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Corrigé du Devoir Maison de Mathématiques no6 :
Diagonalisation - Algèbre bilinéaire

Corrigé de l’exercice 1. Soient α, p ∈]0, 1[, soient X et Y deux variables aléatoires discrètes telles que
X + 1 ↪→ G(α) et sachant [X = n], Y ↪→ B(n, p) pour tout n ∈ N, et posons G = 2Y − X. Complétons la
fonction en Python suivante pour qu’elle affiche les valeurs prises par X, Y, G lors d’une expérience aléatoire.

import numpy as np
import numpy.random as rd

def simul(a,p):
x=........
y=........
g=........
return ........

Pour ce faire, on procèdera comme suit :

import numpy as np
import numpy.random as rd

def simul(a,p):
x=rd.geometric(a)-1
y=rd.binomial(x,p)
g=2*y-x
return x,y,g

Corrigé de l’exercice 2. Soit N une variable aléatoire et soit (Xn)n∈N∗ une suite de variables aléatoires,
lesquelles sont toutes définies sur un même espace probabilisé (Ω,A, P ). On suppose que les variables aléatoires
N, X1, ...., Xn, ... sont (mutuellement) indépendantes, que N suit la loi de Poisson de paramètre λ > 0 et que
tous les Xi suivent la même loi de Bermoulli de paramètre p ∈]0, 1[, et l’on pose S =

∑N
i=1 Xi, c’est-à-dire

S(ω) =
∑N(ω)

i=1 Xi(ω) pour tout ω ∈ Ω. Ecrivons une fonction en Python qui, étant donnés deux réels λ > 0
et p ∈]0, 1[, calcule et affiche une simulation de la variable aléatoire S. Pour ce faire, on procèdera comme
suit :

import numpy as np
import numpy.random as rd

def simul2(l,p):
n=rd.poisson(l)
x=rd.binomial(1,p,n)
s=np.sum(x)
return s

Corrigé du problème 1. Dans ce problème, on désigne par p un entier ≥ 3. Pour toute matrice carrée A
de taille p et pour tout (i, j) ∈ J1, pK2, on désigne par (A)i,j le coefficient de A situé sur la i-ème ligne et la
j-ème colonne. De même, pour toute matrice ligne L deM1,p(R) et pour tout j ∈ J1, pK, on désigne par (L)j

le coefficient de L situé sur la j-ème colonne. On dit qu’une suite (An)n≥1 de matrices de Mp(R) converge
vers une matrice A ∈Mp(R) si et seulement si : ∀(i, j) ∈ J1, pK2, (An)i,j −→

n→+∞
(A)i,j , ce que l’on note :

An −→
n→+∞

A.

De même, on dit qu’une suite (Ln)n≥1 de matrices de M1,p(R) converge vers une matrice L ∈M1,p(R) si et
seulement si : ∀j ∈ J1, pK, (Ln)j −→

n→+∞
(L)j , ce que l’on note sous la forme :

Ln −→
n→+∞

L.

1



2

Par la suite, on admet que, si (An)n≥1 et (Bn)n≥1 sont deux suites de matrices de Mp(R) convergeant
respectivement vers les matrices A et B, alors la suite (AnBn)n≥1 de matrices converge vers AB. De même,
on admet que, si (An)n≥1 est une suite de matrices de Mp(R) qui converge vers la matrice A et si L est une
matrice deM1,p(R), alors la suite (LAn) de matrices converge vers LA. Enfin, on désigne par ST p l’ensemble
des matrices stochastiques de Mp(R), c’est-à-dire l’ensemble des matrices A ∈Mp(R) telles que :

∀(i, j) ∈ J1, pK2, (A)i,j ≥ 0 et ∀i ∈ J1, pK,
p∑

j=1
(A)i,j = 1.

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

(1) (a) Soit V la matrice colonne à p lignes dont tous les coefficients sont égaux à 1. Montrons que :

∀A ∈Mp(R), A ∈ ST p ⇐⇒ ∀(i, j) ∈ J1, pK2, (A)i,j ≥ 0 et AV = V.

Par des calculs simples et vu que tous les coefficients de V sont tous égaux à 1, on trouve que :

AV =

(A)1,1 ... (A)1,p

...
...

(A)p,1 ... (A)p,p


1

...
1

 =


∑p

j=1(A)1,j

...∑p
j=1(A)p,j

 .

Dès lors, on voit que AV = V si et seulement si :

∀i ∈ J1, pK,
p∑

j=1
(A)i,j = 1

En particulier, la deuxième condition "∀i ∈ J1, pK,
∑p

j=1(A)i,j = 1" apparaissant dans la définition
d’une matrice stochastique est équivalente à la condition "AV = V ". Par conséquent, on en déduit
que, pour toute matrice A ∈Mp(R) :

A ∈ ST p ⇐⇒ ∀(i, j) ∈ J1, pK2, (A)i,j ≥ 0 et AV = V.

(b) Montrons que toutes les matrices de ST p ont une valeur propre commune. D’après la question
précédente et comme V n’est pas le vecteur colonne nul, on voit que V est un vecteur propre de
toute matrice stochastique pour la valeur propre 1. Par conséquent, on en déduit que :

toutes les matrices de ST p ont une valeur propre commune, à savoir : 1.

(c) Ecrivons une fonction en Python qui détermine si une matrice A ∈Mp(R) est stochastique ou pas.
Pour ce faire, on va tester chacune des conditions que doit vérifier une matrice A ∈ Mp(R) pour
être stochastique. On fera intervenir une variable s qui jouera le rôle d’une variable booléenne, en
prenant la valeur 1 si toutes les conditions pour être stochastique sont vérifiées, et 0 sinon. Plus
précisément, on procèdera comme suit :

import numpy as np

def stochastique(a):
s=1
n=np.shape(a)[0]
for i in range(n):

for j in range(n):
if a[i,j]<0:

s=0
for i in range(n):

if np.sum(a[i,:])!=1:
s=0

if s==0:
print(’a n est pas stochastique’)

else:
print(’a est stochastique’)
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(2) Montrons que, pour tout (A, B) ∈ (ST p)2, on a : AB ∈ ST p. Pour ce faire, considérons deux matrices
A, B de ST p. Comme A et B sont stochastiques, tous leurs coefficients sont ≥ 0, et donc on trouve par
définition du produit matriciel que, pour tout (i, j) ∈ J1, pK2 :

(AB)i,j =
p∑

k=1
(A)i,k(B)k,j ≥ 0.

De plus, comme A et B sont stochastiques, on sait d’après la question (1)(a) que AV = V et BV = V ,
ce qui entraine par associativité du produit matriciel que :

(AB)V = A(BV ) = AV = V.

Par conséquent, on en déduit avec la question (1)(a) que, pour tout (A, B) ∈ (ST p)2 :

AB ∈ ST p.

(3) Par la suite, on pose A1 =

 1 0 0
1/2 1/2 0
1/3 1/3 1/3

, A2 =

1 0 0
0 1/2 1/2
0 1/2 1/2

, A3 =

 1 0 0
1/2 1/2 0
0 1/2 1/2

 .

(a) Justifions sans calcul que A1 est diagonalisable dans M3(R) et donnons la dimension de E1(A1).
Comme A1 est triangulaire inférieure, ses valeurs propres sont exactement ses coefficients diagonaux,
c’est-à-dire 1, 1

2 , 1
3 . En particulier, la matrice A1 admet trois valeurs propres distinctes. Mais comme

A1 appartient à M3(R), on en déduit que :

A1 est diagonalisable et de plus : dim E1(A1) = 1.

(b) En utilisant éventuellement les matrices A2 et A3 :
(i) Montrons qu’il existe dans ST 3 au moins un élément non diagonalisable dans M3(R). Pour ce

faire, on va s’intéresser à la matrice A3. Comme A3 est triangulaire inférieure, ses valeurs propres
sont exactement ses coefficients diagonaux, c’est-à-dire 1, 1

2 . En particulier, la matrice A3 admet
deux valeurs propres distinctes. A présent, déterminons une base de E1(A3). Soit X un vecteur
colonne de composantes x1, x2, x3. Alors on voit que :

X ∈ E1(A3) ⇐⇒ A3X −X = 0 ⇐⇒ A3

x1
x2
x3

−
x1

x2
x3

 =

0
0
0

 .

En termes de coordonnées, on voit que (x1, x2, x3) est solution du système linéaire : 0 = 0
1
2 x1 − 1

2 x2 = 0
1
2 x2 − 1

2 x3 = 0
.

On résout alors ce système par la méthode du pivot de Gauss. En supprimant la première ligne
et en effectuant les opérations élémentaires L2 ← 2L2 et L3 ← 2L3, on trouve que :{

x1 − x2 = 0
x2 − x3 = 0 .

Si l’on choisit x3 comme paramètre, on trouve que x1 = x3 et x2 = x3, et donc :

X ∈ E1(A3) ⇐⇒ ∃x3 ∈ R, X = x3

1
1
1

 ⇐⇒ X ∈ Vect

1
1
1

 .

Dès lors, on voit que E1(A3) = Vect(V ), et donc (V ) est une famille génératrice de E1(A3). Mais
comme ce vecteur colonne est non nul, il forme une famille libre, et donc :

(V ) est une base de E1(A3).

Enfin, déterminons une base de E1/2(A3). En gardant les mêmes notations, on a :

X ∈ E1/2(A3) ⇐⇒ A3X − 1
2X = 0 ⇐⇒ A3

x1
x2
x3

− 1
2

x1
x2
x3

 =

0
0
0

 .

En termes de coordonnées, on voit que (x1, x2, x3) est solution du système linéaire :
1
2 x1 = 0
1
2 x1 = 0

1
2 x2 = 0

.
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Si l’on choisit x3 comme paramètre, on trouve que x1 = 0, x2 = 0 et x3 = x3, et donc :

X ∈ E1/2(A3) ⇐⇒ ∃x3 ∈ R, X = x3

0
0
1

 ⇐⇒ X ∈ Vect

0
0
1

 .

Dès lors, si U est le vecteur colonne de composantes 0, 0, 1, on voit que E1/2(A3) = Vect(U), et
donc (U) est une famille génératrice de E1/2(A3). Mais comme ce vecteur colonne est non nul,
il forme une famille libre, et donc :

(U) est une base de E1/2(A3).

Mais comme dim E1(A3) + dim E1/2(A3) = 1 + 1 = 2 ̸= 3, on en déduit que A3 n’est pas
diagonalisable dans M3(R). En outre, comme tous les coefficients de A3 sont ≥ 0 et que la
somme de ses coefficients en ligne est toujours égale à 1, on voit que A3 est stochastique. Par
conséquent, on en déduit que :

ST 3 contient au moins un élément non diagonalisable dans M3(R).

(ii) Justifions si l’affirmation suivante est vraie ou fausse : "∀A ∈ ST p, dim E1(A) = 1". On peut voir
que la matrice Ip est à coefficients ≥ 0, et que la somme de ses coefficients en ligne est toujours
égale à 1. En d’autres termes, la matrice identité de Mp(R) est stochastique. De plus, comme
IpX = X pour tout vecteur colonne X, on voit que E1(Ip) = Mp,1(R), et donc dim E1(Ip) =
p ̸= 1. Par conséquent, on en déduit que :

l’affirmation ”∀A ∈ ST p, dim E1(A) = 1” est fausse.

(4) Soit A ∈ ST p, soit λ ∈ R une valeur propre de A et soit X un vecteur propre de A pour la valeur
propre λ, de coefficients x1, ..., xp. On note i un élément de J1, pK tel que : ∀k ∈ J1, pK, |xk| ≤ |xi|.
(a) Montrons que : |λxi| ≤ |xi|. Comme X est un vecteur propre de A pour la valeur propre λ, on sait

que AX = λX. En particulier, si l’on s’intéresse à la i-ème composante du vecteur AX, on a :
p∑

k=1
(A)i,kxk = λxi.

En passant à la valeur absolue, on obtient avec l’inégalité triangulaire que :

|λxi| =

∣∣∣∣∣
p∑

k=1
(A)i,kxk

∣∣∣∣∣ ≤
p∑

k=1
|(A)i,kxk| ≤

p∑
k=1
|(A)i,k| |xk| .

Comme tous les coefficients de A sont ≥ 0 et que |xk| ≤ |xi| pour tout k ∈ J1, pK, on a :

|λxi| ≤
p∑

k=1
|(A)i,k| |xk| ≤

p∑
k=1

(A)i,k |xk| ≤
p∑

k=1
(A)i,k |xi| .

Mais comme A est stochastique, on sait que
∑p

k=1(A)i,k = 1, et donc :

|λxi| ≤
p∑

k=1
(A)i,k |xi| ≤

[
p∑

k=1
(A)i,k

]
|xi| ≤ 1× |xi| .

Par conséquent, on en déduit que :

|λxi| ≤ |xi|.

(b) Montrons que : |λ| ≤ 1. Comme X est un vecteur propre de A, on sait par définition que X ̸= 0, et
donc il existe un indice k ∈ J1, pK tel que xk ̸= 0. Dès lors, comme |xk| ≤ |xi| par construction, on
voit que |xi| > 0. Mais comme |λxi| = |λ|.|xi| ≤ |xi|, on en déduit par division que :

|λ| ≤ 1.

Partie II : Suites de moyennes de puissances de matrices stochastiques

Dans cette partie, on désigne par A un élément de ST p, et l’on note A0 = Ip.
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(1) (a) Etablissons par récurrence la propriété P définie pour tout n ∈ N par :

P(n) : ”An ∈ ST p”.

Tout d’abord, on voit que P(0) est vraie car A0 = Ip et Ip est stochastique. En effet, tous ses
coefficients sont ≥ 0 et la somme de ses coefficients en ligne est toujours égale à 1. A présent,
supposons que P(n) soit vraie, et montrons que P(n + 1) l’est aussi. Par hypothèse de récurrence,
on sait que An est stochastique. Comme le produit de deux matrices stochastiques est stochastique,
et que A et An sont stochastiques, il s’ensuit avec la question (1)(b) de la partie I que A×An = An+1

est aussi stochastique, et donc P(n + 1) est vraie. D’après le principe de récurrence, la propriété P
est vraie à tout ordre n ∈ N. Par conséquent, on a pour tout n ∈ N :

An ∈ ST p.

(b) Montrons que, pour tout n ∈ N∗, on a : 1
n

∑n−1
k=0 Ak ∈ ST p. D’après la question précédente, on sait

que Ak est stochastique pour tout k ∈ N. En particulier, tous les coefficients de Ak sont ≥ 0 pour
tout k ∈ N. Dès lors, il s’ensuit que, pour tout (i, j) ∈ J1, pK2 :(

1
n

n−1∑
k=0

Ak

)
i,j

= 1
n

n−1∑
k=0

(
Ak
)

i,j
≥ 0. (∗)

De plus, comme Ak est stochastique pour tout k ∈ N, on sait que AkV = V pour tout k ∈ N d’après
la question (1)(b). Par linéarité, on trouve que :(

1
n

n−1∑
k=0

Ak

)
V = 1

n

n−1∑
k=0

AkV = 1
n

n−1∑
k=0

V = V. (∗∗)

Comme les conditions (∗) et (∗∗) sont vérifiées, on en déduit avec la question (1)(b) que :

∀n ∈ N∗,
1
n

n−1∑
k=0

Ak ∈ ST p.

Dans la suite de la partie II, on suppose qu’il existe un entier r ∈ J1, p − 1K, une matrice P ∈ Mp(R)
inversible, une matrice D ∈ Mp(R) diagonale dont tous les coefficients diagonaux (D)i,i sont égaux à
1 si i ≤ r et distincts de 1 si i ≥ r + 1, tels que A = PDP −1. Pour tout n ∈ N∗, on pose :

Mn = 1
n

n−1∑
k=0

Dk et Bn = PMnP −1.

On désigne par ∆ la matrice deMp(R) diagonale dont tous les coefficients diagonaux (∆)i,i sont égaux
à 1 si i ≤ r et nuls sinon, et l’on pose B = P∆P −1.

(2) Montrons que, pour tout réel x fixé tel que |x| ≤ 1, on a :

1
n

n−1∑
k=0

xk −→
n→+∞

{
1 si x = 1
0 si x ̸= 1 .

Pour ce faire, on procède à une distinction de cas :

Premier cas : x = 1.

Dans ce cas, on trouve par des calculs simples que, pour tout n ∈ N∗ :

1
n

n−1∑
k=0

1k = 1
n

n−1∑
k=0

1 = n

n
= 1.

Par conséquent, on en déduit que, si x = 1 :

1
n

n−1∑
k=0

xk −→
n→+∞

1.

Deuxième cas : x ̸= 1.
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Dans ce cas, comme |x| ≤ 1 et que x ̸= 1, on voit que x ∈ [−1, 1[. D’après les propriétés des sommes de
termes de suites géométriques, on voit que, pour tout n ∈ N∗ :

1
n

n−1∑
k=0

xk = 1
n
× 1− xn

1− x
.

Comme |x| ≤ 1, la suite (xn)n≥1 est bornée. Mais comme le produit d’une suite bornée et d’une suite
tendant vers 0 converge vers 0, il s’ensuit que :

1
n

n−1∑
k=0

xk −→
n→+∞

0.

Par conséquent, on déduit de cette distinction de cas que :

1
n

n−1∑
k=0

xk −→
n→+∞

{
1 si x = 1
0 si x ̸= 1 .

(3) Montrons que la suite (Mn)n≥1 tend vers ∆. Comme A = PDP −1, les coefficients diagonaux de la
matrice D sont exactement les valeurs propres de A. Mais comme |λ| ≤ 1 pour tout λ ∈ Sp(A) d’après
la question (4)(b) de la partie I, il s’ensuit que |(D)i,i| ≤ 1 pour tout i ∈ J1, pK. D’après la question
précédente, vu que D est diagonale et que tous les coefficients diagonaux (D)i,i sont égaux à 1 si i ≤ r
et distincts de 1 si i ≥ r + 1, on obtient que, pour tout i ∈ J1, pK :(

1
n

n−1∑
k=0

Dk

)
i,i

= 1
n

n−1∑
k=0

(D)k
i,i −→

n→+∞

{
1 si i ≤ r
0 si i ≥ r + 1 .

De plus, comme D est diagonale, on voit que, pour tous indices i, j avec i ̸= j :(
1
n

n−1∑
k=0

Dk

)
i,j

= 1
n

n−1∑
k=0

(Dk)i,j = 0 −→
n→+∞

0.

En d’autres, on vient de montrer que, pour tous indices i, j :

(Mn)i,j =
(

1
n

n−1∑
k=0

Dk

)
i,j

−→
n→+∞

(∆)i,j .

Par conséquent, on en déduit que :
Mn −→

n→+∞
∆.

A présent, montrons que la suite (Bn)n≥1 tend vers B. Comme Bn = PMnP −1 pour tout n ∈ N et
que la suite (Mn)n≥1 converge vers ∆, on voit avec la propriété admise en début de problème que la
suite (PMn)n≥1 converge vers P∆, puis que la suite (PMnP −1)n≥1 = ((PMn)P −1)n≥1 converge vers
(P∆)P −1 = P∆P −1 = B. Par conséquent, on en déduit que :

Bn −→
n→+∞

B.

(4) (a) Montrer que, pour tout n ∈ N∗, on a : Bn ∈ ST p. Par construction de Mn, par distributivité du
produit matriciel et vu que A = PDP −1, on trouve que, pour tout n ∈ N∗ :

Bn = PMnP −1 = P

[
1
n

n−1∑
k=0

Dk

]
P −1 = 1

n

n−1∑
k=0

PDkP −1 = 1
n

n−1∑
k=0

(PDP −1)k = 1
n

n−1∑
k=0

Ak.

Comme A appartient à ST p, on sait que 1
n

∑n−1
k=0 Ak appartient à ST p d’après la question (1)(b) de

la partie II, et donc on a pour tout n ∈ N∗ :

Bn ∈ ST p.

(b) Montrons que : B ∈ ST p. Comme Bn appartient à ST p pour tout n ∈ N∗, on voit par définition
des matrices stochastiques que, pour tout n ∈ N∗ :

∀(i, j) ∈ J1, pK2, (Bn)i,j ≥ 0 et ∀i ∈ J1, pK,
p∑

j=1
(Bn)i,j = 1.
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Comme la suite (Bn)n≥1 converge vers B, cela signifie par définition que la suite ((Bn)i,j)n≥1 tend
vers Bi,j pour tout (i, j) ∈ J1, pK2. Dès lors, on obtient par passage à la limite dans les égalités
ci-dessus que :

∀(i, j) ∈ J1, pK2, (B)i,j ≥ 0 et ∀i ∈ J1, pK,
p∑

j=1
(B)i,j = 1.

Par conséquent, on en déduit que :

B ∈ ST p.

Partie III : Aspect probabiliste

On dispose d’un objet noté T et de trois urnes numérotées 1, 2, 3. A chaque instant n ∈ N, l’objet T se
trouve dans l’une des trois urnes et une seule. Pour tout n ∈ N, on désigne par Xn la variable aléatoire égale
au numéro de l’urne dans laquelle se trouve l’objet à l’instant n, et par Ln la matrice ligne :

Ln = (P ([Xn = 1]) P ([Xn = 2]) P ([Xn = 3]).

On suppose connues la loi de X0 et la matrice A ∈M3(R) définie pour tout (i, j) ∈ J1, 3K2 par :

(A)i,j = P[X0=i]([X1 = j]).

Enfin, on suppose que : ∀n ∈ N, ∀(i, j) ∈ J1, 3K2, P[Xn=i]([Xn+1 = j]) = P[X0=i]([X1 = j]).
(1) Montrons que : A ∈ ST 3. Comme P[X0=i] est une probabilité sur l’univers Ω, elle ne prend que des

valeurs ≥ 0 pour tout i ∈ J1, 3K, et donc on a pour tout (i, j) ∈ J1, 3K2 :

(A)i,j = P[X0=i]([X1 = j]) ≥ 0.

Comme de plus Xn(Ω) = {1, 2, 3}, on voit que la famille ([Xn = 1], [Xn = 2], [Xn = 3]) est un système
complet d’événements, et donc on a pour tout i ∈ J1, 3K :

3∑
j=1

(A)i,j =
3∑

j=1
P[X0=i]([X1 = j]) = 1.

Par conséquent, on en déduit par définition des matrices stochastiques que :

A ∈ ST 3.

(2) Montrons tout d’abord que : ∀n ∈ N, Ln+1 = LnA. Par définition du produit matriciel et des matrices
A et Ln, on trouve que, pour tout j ∈ J1, 3K :

(LnA)j =
3∑

k=1
(Ln)k(A)k,j =

3∑
k=1

P ([Xn = k])P[X0=k]([X1 = j]).

Comme P[Xn=i]([Xn+1 = j]) = P[X0=i]([X1 = j]) pour tout n ∈ N et pour tout (i, j) ∈ J1, 3K2, on
obtient que, pour tout n ∈ N et pour tout j ∈ J1, 3K :

(LnA)j =
3∑

k=1
P ([Xn = k])P[X0=k]([X1 = j]) =

3∑
k=1

P ([Xn = k])P[Xn=k]([Xn+1 = j]).

D’après la formule des probabilités totales, il s’ensuit que, pour tout n ∈ N et pour tout j ∈ J1, 3K :

(LnA)j =
3∑

k=1
P ([Xn = k])P[Xn=k]([Xn+1 = j]) = P ([Xn+1 = j]) = (Ln+1)j .

Comme ceci est vrai pour tout j ∈ J1, 3K, on en déduit que, pour tout n ∈ N :

Ln+1 = LnA.

A présent, montrons par récurrence la propriété P définie pour tout n ∈ N par :

P(n) : ”Ln = L0An”.

Tout d’abord, on voit que P(0) est vraie car A0 = Ip et L0 = L0Ip = L0A0. Supposons maintenant
que P(n) soit vraie, et montrons que P(n + 1) l’est aussi. Par hypothèse de récurrence, on sait que
Ln = L0An. Comme Ln+1 = LnA, il s’ensuit que :

Ln+1 = LnA = L0An ×A = L0An+1,
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et donc P(n + 1) est vraie. D’après le principe de récurrence, la propriété P est vraie à tout ordre
n ∈ N. Par conséquent, on a pour tout n ∈ N :

Ln = L0An.

Dans la suite de la partie III, on suppose que A = A1, et l’on pose D1 =

1 0 0
0 1/2 0
0 0 1/3

.

(3) Déterminons tout d’abord une matrice P1 ∈M3(R) inversible et à coefficients diagonaux tous égaux à 1
telle que A1 = P1D1P −1

1 . En d’autres termes, il s’agit ici de diagonaliser la matrice A1. Pour ce faire, on
commence par remarquer que, comme A1 est triangulaire inférieure, ses valeurs propres sont exactement
ses coefficients diagonaux, c’est-à-dire 1, 1

2 , 1
3 . En particulier, la matrice A1 admet trois valeurs propres

distinctes, à savoir 1, 1
2 , 1

3 , et tous ses sous-espaces propres sont de dimension 1. Passons au calcul d’une
base de E1(A1). D’après la question (1)(b) de la partie I, on sait que V est un vecteur propre de A1
pour la valeur propre 1. Comme de plus V ̸= 0, la famille (V ) est libre. Mais comme dim E1(A1) = 1
d’après ce qui précède et que (V ) a 1 élément, on en déduit que :

(V ) est une base de E1(A1).

Ensuite, déterminons une base de E1/3(A1). Par des calculs simples, on trouve que :

A1

0
0
1

 =

 1 0 0
1/2 1/2 0
1/3 1/3 1/3

0
0
1

 =

 0
0

1/3

 = 1
3

0
0
1

 .

En particulier, le vecteur V1/3 de composantes 0, 0, 1 est un vecteur propre de A1 pour la valeur propre
1/3. Comme de plus V1/3 ̸= 0, la famille (V1/3) est libre. Mais comme dim E1/3(A1) = 1 d’après ce qui
précède et que (V1/3) a 1 élément, on en déduit que :

(V1/3) =

0
0
1

 est une base de E1/3(A1).

Enfin, déterminons une base de E1/2(A1). Pour ce faire, considérons un vecteur colonne X de compo-
santes x1, x2, x3. Alors on trouve que :

X ∈ E1/2(A1) ⇐⇒ A1X − 1
2X = 0 ⇐⇒ A1

x1
x2
x3

− 1
2

x1
x2
x3

 =

0
0
0

 .

En termes de coordonnées, on voit que (x1, x2, x3) est solution du système linéaire :
1
2 x1 = 0
1
2 x1 = 0
1
3 x1 + 1

3 x2 − 1
6 x3 = 0

.

Si l’on choisit x2 comme paramètre, on trouve que x1 = 0, x2 = x2 et x3 = 2x2, et donc :

X ∈ E1/2(A1) ⇐⇒ ∃x2 ∈ R, X = x2

0
1
2

 ⇐⇒ X ∈ Vect

0
1
2

 .

En particulier, si V1/2 est le vecteur colonne de composantes 0, 1, 2, alors on voit que E1/2(A1) =
Vect(V1/2), et donc (V1/2) est une famille génératrice de E1/2(A1). Mais comme ce vecteur colonne est
non nul, il forme une famille libre, et donc :

(V1/2) =

0
1
2

 est une base de E1/2(A1).

Par conséquent, on en déduit que A1 se diagonalise sous la forme suivante :

A1 = P1D1P −1
1 , avec : P1 =

1 0 0
1 1 0
1 2 1

 et D1 =

1 0 0
0 1/2 0
0 0 1/3

 .
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A présent, calculons P −1
1 . Pour ce faire, on cherche à résoudre l’équation Y = P1X, où :

P1 =

1 0 0
1 1 0
1 2 1

 , X =

x1
x2
x3

 et Y =

y1
y2
y3

 .

La résolution de cette équation se ramène à celle du système linéaire : x1 = y1
x1 + x2 = y2
x1 + 2x2 + x3 = y3

.

Pour résoudre ce système, on procède par la méthode du pivot de Gauss. Après les opérations élémen-
taires L2 ← L2 − L1 et L3 ← L3 − L1, on obtient que : x1 = y1

x2 = −y1 + y2
2x2 + x3 = −y1 + y3

.

Après l’opération élémentaire L3 ← L3 − 2L2, on trouve que : x1 = y1
x2 = −y1 + y2

x3 = y1 − 2y2 + y3

.

Par conséquent, on en déduit que :

P −1
1 =

 1 0 0
−1 1 0
1 −2 1

 .

(4) Déterminons tout d’abord la limite de la suite (Dn
1 )n≥1. Comme la matrice D1 est diagonale, on obtient

que, pour tout n ∈ N∗ :

Dn
1 =

1 0 0
0 1/2 0
0 0 1/3

n

=

1 0 0
0 (1/2)n 0
0 0 (1/3)n

 .

Comme (1/2)n et (1/3)n tendent vers 0 quand n tend vers +∞, il s’ensuit par définition de la limite
d’une suite de matrices que :

Dn
1 −→

n→+∞

1 0 0
0 0 0
0 0 0

 = ∆.

A présent, déterminons la limite de la suite (An
1 )n≥1. Comme An

1 = (P1D1P −1
1 )n = P1Dn

1 P −1
1 pour tout

n ∈ N et que la suite (Dn
1 )n≥1 converge vers ∆, on voit avec la propriété admise en début de problème que

la suite (P1Dn
1 )n≥1 converge vers P1∆, puis que la suite (An

1 )n≥1 = (P1Dn
1 P −1

1 )n≥1 = ((P1Dn
1 )P −1

1 )n≥1
converge vers (P1∆)P −1

1 = P1∆P −1
1 . Par des calculs simples et d’après la question précédente, on a :

P1∆P −1
1 =

1 0 0
1 1 0
1 2 1

1 0 0
0 0 0
0 0 0

 1 0 0
−1 1 0
1 −2 1



=

1 0 0
1 0 0
1 0 0

 1 0 0
−1 1 0
1 −2 1

 =

1 0 0
1 0 0
1 0 0

 .

Par conséquent, on en déduit que :

An
1 −→

n→+∞

1 0 0
1 0 0
1 0 0

 .

(5) Déterminons la limite de la suite (Ln)n≥1. D’après la question (2) de la partie III, on sait que, pour tout
n ∈ N, on a Ln = L0(A1)n. D’après la question précédente et le résultat admis en début de problème,
on voit que :

Ln −→
n→+∞

L0

1 0 0
1 0 0
1 0 0

 .
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Or, par définition de L0, on trouve que :

(P ([X0 = 1]) P ([X0 = 2]) P ([X0 = 3]))

1 0 0
1 0 0
1 0 0

 = (P ([X0 = 1])+P ([X0 = 2])+P ([X0 = 3]) 0 0).

Comme ([X0 = 1], [X0 = 2], [X0 = 3]) est un système complet d’événements, il s’ensuit que :

(P ([X0 = 1]) P ([X0 = 2]) P ([X0 = 3]))

1 0 0
1 0 0
1 0 0

 = (1 0 0).

Par conséquent, on en déduit que :

Ln −→
n→+∞

(1 0 0).

En d’autres termes, ce résultat signifie par définition de Ln que :

P ([Xn = 1]) −→
n→+∞

1

P ([Xn = 2]) −→
n→+∞

0

P ([Xn = 3]) −→
n→+∞

0

.

En particulier, cela signifie que l’objet T a une très forte probabilité (proche de 1) de se retrouver dans
l’urne 1 à l’instant n si n est assez grand. Pour expliquer ce résultat, rappelons que :

A1 =

P[Xn=1]([Xn+1 = 1]) P[Xn=1]([Xn+1 = 2]) P[Xn=1]([Xn+1 = 3])
P[Xn=2]([Xn+1 = 1]) P[Xn=2]([Xn+1 = 2]) P[Xn=2]([Xn+1 = 3])
P[Xn=3]([Xn+1 = 1]) P[Xn=3]([Xn+1 = 2]) P[Xn=3]([Xn+1 = 3])

 =

 1 0 0
1/2 1/2 0
1/3 1/3 1/3

 .

Remarquons que, si l’objet T se trouve dans l’urne 1 à l’instant n, alors il a toutes les chances d’y rester
à l’instant n + 1 puisque P[Xn=1]([Xn+1 = 1]) = 1, et de même à l’instant n + 2, et ainsi de suite. En
d’autres termes, l’objet T se retrouve "piégé" dans l’urne 1 à partir de l’instant n.

Si maintenant l’objet T se trouve dans l’urne 2 à l’instant n, alors il reste dans l’urne 2 avec probabilité
1/2 à l’instant n + 1, et de plus il n’a aucune chance d’aller dans l’urne 3 à l’instant n + 1. Dès lors, il
restera dans l’urne 2 avec probabilité (1/2)p à l’instant n + p. Comme (1/2)p tend vers 0 quand p tend
vers +∞, le théorème de la limite monotone entraine que l’objet T a une probabilité nulle de rester
indéfiniment dans l’urne 2 à partir de l’instant n. En d’autres termes, il a toutes le chances de passer
dans l’urne 1 à un moment ou un autre, et donc d’y rester "piégé".

Enfin, si l’objet T se trouve dans l’urne 3 à l’instant n, alors il reste dans l’urne 3 avec probabilité
1/3 à l’instant n + 1. Dès lors, il restera dans l’urne 3 avec probabilité (1/3)p à l’instant n + p. Comme
(1/3)p tend vers 0 quand p tend vers +∞, le théorème de la limite monotone entraine que l’objet T a
une probabilité nulle de rester indéfiniment dans l’urne 3 à partir de l’instant n. En d’autres termes, il
a toutes les chances de passer dans l’urne 1 ou dans l’urne 2 à un moment ou un autre. S’il passe dans
l’urne 1 à un moment donné, alors il s’y retrouve "piégé" et ce définitivement. S’il passe dans l’urne 2
à un moment donné, alors il a toutes les chances (d’après les arguments précédents) de repasser dans
le futur par l’urne 1, et de s’y retrouver aussi "piégé".

En résumé, l’objet T a toutes les chances de passer par l’urne 1 à un moment ou un
autre, et une fois qu’il y est, il n’a aucune chance d’en ressortir, ce qui explique que :

P ([Xn = 1]) −→
n→+∞

1.

Corrigé du problème 2. Pour tout entier n ≥ 2, on pose E = Rn[x] et on désigne par B la base canonique
de E. De plus, pour tout P ∈ E, on pose Φ(P ) = R′′ avec R : x 7−→ ((x2 − 1)P (x))′′. Enfin, pour tous
P, Q ∈ E, on pose :

⟨P, Q⟩ =
∫ 1

−1
(1− t2)P (t)Q(t)dt.

(1) Partie I : étude d’un endomorphisme de E.
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(a) Montrons que, pour tout P ∈ E, le polynôme R′′ appartient à E. Comme E = Rn[x], tout élément
P de E est un polynôme de degré ≤ n. Dès lors, on obtient à l’aide des propriétés du degré que :

deg(R′′) ≤ deg((x 7−→ (x2 − 1)P (x))− 2

≤ deg(x 7−→ x2 − 1) + deg(P )− 2

≤ deg(P ) + 2− 2

≤ deg(P ) ≤ n.

Par conséquent, on en déduit que, pour tout P ∈ E :

le polynôme R′′ appartient à E.

(b) Vérifions que Φ(x 7−→ 1) = x 7−→ 2 et Φ(x 7−→ x) = x 7−→ 6x. Par des calculs simples, on voit que :

Φ(x 7−→ 1) = (x 7−→ (x2 − 1)× 1)′′ = x 7−→ 2.

De la même façon, on obtient que :

Φ(x 7−→ x) = (x 7−→ (x2 − 1)× x)′′ = (x 7−→ x3 − x)′′ = x 7−→ 6x.

Par conséquent, on en déduit que :

Φ((x 7−→ 1) = x 7−→ 2 et Φ(x 7−→ x) = x 7−→ 6x.

(c) Montrons que Φ est un endomorphisme de E. D’après la question (1)(a), on sait que Φ(P ) appartient
à E pour tout P ∈ E, et donc Φ est une application de E dans E. Reste à vérifier que Φ est linéaire.
Pour tous λ, µ ∈ R et tous P, Q ∈ E, on trouve par linéarité de la dérivation que :

Φ(λP + µQ) =
[
x 7−→ (x2 − 1)(λP + µQ)(x)

]′′
=

[
λ
(
x 7−→ λ(x2 − 1)P (x)

)
+ µ

(
x 7−→ (x2 − 1)Q(x)

)]′′
= λ

[
x 7−→ (x2 − 1)P (x)

]′′ + µ
[
x 7−→ (x2 − 1)Q(x)

]′′
= λΦ(P ) + µΦ(Q).

En particulier, l’application Φ est linéaire, et donc :

Φ est un endomorphisme de E.

(d) Calculons Φ(x 7−→ xk) pour tout k ∈ {0, ..., n}, et écrivons la matrice de Φ dans la base B. Par des
calculs simples, on trouve que, pour tout k ∈ {2, ..., n} :

Φ(Xk) = (x 7−→ (x2 − 1)× xk)′′

= (x 7−→ xk+2 − xk)′′

= (k + 2)(k + 1)(x 7−→ xk)− k(k − 1)(x 7−→ xk−2).

A noter que cette expression est encore valide si k = 0 ou 1, puisque dans ce cas k(k− 1) = 0. Dans
tous les cas, on obtient que, pour tout k ∈ {0, ..., n} :

Φ(x 7−→ xk) = (k + 2)(k + 1)(x 7−→ xk)− k(k − 1)(x 7−→ xk−2).

Dès lors, on en déduit que la matrice de Φ dans la base B est donnée par :

matB(Φ) =



2 0 −2 0 · · · 0

0 6 0
. . . . . .

...
...

. . . 12
. . . . . . 0

...
. . . . . . 0 −n(n− 1)

...
. . . . . . 0

0 · · · · · · · · · 0 (n + 2)(n + 1)


.
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(e) Montrons que Φ admet n + 1 valeurs propres deux à deux distinctes λ0, ..., λn, avec λ0 < ... < λn.
D’après la question précédente, la matrice de Φ dans la base B est triangulaire supérieure. Dès lors,
les valeurs propres de Φ sont exactement les coefficients diagonaux de cette matrice, c’est-à-dire
les nombres de la forme (k + 2)(k + 1), avec k ∈ {0, ..., n}. Reste donc à vérifier que ces nombres
sont deux à deux distincts et en ordre strictement croissant. Pour ce faire, considérons l’application
f : t 7−→ (t + 2)(t + 1) sur R+. Comme f est un polynôme, on voit que f est dérivable sur R+ et
que, pour tout t ∈ R+ :

f ′(t) = (t2 + 3t + 2)′ = 2t + 3 > 0.

Dès lors, il s’ensuit que f est strictement croissante sur R+. En particulier, on voit que :
f(0) < f(1) < ... < f(k) < ... < f(n),

ce qui signifie que les réels de la forme (k + 2)(k + 1), avec k ∈ {0, ..., n}, sont deux à deux distincts
et rangés en ordre strictement croissant. Par conséquent :

Φ admet n + 1 valeurs propres distinctes λ0, ..., λn, avec λ0 < ... < λn.

(f) Montrons que l’endomorphisme Φ est bijectif. D’après la question (1)(d), la matrice A de Φ dans
la base B est triangulaire supérieure, avec pour coefficients diagonaux les nombres de la forme
(k + 2)(k + 1), où k ∈ {0, ..., n}. Mais comme ces nombres sont rangés en ordre croissant, on voit
que (k + 2)(k + 1) ≥ 2 > 0 pour tout k ∈ {0, ..., n}, et donc tous les coefficients diagonaux de A
sont non nuls. En particulier, la matrice A est inversible, ce qui entraine que :

l’endomorphisme Φ est bijectif.

(g) Montrons que Φ est diagonalisable et déterminons la dimension de Eλk
(Φ) pour tout k ∈ J0, nK.

D’après la question (1)(e), on sait que Φ admet (n + 1) valeurs propres deux à deux distinctes
λ0, ..., λn. Mais comme E = Rn[x], E est de dimension (n + 1) et donc :

Φ est diagonalisable et dim Eλk
(Φ) = 1 pour tout k ∈ {0, ..., n}.

(h) Soit k ∈ {0, ..., n}, et soit P un vecteur propre de Φ associé à la valeur propre λk.
(i) Montrons que P est de degré k. Pour ce faire, posons P : x 7−→ a0 + a1x + ... + arxr, où

a0, a1, ..., ar ∈ R et ar ̸= 0. Par définition, on voit que deg(P ) = r. De plus, par des calculs
simples, on trouve que, pour tout x ∈ R :

Φ(P )(x) =
[
(x2 − 1)(a0 + a1x + ... + arxr)

]′′
=

[
−a0 − a1x + a0x2 + ... + arxr+2]′′

= 2a0 + ... + (r + 2)(r + 1)arxr.

Comme Φ(P ) = λkP = (k + 2)(k + 1)P , on obtient que, pour tout x ∈ R :
2a0 + ... + (r + 2)(r + 1)arxr = (k + 2)(k + 1)a0 + ... + (k + 2)(k + 1)arxr.

En ne considérant que les termes de degré r, on trouve que (r + 2)(r + 1)ar = (k + 2)(k + 1)ar.
Comme ar ̸= 0, il s’ensuit que (r + 2)(r + 1) = (k + 2)(k + 1), et donc k = r d’après la question
(1)(e). En particulier, on en déduit que :

le polynôme P est de degré k.

(ii) Montrons que Q : x 7−→ P (−x) est vecteur propre de Φ pour la valeur propre λk. Pour ce faire,
considérons un polynôme quelconque R, et posons S(x) = R(−x) pour tout x ∈ R. D’après les
propriétés de la dérivation, on trouve que, pour tout x ∈ R :

S′(x) = (R(−x))′ = −R′(−x) et S′′(x) = (−R′(−x))′ = R′′(−x).
Si l’on pose R(x) = (x2 − 1)P (x), alors on obtient que, pour tout x ∈ R :

Φ(Q)(x) =
[
(x2 − 1)Q(x)

]′′ =
[
((−x)2 − 1)P (−x)

]′′ = [R(−x)]′′ .

En utilisant les formules données plus haut, on trouve que, pour tout x ∈ R :
Φ(Q)(x) = [R(−x)]′′ = [S(x)]′′ = R′′(−x).

Vu que R′′(x) = Φ(P )(x) = λkP (x) par hypothèse, on obtient que, pour tout x ∈ R :
Φ(Q)(x) = R′′(−x) = λkP (−x) = λkQ(x).
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Mais comme P est un vecteur propre de Φ, il est non nul par hypothèse, et donc Q : x 7−→ P (−x)
n’est pas nul non plus. Par conséquent, on en déduit que :

Q : x 7−→ P (−x) est vecteur propre de Φ pour la valeur propre λk.

(iii) Montrons qu’il existe une unique base (P0, ..., Pn) de E constituée de vecteurs propres de Φ
telle que, pour tout k ∈ {0, ..., n}, le polynôme Pk est de degré k, unitaire et vérifie la relation
Pk(−x) = (−1)kPk(x) pour tout x ∈ R. On procède en deux étapes :

Première étape : existence d’une telle base.

Commençons par établir l’existence d’une telle base. Pour tout k ∈ {0, ..., n}, on fixe un vec-
teur propre Qk de Φ pour la valeur propre λk, on désigne par ak le coefficient dominant de Qk

et l’on pose Pk = Qk

ak
. Alors, par construction, le polynôme Pk est unitaire et vecteur propre

de Φ pour la valeur propre λk, et de plus Pk est de degré k d’après les questions précédentes.
En particulier, la famille (P0, ..., Pn) est une famille de polynômes de degrés échelonnés, et donc
c’est une base de E. De plus, comme x 7−→ Pk(−x) est vecteur propre de Φ pour la valeur propre
λk d’après la question (1)(h)(ii), et que les sous-espaces propres de Φ sont tous de dimension
1, les polynômes Pk et x 7−→ Pk(−x) sont proportionnels. Mais comme Pk est unitaire de de-
gré k, le coefficient du terme de plus haut degré de x 7−→ Pk(−x) est égal à (−1)k, et donc
Pk(−x) = (−1)kPk(x) pour tout x ∈ R, d’où l’existence d’une telle base.

Deuxième étape : unicité d’une telle base.

A présent, montrons qu’une telle base est unique. Soient (P0, ..., Pn) et (R0, ..., Rn) deux bases
de E vérifiant les conditions données plus haut. Comme Pk et Rk sont des vecteurs propres de
Φ et qu’ils sont de degré k pour tout k ∈ {0, ..., n}, ces polynômes sont des vecteurs propres
de Φ pour la valeur propre λk d’après la question (1)(h)(i). Comme les sous-espaces propres de
Φ sont de dimension 1 d’après la question (1)(g), les polynômes Pk et Rk sont proportionnels.
Mais comme ces deux polynômes sont unitaires, le coefficient de proportionnalité entre eux est
égal à 1, et donc Pk = Rk pour tout k ∈ {0, ..., n}, d’où l’unicité d’une telle base.

En résumé, on vient de montrer que :

il existe une unique base (P0, ..., Pn) de E constituée de vecteurs
propres de Φ telle que, pour tout k ∈ {0, ..., n}, le polynôme Pk est
de degré k, unitaire et vérifie la relation Pk(−x) = (−1)kPk(x)
pour tout x ∈ R.

En particulier, comme Pk(−x) = (−1)kPk(x) pour tout x ∈ R et pour tout k ∈ {0, ..., n}, on
voit que :

Pk est pair si k est pair, et impair si k est impair.

(iv) Calculons P0, P1, P2, P3. Par définition, on sait que P0 est unitaire de degré 0, et donc P0 : x 7−→
1. De plus, on sait aussi que P1 est unitaire de degré 1 et impair, et donc P1 : x 7−→ x. En outre,
comme P2 est unitaire de degré 2 et pair, il existe un réel a tel que :

P2 : x 7−→ x2 + a.

Comme P2 est vecteur propre de Φ pour la valeur propre λ2 = (2 + 2)(2 + 1) = 12, on trouve
par des calculs simples que, pour tout x ∈ R :

Φ(P2)(x) =
[
(x2 − 1)(x2 + a)

]′′
=

[
x4 + (a− 1)x2 − a

]′′
= 12x2 + 2(a− 1) = 12(x2 + a).

Dès lors, il s’ensuit par identification que 2(a − 1) = 12a, et donc a = − 1
5 et P2; x 7−→ x2 − 1

5 .
Enfin, comme P3 est unitaire de degré 3 et impair, il existe un réel b tel que :

P3 : x 7−→ x3 + bx.
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Comme P3 est vecteur propre de Φ pour la valeur propre λ3 = (3 + 2)(3 + 1) = 20, on trouve
par des calculs simples que, pour tout x ∈ R :

Φ(P3)(x) =
[
(x2 − 1)(x3 + bx)

]′′
=

[
x5 + (b− 1)x3 − bx

]′′
= 20x3 + 6(b− 1)x = 20(x3 + bx).

Dès lors, il s’ensuit par identification que 6(b− 1) = 20b, et donc b = − 3
7 et P3 : x 7−→ x3 − 3

7 x.
Par conséquent, on en déduit que :

P0 : x 7−→ 1, P1 : x 7−→ x, P2 : x 7−→ x2 − 1
5 , P3 : x 7−→ x3 − 3

7x.

(2) Partie II : étude d’un produit scalaire sur E.

(a) Montrons que ⟨ , ⟩ est un produit scalaire sur E. Pour ce faire, on va montrer que ⟨, ⟩ est une forme
bilinéaire symétrique définie positive, et ce en plusieurs étapes :

Première étape : ⟨ , ⟩ est symétrique.

En effet, pour tous P, Q ∈ E, on voit que :

⟨P, Q⟩ =
∫ 1

−1
(1− t2)P (t)Q(t)dt =

∫ 1

−1
(1− t2)Q(t)P (t)dt = ⟨Q, P ⟩,

d’où il s’ensuit que ⟨ , ⟩ est symétrique.

Deuxième étape : ⟨ , ⟩ est bilinéaire.

En effet, pour tous P, Q, R ∈ E et pour tous λ, µ ∈ R, on trouve par linéarité de l’intégrale que :

⟨λP + µQ, R⟩ =
∫ 1

−1
(1− t2) [λP (t) + µQ(t)] R(t)dt

=
∫ 1

−1

[
λP (t)R(t)(1− t2) + µQ(t)R(t)(1− t2)

]
dt

= λ

∫ 1

−1
(1− t2)P (t)R(t)dt + µ

∫ 1

−1
(1− t2)Q(t)R(t)dt

= λ⟨P, R⟩+ µ⟨Q, R⟩.

ce qui entraine que ⟨ , ⟩ est linéaire à gauche, et donc bilinéaire par symétrie.

Troisième étape : ⟨ , ⟩ est définie positive.

En effet, pour tout P ∈ E, on voit que (1 − t2)P 2(t) ≥ 0 pour tout t ∈ [−1, 1], et donc par
positivité de l’intégrale, on obtient que :

⟨P, P ⟩ =
∫ 1

−1
(1− t2)P 2(t)dt ≥ 0,

d’où il s’ensuit que ⟨ , ⟩ est positive. De plus, si ⟨P, P ⟩ = 0, alors on voit par stricte positivité de
l’intégrale que (1−t2)P 2(t) = 0 pour tout t ∈ [−1, 1] (car la fonction t 7−→ (1−t2)P 2(t) est continue
et positive sur [−1, 1]), et donc P (t) = 0 pour tout t ∈]− 1, 1[. En particulier, le polynôme P admet
une infinité de racines, et donc P est le polynôme nul, d’où il s’ensuit que la forme bilinéaire ⟨ , ⟩
est définie positive.

Par conséquent, on en déduit que :

⟨ , ⟩ est un produit scalaire sur E.
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(b) Montrons que Φ est un endomorphisme symétrique de E. Comme Φ est un endomorphisme de E
d’après la question (1)(c) de la partie I, il suffit de montrer que Φ est symétrique. Pour ce faire,
on va procéder à des intégrations par parties. Soient P, Q ∈ E et posons u(t) = ((t2 − 1)P (t))′ et
v(t) = (1− t2)Q(t) pour tout t ∈ [−1, 1]. Alors u et v sont de classe C1 sur [−1, 1]. Par intégration
par parties, on trouve que :

⟨Φ(P ), Q⟩ =
∫ 1

−1
((t2 − 1)P (t))′′(1− t2)Q(t)dt

=
∫ 1

−1
u′(t)v(t)dt = [u(t)v(t)]1−1 −

∫ 1

−1
u(t)v′(t)dt

=
[
((t2 − 1)P (t))′(t2 − 1)Q(t)

]1
−1 −

∫ 1

−1
((t2 − 1)P (t))′((1− t2)Q(t))′dt

= 0− 0−−
∫ 1

−1
((1− t2)P (t))′((1− t2)Q(t))′dt

=
∫ 1

−1
((1− t2)P (t))′((1− t2)Q(t))′dt.

A présent, posons u(t) = (1 − t2)P (t) et v(t) = ((1 − t2)Q(t))′ pour tout t ∈ [−1, 1]. Alors u et v
sont de classe C1 sur [−1, 1]. Par intégration par parties, on trouve que :

⟨Φ(P ), Q⟩ =
∫ 1

−1
((1− t2)P (t))′((1− t2)Q(t))′dt

=
∫ 1

−1
u′(t)v(t)dt = [u(t)v(t)]1−1 −

∫ 1

−1
u(t)v′(t)dt

=
[
(1− t2)P (t)((1− t2)Q(t))′]1

−1 −
∫ 1

−1
(1− t2)P (t)((1− t2)Q(t))′′dt

= 0− 0−
∫ 1

−1
(1− t2)P (t)((1− t2)Q(t))′′dt

=
∫ 1

−1
(1− t2)P (t)((t2 − 1)Q(t))′′dt

= ⟨Φ(Q), P ⟩ = ⟨P, Φ(Q)⟩.
Par conséquent, on en déduit que :

Φ est un endomorphisme symétrique de E.

(c) Montrons que la base (P0, ..., Pn) de la question (1)(h)(iii) est orthogonale. Comme Φ est un endo-
morphisme symétrique de E, on sait d’après le cours que les sous-espaces propres de Φ sont deux à
deux orthogonaux. Mais comme la base (P0, ..., Pn) est constituée de vecteurs propres de Φ pour des
valeurs propres distinctes, on en déduit que les polynômes P0, ..., Pn sont deux à deux orthogonaux,
et donc :

la base (P0, ..., Pn) est orthogonale.

(d) Soit j un élément de {1, ..., n}.
(i) Montrons que, pour tout polynôme S de degré < j, on a : ⟨S, Pj⟩ = 0. D’après les questions

précédentes, on sait que la famille (P0, ..., Pn) est une base de E = Rn[x] pour tout n ∈ N∗. En
particulier, en posant n = j − 1, on voit que la famille (P0, ..., Pj−1) est une base de Rj−1[x].
Dès lors, pour tout S ∈ Rj−1[x], il existe des réels a0, ..., aj−1 tels que :

S = a0P0 + ... + aj−1Pj−1.

Par bilinéarité du produit scalaire, on trouve que :

⟨S, Pj⟩ = ⟨a0P0 + ... + aj−1Pj−1, Pj⟩ = a0⟨P0, Pj⟩+ ... + aj−1⟨Pj−1, Pj⟩.
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Mais comme la famille (P0, ..., Pn) est orthogonale d’après la question (2)(c), on a :

⟨S, Pj⟩ = a0 × 0 + ... + aj−1 × 0 = 0.

Par conséquent, on en déduit que :

∀S ∈ Rj−1[x], ⟨S, Pj⟩ = 0.

(ii) Montrons que Pj ne garde pas un signe constant sur ] − 1, 1[. Pour ce faire, on considère le
produit scalaire ⟨x 7−→ 1, Pj⟩. Par définition du produit scalaire, des polynômes Pk et d’après la
question précédente, on obtient que :

⟨x 7−→ 1, Pj⟩ = ⟨P0, Pj⟩ =
∫ 1

−1
(1− t2)Pj(t)dt = 0.

Dès lors, comme (1−t2) > 0 pour tout t ∈]−1, 1[, on obtient en contraposant la stricte positivité
de l’intégrale que :

Pj ne peut être de signe constant sur ]− 1, 1[.

(iii) Montrons que Pj admet au moins une racine d’ordre de multiplicité impair dans ]−1, 1[. Pour ce
faire, on raisonne par l’absurde et on suppose que Pj n’admet pas de racine d’ordre de multiplicité
impair dans ]− 1, 1[. Alors, on voit que le polynôme réel Pj peut se factoriser dans R[x] sous la
forme suivante, pour tout x ∈ R :

Pj(x) = θ
r∏

i=1
(x− λi)2ni

r′∏
i=1

(x− λ′
i)

n′
i

s∏
i=1

(
x2 + pix + qi

)mi
.

où λ1, ..., λr sont des éléments de ]−1, 1[, λ′
1, ..., λ′

r′ sont des réels extérieurs à ]−1, 1[, où θ ∈ R∗

et où x2 + pix + qi a un discriminant < 0 pour tout i ∈ {1, ..., s}. En particulier, chacun des
facteurs de cette factorisation est de signe constant sur ] − 1, 1[, et donc le polynôme Pj est de
signe constant sur ]−1, 1[, ce qui est impossible d’après la question précédente. Par conséquent :

Pj admet au moins une racine de multiplicité impaire dans ]− 1, 1[.

(e) Soit j un élément de {1, ..., n}, soient x1, ..., xm les racines d’ordre de multiplicité impair de Pj dans
]− 1, 1[ et soit S : x 7−→ (x− x1)...(x− xm).
(i) Justifions que : m ≤ j. D’après le cours, on sait que le degré j de Pj est inférieur ou égal au

nombre de racines de Pj comptées avec multiplicité. En particulier, le degré j de Pj est supérieur
ou égal au nombre de racines de Pj . Mais comme m désigne le nombre de racines de Pj d’ordre
de multiplicité impair contenues dans ]− 1, 1[, il s’ensuit que :

m ≤ j.

(ii) Montrons que le polynôme SmPj garde un signe constant sur ]− 1, 1[. D’après le cours, on voit
que le polynôme réel Pj peut se factoriser dans R[x] sous la forme suivante, pour tout x ∈ R :

Pj(x) = θ
m∏

i=1
(x− xi)ni

m′∏
i=1

(x− x′
i)

2n′
i

m′′∏
i=1

(x− x′′
i )n′′

i

s∏
i=1

(
x2 + pix + qi

)mi
.

où x1, ..., xm sont les racines d’ordre de multiplicité impair contenues dans ]−1, 1[, où x′
1, ..., x′

m′

sont les racines d’ordre de multiplicité pair contenues dans ]−1, 1[, où x′′
1 , ..., x′′

m′′ sont les racines
extérieures à ]−1, 1[, où θ ∈ R∗ et où x2 +pix+qi a un discriminant < 0 pour tout i ∈ {1, ..., s}.
Par produit avec Sm, on obtient que :

Sm(x)Pj(x) = θ

m∏
i=1

(x− xi)ni+1
m′∏
i=1

(x− x′
i)

2n′
i

m′′∏
i=1

(x− x′′
i )n′′

i

s∏
i=1

(
x2 + pix + qi

)mi
.

Dès lors, on voit que les facteurs des deuxième, troisième et quatrième produits de droite sont
de signe constant sur ]− 1, 1[. Mais comme ni est impair pour tout i ∈ {1, ..., m}, il s’ensuit que
ni + 1 est pair pour tout i ∈ {1, ..., m}, et donc les facteurs du premier produit de droite sont
positifs sur R. En particulier, le premier produit de droite est de signe constant sur ]− 1, 1[, et
donc :

SmPj garde un signe constant sur ]− 1, 1[.
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(iii) Montrons par l’absurde que m = j. Pour ce faire, supposons que m < j. D’après la question
précédente, on sait que le polynôme SmPj est de signe constant sur ] − 1, 1[. Comme SmPj est
continu et non identiquement nul sur ]− 1, 1[, il s’ensuit par stricte positivité de l’intégrale que :

⟨Sm, Pj⟩ =
∫ 1

−1
(1− t2)Sm(t)Pj(t)dt

est du signe de SmPj , c’est-à-dire que ⟨Sm, Pj⟩ > 0 si SmPj ≥ 0 sur ] − 1, 1[, et ⟨Sm, Pj⟩ < 0
si SmPj ≤ 0 sur ] − 1, 1[. Dans tous les cas, on voit que ⟨Sm, Pj⟩ ̸= 0. Par ailleurs, comme
m < j, on voit que deg(Sm) = m < j, et donc ⟨Sm, Pj⟩ = 0 d’après la question (2)(d)(i), d’où
contradiction. Par conséquent :

m = j.

(iv) Montrons que Pj admet j racines simples réelles distinctes toutes situées dans ]− 1, 1[. D’après
la question précédente, on sait que m = j, ce qui signifie que le degré de Pj est égal au nombre
de racines d’ordre de multiplicité impair situées dans ] − 1, 1[. Mais comme le degré de Pj est
supérieur ou égal au nombre de racines de Pj comptées avec multiplicité, il s’ensuit que toutes
les racines de Pj sont situées dans ]− 1, 1[ et d’ordre de multiplicité égal à 1. En particulier, Pj

admet exactement j racines, qui sont de plus simples et situées dans ]− 1, 1[. Par conséquent :

Pj admet j racines simples toutes situées dans ]− 1, 1[.


