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Devoir Maison de Mathématiques no6 :
Diagonalisation - Algèbre bilinéaire

Exercice 1. Soient α, p ∈]0, 1[, soient X et Y deux variables aléatoires discrètes telles que X + 1 ↪→ G(α) et
sachant [X = n], Y ↪→ B(n, p) pour tout n ∈ N, et posons G = 2Y − X. Compléter la fonction en Python
suivante pour qu’elle affiche les valeurs prises par X, Y, G lors d’une expérience aléatoire.

import numpy as np
import numpy.random as rd

def simul(a,p):
x=........
y=........
g=........
return ........

Exercice 2. Soit N une variable aléatoire et soit (Xn)n∈N∗ une suite de variables aléatoires, lesquelles
sont toutes définies sur un même espace probabilisé (Ω, A, P ). On suppose que les variables aléatoires
N, X1, ...., Xn, ... sont (mutuellement) indépendantes, que N suit la loi de Poisson de paramètre λ > 0 et
que tous les Xi suivent la même loi de Bermoulli de paramètre p ∈]0, 1[, et l’on pose S =

∑N
i=1 Xi, c’est-à-

dire S(ω) =
∑N(ω)

i=1 Xi(ω) pour tout ω ∈ Ω. Ecrire une fonction en Python qui, étant donnés deux réels λ > 0
et p ∈]0, 1[, calcule et affiche une simulation de la variable aléatoire S.

Problème 1. Dans ce problème, on désigne par p un entier ≥ 3. Pour toute matrice carrée A de taille p et
pour tout (i, j) ∈ J1, pK2, on désigne par (A)i,j le coefficient de A situé sur la i-ème ligne et la j-ème colonne.
De même, pour toute matrice ligne L de M1,p(R) et pour tout j ∈ J1, pK, on désigne par (L)j le coefficient de
L situé sur la j-ème colonne. On dit qu’une suite (An)n≥1 de matrices de Mp(R) converge vers une matrice
A ∈ Mp(R) si et seulement si : ∀(i, j) ∈ J1, pK2, (An)i,j −→

n→+∞
(A)i,j , ce que l’on note sous la forme :

An −→
n→+∞

A.

De même, on dit qu’une suite (Ln)n≥1 de matrices de M1,p(R) converge vers une matrice L ∈ M1,p(R) si et
seulement si : ∀j ∈ J1, pK, (Ln)j −→

n→+∞
(L)j , ce que l’on note sous la forme :

Ln −→
n→+∞

L.

Par la suite, on admet que, si (An)n≥1 et (Bn)n≥1 sont deux suites de matrices de Mp(R) convergeant
respectivement vers les matrices A et B, alors la suite (AnBn)n≥1 de matrices converge vers AB. De même,
on admet que, si (An)n≥1 est une suite de matrices de Mp(R) qui converge vers la matrice A et si L est une
matrice de M1,p(R), alors la suite (LAn) de matrices converge vers LA. Enfin, on désigne par ST p l’ensemble
des matrices stochastiques de Mp(R), c’est-à-dire l’ensemble des matrices A ∈ Mp(R) telles que :

∀(i, j) ∈ J1, pK2, (A)i,j ≥ 0 et ∀i ∈ J1, pK,
p∑

j=1
(A)i,j = 1.

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

(1) (a) Soit V la matrice colonne à p lignes dont tous les coefficients sont égaux à 1. Montrer que :
∀A ∈ Mp(R), A ∈ ST p ⇐⇒ ∀(i, j) ∈ J1, pK2, (A)i,j ≥ 0 et AV = V.

(b) En déduire que toutes les matrices de ST p ont une valeur propre commune.
(c) Ecrire une fonction en Python qui détermine si une matrice A ∈ Mp(R) est stochastique ou pas.

(2) Montrer que, pour tout (A, B) ∈ (ST p)2, on a : AB ∈ ST p.

(3) Par la suite, on pose A1 =

 1 0 0
1/2 1/2 0
1/3 1/3 1/3

, A2 =

1 0 0
0 1/2 1/2
0 1/2 1/2

, A3 =

 1 0 0
1/2 1/2 0
0 1/2 1/2

 .

(a) Justifier sans calcul que A1 est diagonalisable dans M3(R) et donner la dimension de E1(A1).
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(b) En utilisant éventuellement les matrices A2 et A3 :
(i) Montrer qu’il existe dans ST 3 au moins un élément non diagonalisable dans M3(R).
(ii) Justifier si l’affirmation suivante est vraie ou fausse : "∀A ∈ ST p, dim E1(A) = 1".

(4) Soit A ∈ ST p, soit λ ∈ R une valeur propre de A et soit X un vecteur propre de A pour la valeur
propre λ, de coefficients x1, ..., xp. On note i un élément de J1, pK tel que : ∀k ∈ J1, pK, |xk| ≤ |xi|.
(a) Montrer que : |λxi| ≤ |xi|.
(b) En déduire que : |λ| ≤ 1.

Partie II : Suites de moyennes de puissances de matrices stochastiques
Dans cette partie, on désigne par A un élément de ST p, et l’on note A0 = Ip.

(1) (a) Etablir que, pour tout n ∈ N, on a : An ∈ ST p.
(b) Montrer que, pour tout n ∈ N∗, on a : 1

n

∑n−1
k=0 Ak ∈ ST p.

Dans la suite de la partie II, on suppose qu’il existe un entier r ∈ J1, p − 1K, une matrice P ∈ Mp(R)
inversible, une matrice D ∈ Mp(R) diagonale dont tous les coefficients diagonaux (D)i,i sont égaux à
1 si i ≤ r et distincts de 1 si i ≥ r + 1, tels que A = PDP −1. Pour tout n ∈ N∗, on pose :

Mn = 1
n

n−1∑
k=0

Dk et Bn = PMnP −1.

On désigne par ∆ la matrice de Mp(R) diagonale dont tous les coefficients diagonaux (∆)i,i sont égaux
à 1 si i ≤ r et nuls sinon, et l’on pose B = P∆P −1.

(2) Montrer que, pour tout réel x fixé tel que |x| ≤ 1, on a : 1
n

n−1∑
k=0

xk −→
n→+∞

{
1 si x = 1
0 si x ̸= 1 .

(3) Montrer que : Mn −→
n→+∞

∆. En déduire que : Bn −→
n→+∞

B.

(4) (a) Montrer que, pour tout n ∈ N∗, on a : Bn ∈ ST p.
(b) En déduire que : B ∈ ST p.

Partie III : Aspect probabiliste
On dispose d’un objet noté T et de trois urnes numérotées 1, 2, 3. A chaque instant n ∈ N, l’objet T se trouve
dans l’une des trois urnes et une seule. Pour tout n ∈ N, on désigne par Xn la variable aléatoire égale au
numéro de l’urne dans laquelle se trouve l’objet à l’instant n, et par Ln la matrice ligne :

Ln = (P ([Xn = 1]) P ([Xn = 2]) P ([Xn = 3]).
On suppose connues la loi de X0 et la matrice A ∈ M3(R) définie pour tout (i, j) ∈ J1, 3K2 par :

(A)i,j = P[X0=i]([X1 = j]).
Enfin, on suppose que : ∀n ∈ N, ∀(i, j) ∈ J1, 3K2, P[Xn=i]([Xn+1 = j]) = P[X0=i]([X1 = j]).

(1) Montrer que : A ∈ ST 3.
(2) Montrer que : ∀n ∈ N, Ln+1 = LnA. En déduire que : ∀n ∈ N, Ln = L0An.

Dans la suite de la partie III, on suppose que A = A1, et l’on pose D1 =

1 0 0
0 1/2 0
0 0 1/3

.

(3) Déterminer une matrice P1 ∈ M3(R) inversible et à coefficients diagonaux tous égaux à 1 telle que
A1 = P1D1P −1

1 , et calculer P −1
1 .

(4) Déterminer la limite de la suite (Dn
1 )n≥1, puis la limite de la suite (An

1 )n≥1.
(5) Déterminer la limite de la suite (Ln)n≥1. Expliquer ce résultat par des arguments probabilistes.

Problème 2. Pour tout entier n ≥ 2, on pose E = Rn[x] et on désigne par B la base canonique de E. De
plus, pour tout P ∈ E et pour tout x ∈ R, on pose Φ(P )(x) = R′′(x), où R : x 7−→ (x2 − 1)P (x). Enfin, pour
tous P, Q ∈ E, on pose :

⟨P, Q⟩ =
∫ 1

−1
(1 − t2)P (t)Q(t)dt.

(1) Partie I : étude d’un endomorphisme de E.

(a) Montrer que, pour tout P ∈ E, le polynôme R′′ appartient à E.
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(b) Vérifier que Φ(x 7−→ 1) = 2(x 7−→ 1) et Φ(x 7−→ x) = 6(x 7−→ x).
(c) Montrer que Φ est un endomorphisme de E.
(d) Calculer Φ(x 7−→ xk) pour tout k ∈ {0, ..., n}, et écrire la matrice de Φ dans la base B.
(e) Montrer que Φ admet n + 1 valeurs propres deux à deux distinctes λ0, ..., λn, avec λ0 < ... < λn.
(f) L’endomorphisme Φ est-il bijectif ? Justifier.
(g) Montrer que Φ est diagonalisable et déterminer la dimension de Eλk

(Φ) pour tout k ∈ {0, ..., n}.
(h) Soit k ∈ {0, ..., n}, et soit P un vecteur propre de Φ associé à la valeur propre λk.

(i) Montrer que P est de degré k.
(ii) Montrer que Q : x 7−→ P (−x) est vecteur propre de Φ pour la valeur propre λk.
(iii) En déduire qu’il existe une unique base (P0, ..., Pn) de E constituée de vecteurs propres de Φ

telle que, pour tout k ∈ {0, ..., n}, le polynôme Pk est de degré k, unitaire et vérifie la relation
Pk(−x) = (−1)kPk(x) pour tout x ∈ R. Que peut-on en déduire sur la parité de Pk ?

(iv) Calculer P0, P1, P2, P3.

(2) Partie II : étude d’un produit scalaire sur E.

(a) Montrer que ⟨ , ⟩ est un produit scalaire sur E.
(b) A l’aide d’intégrations par parties, montrer que Φ est un endomorphisme symétrique de E.
(c) Montrer que la base (P0, ..., Pn) de la question (1)(h)(iii) est orthogonale.
(d) Soit j un élément de {1, ..., n}.

(i) Montrer que, pour tout polynôme S de degré < j, on a : ⟨S, Pj⟩ = 0.
(ii) En considérant ⟨x 7−→ 1, Pj⟩, montrer que Pj ne garde pas un signe constant sur ] − 1, 1[.
(iii) En déduire que Pj admet au moins une racine d’ordre de multiplicité impair dans ] − 1, 1[.

(e) Soit j un élément de {1, ..., n}, soient x1, ..., xm les racines d’ordre de multiplicité impair de Pj dans
] − 1, 1[ et soit S : x 7−→ (x − x1)...(x − xm).
(i) Justifier que : m ≤ j.
(ii) Montrer que le polynôme SmPj garde un signe constant sur ] − 1, 1[.
(iii) En considérant ⟨Sm, Pj⟩, montrer que m = j.
(iv) En déduire que Pj admet j racines simples distinctes toutes situées dans ] − 1, 1[.


