Lycée Clemenceau 2025-26
ECG 2

Devoir Maison de Mathématiques n°6 :
Diagonalisation - Algebre bilinéaire

Exercice 1. Soient a,p €]0,1], soient X et ¥ deux variables aléatoires discrétes telles que X +1 < G(«) et
sachant [X = n], Y < B(n,p) pour tout n € N, et posons G = 2Y — X. Compléter la fonction en Python
suivante pour qu’elle affiche les valeurs prises par X, Y, G lors d’une expérience aléatoire.

import numpy as np
import numpy.random as rd

def simul(a,p):
b SN
V=i

o
return ........

Exercice 2. Soit N une variable aléatoire et soit (X,)nen+ une suite de variables aléatoires, lesquelles
sont toutes définies sur un méme espace probabilisé (£2,.4, P). On suppose que les variables aléatoires
N, X1,....; Xy, ... sont (mutuellement) indépendantes, que N suit la loi de Poisson de parametre A > 0 et
que tous les X; suivent la méme loi de Bermoulli de parameétre p €]0, 1], et I'on pose S = Zfil X;, c’est-a-
dire S(w) = Ef\;(lw) X;(w) pour tout w € Q. Ecrire une fonction en Python qui, étant donnés deux réels A > 0
et p €]0, 1], calcule et affiche une simulation de la variable aléatoire S.

Probléme 1. Dans ce probléme, on désigne par p un entier > 3. Pour toute matrice carrée A de taille p et
pour tout (i, ) € [1,p]?, on désigne par (A); ; le coefficient de A situé sur la i-éme ligne et la j-éme colonne.
De méme, pour toute matrice ligne L de M, ,(R) et pour tout j € [1,p], on désigne par (L); le coefficient de
L situé sur la j-éme colonne. On dit qu’une suite (A4, )n>1 de matrices de M, (R) converge vers une matrice

A € My(R) si et seulement si : V(i,j) € [1,p]?, (4n)i; = (A); ;, ce que I'on note sous la forme :
n—-+0oo

A, — A

n—-+oo

De méme, on dit qu’une suite (L, ),>1 de matrices de M ,(R) converge vers une matrice L € M ,(R) si et
seulement si : Vj € [1,p], (Ly); = (L);, ce que I'on note sous la forme :
n——+0o0o
L, — L.
n—+o00

Par la suite, on admet que, si (A,)n>1 €t (Bp)n>1 sont deux suites de matrices de M,(R) convergeant
respectivement vers les matrices A et B, alors la suite (A,,By),>1 de matrices converge vers AB. De méme,
on admet que, si (A,)n>1 est une suite de matrices de M,(R) qui converge vers la matrice A et si L est une
matrice de My ,(R), alors la suite (LA,,) de matrices converge vers LA. Enfin, on désigne par ST, I'ensemble
des matrices stochastiques de M, (R), c’est-a-dire I’ensemble des matrices A € M, (R) telles que :

V(i j) € [Lp]*, (A)i; >0 et Vie[lp], Y (A, =1

j=1

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

(1) (a) Soit V la matrice colonne & p lignes dont tous les coefficients sont égaux a 1. Montrer que :
VA e M,(R), AeST, <= VY(i,j)€[l,p]? (A)i; >0 et AV =V.

(b) En déduire que toutes les matrices de ST, ont une valeur propre commune.
(c) Ecrire une fonction en Python qui détermine si une matrice A € M, (R) est stochastique ou pas.

(2) Montrer que, pour tout (A4, B) € (8T ,)?, ona: AB € ST.

1 0 0 1 0 0 1 0 0
(3) Par la suite, on pose A; = [1/2 1/2 0 |, A= [0 1/2 1/2|,43=[1/2 1/2 0
1/3 1/3 1/3 0 1/2 1/2 0 1/2 1/2

(a) Justifier sans calcul que A; est diagonalisable dans M3(R) et donner la dimension de F1(A;).
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(b) En utilisant éventuellement les matrices As et As :
(i) Montrer qu'il existe dans ST 3 au moins un élément non diagonalisable dans M3(R).
(ii) Justifier si I'affirmation suivante est vraie ou fausse : "VA € ST, dim Eq(A) = 1"

(4) Soit A € ST, soit A € R une valeur propre de A et soit X un vecteur propre de A pour la valeur
propre A, de coefficients x1, ..., z,. On note ¢ un élément de [1,p] tel que : Vk € [1,p], |zx| < |z;].

(a) Montrer que : |Az;| < |z;].
(b) En déduire que : [A| < 1.

Partie IT : Suites de moyennes de puissances de matrices stochastiques
Dans cette partie, on désigne par A un élément de ST, et I'on note A° = I,,.

(1) (a) Etablir que, pour tout n € N, on a : A" € ST .
(b) Montrer que, pour tout n € N*, on a : %ZZ;S AF € ST,

Dans la suite de la partie II, on suppose qu'il existe un entier r € [1,p — 1], une matrice P € M,(R)
inversible, une matrice D € M, (R) diagonale dont tous les coefficients diagonaux (D);; sont égaux a
1sii<retdistincts de 1 sii>r+1, tels que A = PDP~!. Pour tout n € N*, on pose :

n—1
1
M,=~-Y DF e B,=PM,P "

On désigne par A la matrice de M, (R) diagonale dont tous les coefficients diagonaux (A); ; sont égaux
a 1si¢ < r et nuls sinon, et 'on pose B = PAP L

1 si z=1

1 n—1 .
é é < D= .
(2) Montrer que, pour tout réel z fixé tel que |z| <1, on a . kz_:o V0 s o 21

(3) Montrer que : M, - A. En déduire que : B, — B.
n—-+0oo

n—-+o0o
(4) (a) Montrer que, pour tout n € N*, on a : B, € ST.
(b) En déduire que : B € ST,

Partie III : Aspect probabiliste

On dispose d’un objet noté T et de trois urnes numérotées 1,2, 3. A chaque instant n € N, I'objet 1" se trouve
dans 'une des trois urnes et une seule. Pour tout n € N, on désigne par X,, la variable aléatoire égale au
numéro de 'urne dans laquelle se trouve ’objet a I'instant n, et par L,, la matrice ligne :

Ln = (P([X, =1]) P([Xn =2]) P([X, =3]).
On suppose connues la loi de Xj et la matrice A € M3(R) définie pour tout (4, ) € [1,3]? par :
(A)ij = Prxo=i ([X1 = j]).
Enfin, on suppose que : Vn € N, V(i,j) € [1,3]?, Pix, = ([Xnt1 = j]) = Pix,=q([X1 = J]).
(1) Montrer que : A € 8T3.
(2) Montrer que : Vn € N, L,,11 = L, A. En déduire que : Vn € N, L,, = Ly A"™.

1 0 0
Dans la suite de la partie III, on suppose que A = Ay, et Pon pose Dy = |0 1/2 0
0 0 1/3

(3) Déterminer une matrice P; € M3(R) inversible et & coefficients diagonaux tous égaux a 1 telle que
A = PlDlPl_l, et calculer Pl_l.

(4) Déterminer la limite de la suite (D7 ),>1, puis la limite de la suite (A}),>1.

(5) Déterminer la limite de la suite (L, )n>1. Expliquer ce résultat par des arguments probabilistes.

Probléme 2. Pour tout entier n > 2, on pose E = R,,[z] et on désigne par B la base canonique de E. De
plus, pour tout P € E et pour tout x € R, on pose ®(P)(z) = R"(z), ou R : x — (22 — 1)P(z). Enfin, pour
tous P,Q € FE, on pose :
1
Q)= [ (1-ermaa
-1
(1) Partie I : étude d’un endomorphisme de E.

(a) Montrer que, pour tout P € E, le polynéme R” appartient & E.



—~
=

Vérifier que ®(x — 1) =2(x +—— 1) et P(x —> x) = 6(x — x).

Montrer que ® est un endomorphisme de E.

Calculer ®(z — z¥) pour tout k € {0,...,n}, et écrire la matrice de ® dans la base B.

Montrer que ® admet n + 1 valeurs propres deux a deux distinctes Ag, ..., Ap, avec Ag < ... < Ay,.

—~
aa

—~
-

L’endomorphisme ® est-il bijectif ? Justifier.
Montrer que ® est diagonalisable et déterminer la dimension de Ey, (®) pour tout k € {0, ...,n}.

—
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Soit k € {0, ...,n}, et soit P un vecteur propre de ® associé a la valeur propre .
(i) Montrer que P est de degré k.
(ii) Montrer que @ : x — P(—x) est vecteur propre de ® pour la valeur propre Ag.

(iii) En déduire qu’il existe une unique base (P, ..., P,) de F constituée de vecteurs propres de ®
telle que, pour tout k € {0, ...,n}, le polyndéme Py, est de degré k, unitaire et vérifie la relation
Py(—x) = (=1)kPy(z) pour tout = € R. Que peut-on en déduire sur la parité de Py, ?

(IV) Calculer P()7 Pl,PQ, P3

(2) Partie II : étude d’un produit scalaire sur F.

(a) Montrer que (, ) est un produit scalaire sur E.
(b) A laide d’intégrations par parties, montrer que ® est un endomorphisme symétrique de E.
(¢) Montrer que la base (P, ..., P,) de la question (1)(h)(iii) est orthogonale.
(d) Soit j un élément de {1,...,n}.
(i) Montrer que, pour tout polynéme S de degré < j, on a : (S, P;) = 0.
(ii) En considérant (x — 1, P;), montrer que P; ne garde pas un signe constant sur | — 1, 1[.
(i) En déduire que P; admet au moins une racine d’ordre de multiplicité impair dans | — 1,1].
(e) Soit j un élément de {1,...,n}, soient z1, ..., &y, les racines d’ordre de multiplicité impair de P; dans
] —1,1] et soit S : x +— (x — x1)...(T — Tm)-
(i) Justifier que : m < j.
(ii) Montrer que le polynéme S,, P; garde un signe constant sur | — 1, 1[.
(iii) En considérant (S,,, P;), montrer que m = j.
)

(iv) En déduire que P; admet j racines simples distinctes toutes situées dans | — 1,1][.



