−j(e).

Par conséquent, on en déduit après le décalage d’indice i = k − j que :

u(f(uj(e))) = −
n−j−1∑

i=1
ai+jui(e) + un−j(e).

Enfin, calculons u(f(un−1(e))). Comme f
(
un−1(e)

)
= e, on en déduit que :

u(f(un−1(e))) = u(e).

(2) D’après la question précédente, la matrice de u ◦ f dans la base B(e, n) est donnée par :

matB(e,n)(u ◦ f) =



a0 0 0 · · · 0 0 0
0 −a2 −a3 · · · −an−2 −an−1 1

0 −a3 −a4 . .
.

. .
.

1 0
... . .

.
. .

.
. .

.
. .

.
. .

. ...

0 −an−2 . .
.

. .
.

. .
.

(0)
...

0 −an−1 1 0
...

0 1 0 · · · 0 0 0


.

Mais comme A et S sont les matrices respectives de u et f dans la base B(e, n), on en déduit que :

AS =



a0 0 0 · · · 0 0 0
0 −a2 −a3 · · · −an−2 −an−1 1

0 −a3 −a4 . .
.

. .
.

1 0
... . .

.
. .

.
. .

.
. .

.
. .

. ...

0 −an−2 . .
.

. .
.

. .
.

(0)
...

0 −an−1 1 0
...

0 1 0 · · · 0 0 0


.

Par la suite, on pose S1 = AS.
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(3) Justifions que S est inversible. Comme les vecteurs colonnes de S forment une famille échelonnée avec
des coefficients non nuls sur la diagonale opposée, le rang de cette famille est égal à n, et donc rg(S) = n.
Mais comme une matrice carrée de taille n est inversible si et seulement si elle est de rang n, on en
déduit que :

la matrice S est inversible.

On note alors S2 = S−1 et on a donc A = S1S2, où S1 et S2 sont deux matrices symétriques.
(4) On note P la matrice de passage de la base Bn vers la base B(e, n). Vérifions tout d’abord que :

M = PS1(tP )(tP )−1S2P −1.

Par des calculs simples, on voit que :
PS1(tP )(tP )−1S2P −1 = PS1InS2P −1 = PS1S2P −1 = PAP −1.

Comme P est la matrice de passage de la base Bn vers la base B(e, n) et que A est la matrice de u
dans la base B(e, n), on obtient d’après la formule de changement de bases que PAP −1 est la matrice
de u dans la base Bn, c’est-à-dire la matrice M (car u est l’endomorphisme canoniquement associé à
M). Par conséquent, on en déduit que :

M = PS1(tP )(tP )−1S2P −1.

A présent, montrons que M vérifie la propriété (S). Pour ce faire, on pose :
V = PS1(tP ) et W = (tP )−1S2P −1.

D’après les calculs précédents, on voit que M = V W . De plus, comme S1 est symétrique, on trouve
avec les propriétés de la transposition que :

tV = t
(
PS1(tP )

)
= ttP tS1

tP = PS1
tP = V,

et donc la matrice V est symétrique. De la même façon, on peut vérifier aussi que W est symétrique.
Enfin, comme W = (tP )−1S2P −1, que S2 est inversible et qu’un produit de matrices inversibles est
inversible, il s’ensuit que W est inversible. Par conséquent, on en déduit que :

M vérifie la propriété (S).

(5) Montrons alors que tM et M sont semblables. Plus précisément, déterminons une matrice symétrique
inversible Q telle que tM = Q−1MQ. Pour ce faire, on pose Q = W −1 (ce qui fait sens car W est
inversible d’après la question précédente). Comme W est symétrique, son inverse est aussi symétrique.
Dès lors, comme V est aussi symétrique, on trouve par des calculs simples que :

tM = t(V W ) = tW tV = WV = WV In = (W −1)−1V WW −1 = Q−1V WQ = Q−1MQ.

Par conséquent, on en déduit que :
tM et M sont semblables.

(6) Cas général : en s’appuyant sur le cas précédent et la propriété (R), montrons que, pour toute matrice
M deMn(R), les matrices tM et M sont semblables. Pour ce faire, fixons une matrice M deMn(R), et
soit u l’endomorphisme de Rn canoniquement associé à M . D’après la propriété (R), il existe un entier
p ∈ J1, nK et des sous-espaces vectoriels non nuls F1, ..., Fp de Rn, stables par u, tels que Rn = F1⊕...⊕Fp

et pour tout i ∈ J1, pK, u|Fi
est un endomorphisme cyclique de Fi. Pour tout k ∈ J1, pK, on note BFk

une base de Fk. Alors la concaténation B des bases BF1 ,BF2 , ...,BFp donne une base de Rn. D’après la
question (1) de la partie III, section (C), la matrice A de u dans la base B est de la forme :

A =



A1 0 · · · · · · 0 0 0
0 A2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . Ak

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 Ap−1 0

0 0 · · · · · · 0 0 Ap


,

où Ai est une matrice de Mni
(R) pour tout i ∈ J1, pK (avec ni = dim(Fi)). Si P est la matrice de

passage de la base canonique de Rn vers la base B, alors on voit d’après la formule de changement
de bases que M = PAP −1. De plus, comme Ai est la matrice de u|Fi

dans la base BFi et que u|Fi

est un endomorphisme cyclique, on sait d’après la question précédente que les matrices tAi et Ai
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sont semblables. Pour tout i ∈ J1, pK, on désigne par Qi une matrice inversible de Mni
(R) telle que

Ai = Qi
tAiQ

−1
i , et l’on pose :

Q =



Q1 0 · · · · · · 0 0 0
0 Q2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . Qk

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 Qp−1 0

0 0 · · · · · · 0 0 Qp


.

Il est alors facile de vérifier par le calcul que :

Q1 0 · · · · · · 0 0 0
0 Q2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . Qk

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 Qp−1 0

0 0 · · · · · · 0 0 Qp





Q−1
1 0 · · · · · · 0 0 0
0 Q−1

2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . Q−1
k

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 Q−1

p−1 0
0 0 · · · · · · 0 0 Q−1

p


= In.

En particulier, la matrice Q est inversible et de plus, on a :

Q−1 =



Q−1
1 0 · · · · · · 0 0 0
0 Q−1

2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . Q−1
k

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 Q−1

p−1 0
0 0 · · · · · · 0 0 Q−1

p


.

De la même façon, on peut vérifier que :

A = Q



tA1 0 · · · · · · 0 0 0
0 tA2 · · · · · · 0 0 0

0 0
. . . (0)

...
...

...
. . .

. . . tAk

...
...

...
. . .

. . .
. . .

...
...

... (0)
. . . 0 tAp−1 0

0 0 · · · · · · 0 0 tAp


Q−1,

ce qui entraine que A = QtAQ−1, et donc tA = Q−1AQ. Partant du fait que M = PAP −1 (et donc
A = P −1MP ), on trouve alors que :

tM = t(P −1)tAtP = t(P −1)Q−1AQtP = t(P −1)Q−1P −1MPQtP. (∗)
Posons enfin R = PQtP . Comme R est un produit de matrices inversibles, elle est aussi inversible. De
plus, on trouve par des calculs simples que :

R−1 =
(
PQtP

)−1 = (tP )−1Q−1P −1 = t(P −1)Q−1P −1.

En particulier, ceci entraine avec l’égalité (∗) que tM = R−1MR. Par conséquent, on en déduit que,
pour tout M ∈Mn(R) :

les matrices tM et M sont semblables.


