Lycée Clemenceau 2025-26

ECG 2

Corrigé du Devoir Maison de Mathématiques n°6 :
Diagonalisation - Algebre bilinéaire

Corrigé de ’exercice 1. Soient «,p €]0,1], soient X et Y deux variables aléatoires discrétes telles que
X +1 < G(a) et sachant [X = n], Y < B(n,p) pour tout n € N, et posons G = 2Y — X. Complétons la
fonction en Python suivante pour qu’elle affiche les valeurs prises par X, Y, G lors d’une expérience aléatoire.

import numpy as np
import numpy.random as rd

def simul(a,p):
b SN
V=i
g=. it

Pour ce faire, on procédera comme suit :

import numpy as np
import numpy.random as rd

def simul(a,p):
x=rd.geometric(a)-1
y=rd.binomial(x,p)
g=2%y-x
return Xx,y,g

Corrigé de l’exercice 2. Soit N une variable aléatoire et soit (X, ),en+ une suite de variables aléatoires,
lesquelles sont toutes définies sur un méme espace probabilisé (€2, .4, P). On suppose que les variables aléatoires
N, X1, ....; Xp, ... sont (mutuellement) indépendantes, que N suit la loi de Poisson de parameétre A > 0 et que
tous les X; suivent la méme loi de Bermoulli de parameétre p €]0, 1], et I'on pose S = vazl X;, c’est-a-dire
S(w) = Zi\[:(f ) X;(w) pour tout w € Q. Ecrivons une fonction en Python qui, étant donnés deux réels A > 0
et p €]0, 1], calcule et affiche une simulation de la variable aléatoire S. Pour ce faire, on procédera comme

suit :

import numpy as np
import numpy.random as rd

def simul2(1l,p):
n=rd.poisson(1)
x=rd.binomial(1,p,n)
s=np. sum(x)
return s

Corrigé du probleme 1. Dans ce probleme, on désigne par p un entier > 3. Pour toute matrice carrée A
de taille p et pour tout (i,j) € [1,p]?, on désigne par (A);; le coefficient de A situé sur la i-eme ligne et la
j-éme colonne. De méme, pour toute matrice ligne L de M ,(R) et pour tout j € [1,p], on désigne par (L),
le coefficient de L situé sur la j-éme colonne. On dit qu’une suite (A,),>1 de matrices de M,(R) converge
vers une matrice A € M, (R) si et seulement si : (i, j) € [1,p]?, (An)i; e (A)i j, ce que I'on note :

—+
A, — A
n—-+oo

De méme, on dit qu’une suite (L, ),>1 de matrices de M ,(R) converge vers une matrice L € My ,(R) si et

)n
seulement si : Vj € [1,p], (Ly); —+> (L);, ce que I'on note sous la forme :
n——+00

L, — L.
n—-+4o0o
1



Par la suite, on admet que, si (A,)n>1 €t (Bn)n>1 sont deux suites de matrices de M,(R) convergeant
respectivement vers les matrices A et B, alors la suite (A, By),>1 de matrices converge vers AB. De méme,
on admet que, si (A,)n>1 est une suite de matrices de M, (R) qui converge vers la matrice A et si L est une
matrice de My ,(R), alors la suite (LA,,) de matrices converge vers LA. Enfin, on désigne par ST, 'ensemble
des matrices stochastiques de M, (R), c’est-a-dire I’ensemble des matrices A € M, (R) telles que :

V(i j) € [Lp]®, (A)i; >0 et Vie[Lp], Y (A), =1

j=1

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

(1) (a)

Soit V' la matrice colonne a p lignes dont tous les coefficients sont égaux a 1. Montrons que :
VA e M,(R), AeST, <= VY(i,j)€[l,p]? (A)i;>0 et AV =V.

Par des calculs simples et vu que tous les coefficients de V' sont tous égaux a 1, on trouve que :

(A1 o (A 1 ?:1(14)1,3‘
av=| =
(A)nl (A)p,p 1 Z§:1(A)p,j
Deés lors, on voit que AV =V si et seulement si :
p
Vi € [[].,p]], Z(A)Z’J =1
j=1

En particulier, la deuxiéme condition "Vi € [1,p], >°¥_,(A);; = 1" apparaissant dans la définition
d’une matrice stochastique est équivalente a la condition "AV = V". Par conséquent, on en déduit
que, pour toute matrice A € M,(R) :

AeST, <<= VY(,j)e[L,p]? (A);>0 et AV =V.

Montrons que toutes les matrices de ST, ont une valeur propre commune. D’apres la question
précédente et comme V n’est pas le vecteur colonne nul, on voit que V est un vecteur propre de
toute matrice stochastique pour la valeur propre 1. Par conséquent, on en déduit que :

’ toutes les matrices de ST, ont une valeur propre commune, a savoir : 1. ‘

Ecrivons une fonction en Python qui détermine si une matrice A € M, (R) est stochastique ou pas.
Pour ce faire, on va tester chacune des conditions que doit vérifier une matrice A € M,(R) pour
étre stochastique. On fera intervenir une variable s qui jouera le role d’une variable booléenne, en
prenant la valeur 1 si toutes les conditions pour étre stochastique sont vérifiées, et 0 sinon. Plus
précisément, on procedera comme suit :

import numpy as np

def stochastique(a):

s=1
n=np. shape (a) [0]
for i in range(n):

for j in range(n):

if ali,jl<o0:
s=0

for i in range(n):

if np.sum(ali,:])!=1:

s=0
if s==0:
print(’a n est pas stochastique’)
else:

print(’a est stochastique’)
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(2) Montrons que, pour tout (A, B) € (ST,)?, on a: AB € ST,. Pour ce faire, considérons deux matrices
A, B de ST,. Comme A et B sont stochastiques, tous leurs coefficients sont > 0, et donc on trouve par
définition du produit matriciel que, pour tout (i,5) € [1,p]? :

P

(AB)ij = > (A)ik(B)r; > 0.
k=1

De plus, comme A et B sont stochastiques, on sait d’aprées la question (1)(a) que AV =V et BV =V,
ce qui entraine par associativité du produit matriciel que :

(AB)V = A(BV) = AV = V.
Par conséquent, on en déduit avec la question (1)(a) que, pour tout (A4, B) € (ST,)? :

1 0 0 1 0 0 1 0 0
(3) Par la suite, on pose Ay =[1/2 1/2 0 |,A,=(0 1/2 1/2],A3=1[1/2 1/2 O
1/3 1/3 1/3 0 1/2 1/2 0 1/2 1/2

(a) Justifions sans calcul que A; est diagonalisable dans M3(R) et donnons la dimension de E;(A;).

Comme A; est triangulaire inférieure, ses valeurs propres sont exactement ses coefficients diagonaux,
c’est-a-dire 1, %, % En particulier, la matrice A; admet trois valeurs propres distinctes. Mais comme
A; appartient & M3(R), on en déduit que :

‘Al est diagonalisable et de plus : dim E;(A;) = 1. ‘

(b) En utilisant éventuellement les matrices Ay et A3 :

(i) Montrons qu’il existe dans ST 3 au moins un élément non diagonalisable dans M3(R). Pour ce
faire, on va s’intéresser a la matrice A3. Comme Aj est triangulaire inférieure, ses valeurs propres
sont exactement ses coefficients diagonaux, c’est-a-dire 1, % En particulier, la matrice Az admet

deux valeurs propres distinctes. A présent, déterminons une base de E7(As). Soit X un vecteur

colonne de composantes x1, 2, 3. Alors on voit que :

I I 0
X€eE(43) <= A3 X-X=0 <= As|laz2]|—|22| =10
I3 I3 0

En termes de coordonnées, on voit que (x1, z2, z3) est solution du systéme linéaire :

0 =0
%1’1 — %ifz = 0
5%2 - %.’ﬁg = 0

On résout alors ce systéme par la méthode du pivot de Gauss. En supprimant la premiere ligne
et en effectuant les opérations élémentaires Ly < 2Lo et L3z < 2L3, on trouve que :

ry — X2 = 0
o — X3 = 0
Si 'on choisit 3 comme parametre, on trouve que x1 = x3 et o = x3, et donc :

1
X eEi(4A;) <= JazeR, X=uz3|1 < X € Vect
1

Des lors, on voit que E(A3z) = Vect(V), et donc (V) est une famille génératrice
comme ce vecteur colonne est non nul, il forme une famille libre, et donc :

‘ (V') est une base de E;(Ag). ‘

—_ = =

[oN

e F1(As). Mais

Enfin, déterminons une base de F; /Q(Ag,). En gardant les mémes notations, on a :

1 X1 1 X1 0
X e El/g(Ag) — AzX — §X =0 << Az|xzo]| - 5 zo | = 1|0
T3 x3 0

En termes de coordonnées, on voit que (x1, x2, x3) est solution du systéme linéaire :
§JJ1 =0
5331 =0

1 —
2332 = 0



Si 'on choisit 3 comme parametre, on trouve que 1 = 0, o9 = 0 et 3 = x3, et donc :

0 0
X cEyp(d3) <= Jrz3eR, X =130 < X € Vect 0
1 1

Deés lors, si U est le vecteur colonne de composantes 0,0, 1, on voit que F 3 (A3) = Vect(U), et
donc (U) est une famille génératrice de E4 /5(As3). Mais comme ce vecteur colonne est non nul,
il forme une famille libre, et donc :

‘ (U) est une base de Ey/5(As). ‘

Mais comme dim Ey(A3) + dim Ey5(A3) = 14+ 1 = 2 # 3, on en déduit que A3 n’est pas
diagonalisable dans M3(R). En outre, comme tous les coefficients de Az sont > 0 et que la
somme de ses coefficients en ligne est toujours égale & 1, on voit que As est stochastique. Par
conséquent, on en déduit que :

’ ST 3 contient au moins un élément non diagonalisable dans M3(R). ‘

(ii) Justifions si ’affirmation suivante est vraie ou fausse : "VA € ST, dim E;(A) = 1". On peut voir
que la matrice I, est & coefficients > 0, et que la somme de ses coefficients en ligne est toujours
égale a 1. En d’autres termes, la matrice identité de M,(R) est stochastique. De plus, comme
I,X = X pour tout vecteur colonne X, on voit que E;(I,) = M, 1(R), et donc dim E4(I,) =
p # 1. Par conséquent, on en déduit que :

‘l’afﬁrmation "WA € 8T, dim Eq(A) = 17 est fausse. ‘

(4) Soit A € 8T, soit A € R une valeur propre de A et soit X un vecteur propre de A pour la valeur
propre A, de coefficients x1, ..., z,. On note ¢ un élément de [1,p] tel que : VEk € [1,p], |zx| < |zl

(a) Montrons que : |[Az;| < |z;|. Comme X est un vecteur propre de A pour la valeur propre A, on sait
que AX = AX. En particulier, si I'on s’intéresse a la i-éme composante du vecteur AX, on a :

P

Z(A)iykxk = )\Iz

k=1

En passant a la valeur absolue, on obtient avec 'inégalité triangulaire que :

P p p
Y Winar] <D 1(Aiparl < D 1Akl ] -
k=1 k=1 k=1

Comme tous les coefficients de A sont > 0 et que |xg| < |z;| pour tout k € [1,p], on a :

P p p
Aol <D 1(A)ikl o] <D (Aie ] <D (Ai | -
k=1 k=1 k=1

Mais comme A est stochastique, on sait que > }_,(A4); x = 1, et donc :

P P
Aol <D (il < D (A | il <1 ]
k=1 k=1
Par conséquent, on en déduit que :

(b) Montrons que : |A] < 1. Comme X est un vecteur propre de A, on sait par définition que X # 0, et
donc il existe un indice k € [1,p] tel que z) # 0. Dés lors, comme || < |z;| par construction, on
voit que |x;| > 0. Mais comme |[Ax;| = |A|.|z;| < |x;], on en déduit par division que :

Partie IT : Suites de moyennes de puissances de matrices stochastiques

Dans cette partie, on désigne par A un élément de ST, et I'on note A° = I,,.



(1) (a) Etablissons par récurrence la propriété P définie pour tout n € N par :

P(n):"A" € ST,".

Tout d’abord, on voit que P(0) est vraie car A° = I, et I, est stochastique. En effet, tous ses
coefficients sont > 0 et la somme de ses coefficients en ligne est toujours égale a 1. A présent,
supposons que P(n) soit vraie, et montrons que P(n + 1) lest aussi. Par hypothese de récurrence,
on sait que A" est stochastique. Comme le produit de deux matrices stochastiques est stochastique,
et que A et A™ sont stochastiques, il s’ensuit avec la question (1)(b) de la partie I que Ax A™ = A" +!
est aussi stochastique, et donc P(n + 1) est vraie. D’apres le principe de récurrence, la propriété P
est vraie a tout ordre n € N. Par conséquent, on a pour tout n € N :

b) Montrons que, pour tout n € N*, ona: 1 ";1 AF € ST ,,. D’apres la question précédente, on sait
n k=0 p
que A* est stochastique pour tout k& € N. En particulier, tous les coefficients de A* sont > 0 pour
tout k € N. Dés lors, il s’ensuit que, pour tout (i, ) € [1,p]? :

1 n—1 1 n—1
(n ZAk> ~n Z (Ak)i,j 20. (x)
k=0 i,j k=0

De plus, comme AF est stochastique pour tout k € N, on sait que A*V = V pour tout k € N d’apres
la question (1)(b). Par linéarité, on trouve que :

1n—1 1n—1 1n—1

— k — kyy — — _

<n§A>V—nEAV—n§V—V. (k)
k=0 k=0 k=0

Comme les conditions (x) et (%) sont vérifiées, on en déduit avec la question (1)(b) que :

n—1
1
= Ak .
Vn € N, ng € ST,

k=0

Dans la suite de la partie II, on suppose qu'il existe un entier r € [1,p — 1], une matrice P € M,(R)
inversible, une matrice D € M,(R) diagonale dont tous les coefficients diagonaux (D);; sont égaux a
1sii<retdistincts de 1 sii>r+1, tels que A = PDP~!. Pour tout n € N*, on pose :

n—1
1
M, =~ ZD’“ et B, =PM,P !
n k=0

On désigne par A la matrice de M, (R) diagonale dont tous les coefficients diagonaux (A); ; sont égaux
4 1si4 <r et nuls sinon, et 'on pose B = PAP™!,

Montrons que, pour tout réel x fixé tel que |z| < 1, on a :

lf e, [1sioa=1
nk—Ox n—-4o0o 0 si QC#].

Pour ce faire, on proceéde a une distinction de cas :

Premier cas : x = 1.

Dans ce cas, on trouve par des calculs simples que, pour tout n € N* :
1 n—1 1 n—1 n
NP =—N1=—=1
St =nd =0
k=0 k=0

Par conséquent, on en déduit que, si x =1 :

1n—1
k
,E v — 1.
P n—-+oo
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Deuxiéme cas : = # 1.




(4)

Dans ce cas, comme |z| < 1 et que z # 1, on voit que x € [—1, 1[. D’apres les propriétés des sommes de
termes de suites géométriques, on voit que, pour tout n € N* :
-1
e , 1 1—2a"
— ¥ == x .
n Z n 1—=z
k=0

Comme |z| < 1, la suite (z™),>1 est bornée. Mais comme le produit d’une suite bornée et d’une suite
tendant vers 0 converge vers 0, il s’ensuit que :

1 n—1
— Z & — 0.
n 0 n—-+o0o

Par conséquent, on déduit de cette distinction de cas que :
1'& 1 si z=1
— — .

n Z TS el 0 sz #1

Montrons que la suite (M,,),>1 tend vers A. Comme A = PDP7! les coefficients diagonaux de la
matrice D sont exactement les valeurs propres de A. Mais comme |A| < 1 pour tout A € Sp(A4) d’apres
la question (4)(b) de la partie I, il s’ensuit que |(D); ;| < 1 pour tout ¢ € [1,p]. D’apres la question
précédente, vu que D est diagonale et que tous les coefficients diagonaux (D), ; sont égaux & 1sii <r
et distincts de 1 si ¢ > r 4+ 1, on obtient que, pour tout ¢ € [1,p] :

n—1 n—1
1 Ky 1 k 1 osi i<r
(n};)D)”_nZ(D)ivinIZo{o sioi>r+41

i k=0

De plus, comme D est diagonale, on voit que, pour tous indices i, j avec i # j :

1 n—1 1 n—1
k _ kY., . _
k=0 i, k=0

En d’autres, on vient de montrer que, pour tous indices i, j :

n—1
1 k
(My)ij = <nkZOD ) e (Big-

0,J
Par conséquent, on en déduit que :

M, — A.

n—-+o0o

A présent, montrons que la suite (B,,),>1 tend vers B. Comme B, = PM,P~! pour tout n € N et
que la suite (My,),>1 converge vers A, on voit avec la propriété admise en début de probleme que la
suite (PM,,),>1 converge vers PA, puis que la suite (PM,,P~1),>1 = (PM,)P~1),>1 converge vers
(PA)P~! = PAP~! = B. Par conséquent, on en déduit que :

B, — B.

n—-4o0o

(a) Montrer que, pour tout n € N*, on a : B, € ST,. Par construction de M,, par distributivité du
produit matriciel et vu que A = PDP~!, on trouve que, pour tout n € N* :

1 n—1
2
~>.D
k=0
1

Comme A appartient a ST, on sait que - ZZ;& AF appartient & ST, d’aprés la question (1)(b) de

n
la partie II, et donc on a pour tout n € N* :

b) Montrons que : B € 8T ,. Comme B,, appartient & ST, pour tout n € N*, on voit par définition
P P
des matrices stochastiques que, pour tout n € N* :

n—1 n—1

1% 1 1
Pl=— > PDFPT! = - > (PDPHF = - > A
k=0 k=0 k=0

B, =PM,P'=P

p
V(Zu]) € [[1,]7]]27 (Bn)iJ 2 0 et Vi e [[Lp]]a Z(Bn)z,] =1

j=1
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Comme la suite (B, ),>1 converge vers B, cela signifie par définition que la suite ((By,); ;)n>1 tend
vers B; ; pour tout (i,7) € [1,p]?. Deés lors, on obtient par passage a la limite dans les égalités
ci-dessus que :

V(i,j) € [Lp]*, (B)i; =0 et Vie[l,p], > (B)i;=1

j=1

Par conséquent, on en déduit que :

Partie III : Aspect probabiliste

On dispose d’'un objet noté T et de trois urnes numérotées 1,2,3. A chaque instant n € N, 1'objet T se
trouve dans 'une des trois urnes et une seule. Pour tout n € N, on désigne par X,, la variable aléatoire égale
au numéro de 'urne dans laquelle se trouve ’objet a l'instant n, et par L,, la matrice ligne :

L, = (P([X, = 1)) P(X,=2)) P(X,=3)).

On suppose connues la loi de X et la matrice A € M3(R) définie pour tout (4, 5) € [1,3]? par :

(A)i,j = Px,=i([X1 = j]).

Enfin, on suppose que : Vn € N, V(i, j) € [1,3]?, Pix, =i ([Xnt1 = j]) = Pixy=g([X1 = J]).

(1)

Montrons que : A € ST3. Comme P x,—; est une probabilité sur I'univers 2, elle ne prend que des
valeurs > 0 pour tout i € [1,3], et donc on a pour tout (4,5) € [1,3]? :

(A)ij = Prx,=q([X1 =4]) > 0.

Comme de plus X,,(Q) = {1, 2,3}, on voit que la famille ([X,, = 1], [X,, = 2], [X,, = 3]) est un systéme
complet d’événements, et donc on a pour tout ¢ € [1,3] :
3 3

Z(A)ixj = ZP[X():i}([Xl =j]) =1

j=1 j=1

Par conséquent, on en déduit par définition des matrices stochastiques que :

Montrons tout d’abord que : Vn € N, L, 11 = L, A. Par définition du produit matriciel et des matrices
A et Ly, on trouve que, pour tout j € [1,3] :

3

(LuA); =Y (Lo = Y P([Xa = k) Py (X1 = j]).
k=1 k=1

Comme Prx, —j([Xn41 = j]) = Pixy=y([X1 = j]) pour tout n € N et pour tout (i,5) € [1,3]? on
obtient que, pour tout n € N et pour tout j € [1,3] :

3 3
(LnA); = P([Xn = K]) Prxy—iy([X1 = j]) = Y _ P([ X0 = k]) Pix, =1 ([ X1 = j]).

D’apres la formule des probabilités totales, il s’ensuit que, pour tout n € N et pour tout j € [1, 3] :

3
(LuA); =Y P([Xn = K) P, =i ([(Xns1 = 5]) = P((Xor1 = 4]) = (Lusa);.
k=1

Comme ceci est vrai pour tout j € [1, 3], on en déduit que, pour tout n € N :
Lpy1 = LyA.
A présent, montrons par récurrence la propriété P définie pour tout n € N par :
P(n): "L, = LoA™”.

Tout d’abord, on voit que P(0) est vraie car A° = I,, et Ly = Lol, = LoA". Supposons maintenant
que P(n) soit vraie, et montrons que P(n + 1) l'est aussi. Par hypothése de récurrence, on sait que
L, = LyA™. Comme L, = L,A, il s’ensuit que :

Lpy1 = LpA=LoA" x A= LyA"!,



et donc P(n + 1) est vraie. D’apres le principe de récurrence, la propriété P est vraie & tout ordre
n € N. Par conséquent, on a pour tout n € N :

1 0 0

Dans la suite de la partie III, on suppose que A = A;, et 'on pose D; = [0 1/2 0
0 0 1/3

Déterminons tout d’abord une matrice P, € M3(R) inversible et a coefficients diagonaux tous égaux a 1
telle que A; = Py Dq Pfl. En d’autres termes, il s’agit ici de diagonaliser la matrice A;. Pour ce faire, on
commence par remarquer que, comme A; est triangulaire inférieure, ses valeurs propres sont exactement
ses coefficients diagonaux, c’est-a-dire 1, %, % En particulier, la matrice A; admet trois valeurs propres
distinctes, a savoir 1, %, %, et tous ses sous-espaces propres sont de dimension 1. Passons au calcul d’une
base de F1(A;). D’aprés la question (1)(b) de la partie I, on sait que V est un vecteur propre de A;
pour la valeur propre 1. Comme de plus V' # 0, la famille (V') est libre. Mais comme dim F;(4;) =1

d’apres ce qui précede et que (V) a 1 élément, on en déduit que :

‘ (V') est une base de F1(A4;). ‘

Ensuite, déterminons une base de E;/3(A1). Par des calculs simples, on trouve que :

0 1 0 0\ /0 0 L (0
Avfo)=(1/2 12 0 flo)=|0]=c]0
1 1/3 1/3 1/3) \1 1/3 1

En particulier, le vecteur V;,3 de composantes 0,0, 1 est un vecteur propre de A; pour la valeur propre
1/3. Comme de plus V;,3 # 0, la famille (V;/3) est libre. Mais comme dim E, /3(A;) = 1 d’aprés ce qui
précede et que (Vi/3) a 1 élément, on en déduit que :

0
(Viys) = 0 est une base de Ey/3(A1).
1

Enfin, déterminons une base de E/5(A;1). Pour ce faire, considérons un vecteur colonne X de compo-
santes x1, T, x3. Alors on trouve que :

1 X1 1 X1 O
X e E1/2(A1) — A X - EX =0 <= Ai|x| — 5 zo | = 1|0
T3 T3 0

En termes de coordonnées, on voit que (x1,x2,x3) est solution du systéme linéaire :

%1’1 = 0
?1'1 = 0
51'1 + %1’2 — %xg =0

Si 'on choisit x5 comme parametre, on trouve que x1 = 0, T2 = xo et x3 = 2x2, et donc :

0 0
X €Ei (A1) <= dmeR X=ux|1 <— X € Vect 1
2 2

En particulier, si Vi,5 est le vecteur colonne de composantes 0,1,2, alors on voit que E1/2(A1) =
Vect (Vi /2), et donc (V; /) est une famille génératrice de E4 /5(A1). Mais comme ce vecteur colonne est
non nul, il forme une famille libre, et donc :

0
(Vija) = 1 est une base de Ej /5(Ay).
2

Par conséquent, on en déduit que A; se diagonalise sous la forme suivante :

0
Ay = P,D, P, avec : P, =

==
N = O
— o O

1 0
etD; =10 1/2 0
0 0 1/3




, 1 . N , . \
A présent, calculons P; *. Pour ce faire, on cherche a résoudre I’équation Y = P; X, ou :

1 0 0 z1 Y1

=11 0|, X=|=2 et Y=y

1 2 1 T3 Y3

La résolution de cette équation se ramene a celle du systéme linéaire :
I = N
1 + X2 = Y2
Ty + 2z + 3 = Y3

Pour résoudre ce systeéme, on procede par la méthode du pivot de Gauss. Apres les opérations élémen-
taires Ly < Ly — L1 et L3 < L3z — L1, on obtient que :

T = U
T2 = —y1ty
2y + ®3 = -1 +Yys
Apres Uopération élémentaire L3 < L3 — 2Ls, on trouve que :
Z1 = 1
T2 = —Y1+ Y2
T3 = y1—2Yy2+ys
Par conséquent, on en déduit que :
1 0 O
Pl=(-1 1 o0
1 -2 1

Déterminons tout d’abord la limite de la suite (D}),>1. Comme la matrice D; est diagonale, on obtient

que, pour tout n € N* :
n

1 0 0 1 0 0
pr=1[(o 12 o | ={0o /2" o
0 0 1/3 0 0 (13"

Comme (1/2)™ et (1/3)™ tendent vers 0 quand n tend vers +oo, il s’ensuit par définition de la limite
d’une suite de matrices que :

DY — =A.
n——+oo

OO =
o O O
o O O

A présent, déterminons la limite de la suite (A7), >1. Comme A} = (P,D;P;')" = P,D} P * pour tout
n € Net que la suite (D}),,>1 converge vers A, on voit avec la propriété admise en début de probléme que
la suite (P, D}),>1 converge vers Py A, puis que la suite (A}),>1 = (PLD}P; 1) >1 = (PLD}) Py ) s
converge vers (P A)Pf1 = PIAP; L Par des calculs simples et d’aprés la question précédente, on a :

1 00 1 00 1 0 0
PAPY = |1 1 0fl0 0 Of[-1 1 o0
1 2 1 0 0O 1 -2 1
1 00 1 0 0 1 00
= 1 00 -1 1 0 = 100
1 00 1 -2 1 100
Par conséquent, on en déduit que :
1 00
A — (1 0 O
n—-+4oo 1 0 0

Déterminons la limite de la suite (L, )n>1. D’apres la question (2) de la partie III, on sait que, pour tout
n € N, on a L, = Lo(A;)". D’apres la question précédente et le résultat admis en début de probléme,
on voit que :

n—-+o0o

100
L, — Ly|1 0 0
100
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Or, par définition de Ly, on trouve que :

(P([Xo =1]) P([Xo = 2]) P([Xo =3]))

— =

0 0
0 0] = (P([Xo = 1)+P(IXo = 2))+P([Xo = 3]) 00).
0 0
Comme ([Xo = 1], [Xo = 2], [Xo = 3]) est un systéme complet d’événements, il s’ensuit que :
1 00
(P([Xo = 1)) P([Xo =2)) P(Xo=3]) (1 0 0] =(1 0 0).
1 00

Par conséquent, on en déduit que :

L, — (10 0).

n—-+o0o

En d’autres termes, ce résultat signifie par définition de L,, que :

P(X,=1) — 1

n—-+4oo

n—-+oo

En particulier, cela signifie que I’objet T' a une tres forte probabilité (proche de 1) de se retrouver dans
I'urne 1 a 'instant n si n est assez grand. Pour expliquer ce résultat, rappelons que :

Pix,=([Xnt1=1]) Px,=1([Xn+1=2]) Px,=1)([Xn+1 =3]) 1 0 0
Ar = | Px,=([Xns1=1]) Px,—2)([Xnt1=2]) Pix,—([Xny1=3]) ) =(1/2 1/2 0
Pix,=3)([Xnt1=1]) Px,=3([Xn+1=2]) Px,=3([Xn+1 =3]) 1/3 1/3 1/3

Remarquons que, si l'objet T se trouve dans l'urne 1 a l'instant n, alors il a toutes les chances d’y rester
a l'instant n + 1 puisque Pix, —1]([Xn41 = 1]) = 1, et de méme a l'instant n + 2, et ainsi de suite. En
d’autres termes, ’objet T se retrouve "piégé" dans 'urne 1 a partir de l'instant n.

Si maintenant 'objet 7" se trouve dans 'urne 2 a I'instant n, alors il reste dans I'urne 2 avec probabilité
1/2 a Vinstant n + 1, et de plus il n’a aucune chance d’aller dans l'urne 3 a l'instant n 4 1. Des lors, il
restera dans 'urne 2 avec probabilité (1/2)P & I'instant n 4 p. Comme (1/2)? tend vers 0 quand p tend
vers +00, le théoreme de la limite monotone entraine que 'objet T a une probabilité nulle de rester
indéfiniment dans I'urne 2 a partir de l'instant n. En d’autres termes, il a toutes le chances de passer
dans 'urne 1 & un moment ou un autre, et donc d’y rester "piégé".

Enfin, si 'objet T se trouve dans I'urne 3 a l'instant n, alors il reste dans 'urne 3 avec probabilité
1/3 a Pinstant n 4 1. Des lors, il restera dans 1'urne 3 avec probabilité (1/3)? a l'instant n + p. Comme
(1/3)? tend vers 0 quand p tend vers 400, le théoréme de la limite monotone entraine que 'objet T a
une probabilité nulle de rester indéfiniment dans I'urne 3 a partir de 'instant n. En d’autres termes, il
a toutes les chances de passer dans 'urne 1 ou dans 'urne 2 & un moment ou un autre. S’il passe dans
I'urne 1 & un moment donné, alors il s’y retrouve "piégé" et ce définitivement. S’il passe dans 'urne 2
a un moment donné, alors il a toutes les chances (d’aprés les arguments précédents) de repasser dans
le futur par I'urne 1, et de s’y retrouver aussi "piégé".

En résumé, 1’objet T a toutes les chances de passer par I'urne 1 & un moment ou un
autre, et une fois qu’il y est, il n’a aucune chance d’en ressortir, ce qui explique que :
P(X,=1) — 1.

n—-+o0o

Corrigé du probléme 2. Pour tout entier n > 2, on pose E = R, [z] et on désigne par B la base canonique
de E. De plus, pour tout P € E, on pose ®(P) = R” avec R : z — ((z* — 1)P(x))”. Enfin, pour tous
P,Q € E, on pose :
1
Q)= [ (1-erwana
—1
(1) Partie I : étude d’un endomorphisme de E.
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Montrons que, pour tout P € E, le polynéme R’ appartient & E. Comme E = R, [z], tout élément
P de FE est un polynéme de degré < n. Des lors, on obtient a ’aide des propriétés du degré que :

deg(R") < deg((x— (22 = )P(x)) — 2
< deg(z+— 22 — 1) + deg(P) — 2
< deg(P)+2-2

< deg(P) < n

Par conséquent, on en déduit que, pour tout P € F :

‘ le polynéme R’ appartient & F. ‘

Vérifions que ®(z — 1) = 2+ 2 et &(z — z) = © — 6. Par des calculs simples, on voit que :
Pzr—1)=(zr— (22 -1) x 1) =z +— 2.
De la méme fagon, on obtient que :
Pzr—z)=(z+— (22— 1) x2)" = (. — 2% —2)" =z 6.

Par conséquent, on en déduit que :

’@((m»—>1)=x»—>2 et <I>(x|—>x):xn—>6x.‘

Montrons que ® est un endomorphisme de E. D’apres la question (1)(a), on sait que ®(P) appartient
a F pour tout P € E, et donc ® est une application de F¥ dans E. Reste a vérifier que ® est linéaire.
Pour tous A\, x € R et tous P,@ € E, on trouve par linéarité de la dérivation que :

AP +uQ) = [r+— (22— 1)(AP + pQ)(x)]”

A (2 — Az? = D)P(x)) + p (2 — (22 - 1)Q(x))]"

= Az (@2 = 1)P@)]" +pfz — (@ - 1)Q()]"

AD(P) + pu®(Q).

En particulier, I’application ® est linéaire, et donc :

‘ ® est un endomorphisme de F. ‘

Calculons ®(x — z*) pour tout k € {0, ...,n}, et écrivons la matrice de ® dans la base B. Par des
calculs simples, on trouve que, pour tout k € {2,...,n} :

(XF) = (v (22 —1) x 2F)"

— (x — $k+2 _ l‘k)//

(k+2)(k+1)(z — 2F) — k(k — 1)(z — 2¥72).

A noter que cette expression est encore valide si k = 0 ou 1, puisque dans ce cas k(k —1) = 0. Dans
tous les cas, on obtient que, pour tout k € {0,...,n} :

Oz 2®) = (K +2)(k + 1)(z — 2*) — k(k — 1)(z — 2"72).

Deés lors, on en déduit que la matrice de ® dans la base B est donnée par :

2 0 -2 0 .- 0
0 6 0
matg(P) = 2z 0
0 —n(n —1)
0
0 0 (n+2)(n+1)
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Montrons que ® admet n + 1 valeurs propres deux a deux distinctes Ag, ..., A,, avec A\g < ... < A,.
D’apres la question précédente, la matrice de ® dans la base B est triangulaire supérieure. Des lors,
les valeurs propres de ® sont exactement les coefficients diagonaux de cette matrice, c’est-a-dire
les nombres de la forme (k + 2)(k + 1), avec k € {0,...,n}. Reste donc & vérifier que ces nombres
sont deux a deux distincts et en ordre strictement croissant. Pour ce faire, considérons I'application
fit— (t+2)(t+ 1) sur Ry. Comme f est un polynéme, on voit que f est dérivable sur Ry et
que, pour tout t € Ry :

flt)=#+3t+2) =2t+3>0.
Des lors, il s’ensuit que f est strictement croissante sur R. En particulier, on voit que :
f0) < f(1) < ... < f(k) < ... < f(n),

ce qui signifie que les réels de la forme (k+ 2)(k+ 1), avec k € {0, ...,n}, sont deux & deux distincts
et rangés en ordre strictement croissant. Par conséquent :

‘ ® admet n + 1 valeurs propres distinctes Ag, ..., Ap, avec A\g < ... < A, ‘

Montrons que endomorphisme ® est bijectif. D’apres la question (1)(d), la matrice A de ® dans
la base B est triangulaire supérieure, avec pour coefficients diagonaux les nombres de la forme
(k+2)(k+ 1), ou k € {0,...,n}. Mais comme ces nombres sont rangés en ordre croissant, on voit
que (k+2)(k+ 1) > 2 > 0 pour tout k& € {0,...,n}, et donc tous les coeflicients diagonaux de A
sont non nuls. En particulier, la matrice A est inversible, ce qui entraine que :

‘l’endomorphisme ® est bijectif. ‘

Montrons que ® est diagonalisable et déterminons la dimension de Ej, (®) pour tout k € [0, n].
D’aprés la question (1)(e), on sait que ® admet (n + 1) valeurs propres deux a deux distinctes
AQy -y Ap. Mais comme E = R, [z], E est de dimension (n + 1) et donc :

“P est diagonalisable et dim Ej, (®) = 1 pour tout k € {0, ..., n}‘

(h) Soit k € {0, ...,n}, et soit P un vecteur propre de ® associé a la valeur propre .

(i) Montrons que P est de degré k. Pour ce faire, posons P : © — ag + a1z + ... + a,z", ol
ag,ay,...,a. € R et a, # 0. Par définition, on voit que deg(P) = r. De plus, par des calculs
simples, on trouve que, pour tout x € R :

®(P)(z) = [(@®—1)(ao+az+..+ arx’“)]”

"
= [—ao —az+agx® + ...+ a,w“rz]

= 2a0+ ...+ (r+2)(r+1ayz".
Comme ®(P) = A\, P = (k + 2)(k + 1) P, on obtient que, pour tout € R :
2a0 + ... + (r+2)(r + Daya” = (k+2)(k+ Dao+ ... + (E+2)(k + Da,z".

En ne considérant que les termes de degré r, on trouve que (r + 2)(r + 1)a, = (k +2)(k + 1)a,.
Comme a, # 0, il s’ensuit que (r +2)(r +1) = (k4 2)(k + 1), et donc k = r d’apres la question
(1)(e). En particulier, on en déduit que :

‘le polynéme P est de degré k. ‘

(ii) Montrons que @ : © — P(—x) est vecteur propre de ® pour la valeur propre ;. Pour ce faire,
considérons un polynoéme quelconque R, et posons S(x) = R(—z) pour tout € R. D’apres les
propriétés de la dérivation, on trouve que, pour tout z € R :

§'(z) = (R(-2))' = —R'(-z) et §"(z) = (-R'(-2))' = R"'(-x).
Si 'on pose R(z) = (2% — 1)P(x), alors on obtient que, pour tout z € R :
B(Q)(x) = [(#° = DQ()]" = [((~2)* = DP(-2)]" = [R(~2)]".
En utilisant les formules données plus haut, on trouve que, pour tout = € R :
®(Q)(x) = [R(=2)]" = [S(2)]" = R"(~x).
Vu que R"(z) = ®(P)(x) = A\ P(z) par hypothése, on obtient que, pour tout x € R :
2(Q)(z) = R"(—z) = M P(—2) = MuQ(2).
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Mais comme P est un vecteur propre de @, il est non nul par hypothese, et donc @ : x — P(—x)
n’est pas nul non plus. Par conséquent, on en déduit que :

‘ Q : x — P(—x) est vecteur propre de ® pour la valeur propre .

Montrons qu’il existe une unique base (Fy,..., P,) de E constituée de vecteurs propres de ®
telle que, pour tout k € {0,...,n}, le polyndéme Py est de degré k, unitaire et vérifie la relation
Py(—z) = (=1)*Py(x) pour tout = € R. On proceéde en deux étapes :

Premiere étape : existence d’une telle base.

Commencons par établir existence d’une telle base. Pour tout k € {0, ...,n}, on fixe un vec-
teur propre @ de ® pour la valeur propre g, on désigne par ay le coefficient dominant de Qy
et l'on pose P, = %: Alors, par construction, le polynéme P est unitaire et vecteur propre
de ® pour la valeur propre A, et de plus Pi est de degré k d’apres les questions précédentes.
En particulier, la famille (Pp, ..., P,) est une famille de polynémes de degrés échelonnés, et donc
c’est une base de F. De plus, comme 2 — Py (—x) est vecteur propre de ® pour la valeur propre
M d’apres la question (1)(h)(i7), et que les sous-espaces propres de ® sont tous de dimension
1, les polynoémes Py et x — Py(—x) sont proportionnels. Mais comme P} est unitaire de de-
gré k, le coefficient du terme de plus haut degré de x — Pp(—2) est égal a (—1)¥, et donc
Py(—z) = (—=1)k P (x) pour tout x € R, d’oul I'existence d’une telle base.

Deuxiéme étape : unicité d’une telle base.

A présent, montrons qu’une telle base est unique. Soient (Py, ..., P,) et (Ro, ..., R, ) deux bases
de E vérifiant les conditions données plus haut. Comme Py et Ry sont des vecteurs propres de
® et qu’ils sont de degré k pour tout k € {0,...,n}, ces polyndmes sont des vecteurs propres
de ® pour la valeur propre A d’aprés la question (1)(h)(¢). Comme les sous-espaces propres de
® sont de dimension 1 d’aprés la question (1)(g), les polynémes Py et Ry sont proportionnels.
Mais comme ces deux polyndmes sont unitaires, le coefficient de proportionnalité entre eux est
égal & 1, et donc Py = Ry, pour tout k € {0,...,n}, d’ott 'unicité d’une telle base.

En résumé, on vient de montrer que :

il existe une unique base (P, ..., ;) de F constituée de vecteurs
propres de @ telle que, pour tout k € {0, ...,n}, le polynéme P} est
de degré k, unitaire et vérifie la relation Py(—2z) = (—1)*Py(x)
pour tout z € R.

En particulier, comme Pj,(—z) = (—1)*Py(z) pour tout z € R et pour tout k¥ € {0,...,n}, on
voit que :

Py, est pair si k est pair, et impair si k est impair.

Calculons Py, Py, P», P3. Par définition, on sait que Py est unitaire de degré 0, et donc Py : © ——
1. De plus, on sait aussi que P; est unitaire de degré 1 et impair, et donc P; : * — x. En outre,
comme P; est unitaire de degré 2 et pair, il existe un réel a tel que :

Py:xr— 2?2 +a.

Comme P; est vecteur propre de ® pour la valeur propre Ao = (2 + 2)(2 + 1) = 12, on trouve
par des calculs simples que, pour tout x € R :

O(P)(x) = [(®-1)(a®+a)]"
= [¢"+(a—1)2® - a]//

= 1222 +2(a—-1) = 12(z*+a).

Dés lors, il s’ensuit par identification que 2(a — 1) = 12a, et donc a = —% et Py;x — 22 —

Enfin, comme Pj est unitaire de degré 3 et impair, il existe un réel b tel que :

1
5

Py:a— 23+ b



Comme Pj est vecteur propre de ® pour la valeur propre A3 = (3 + 2)(3 + 1) = 20, on trouve
par des calculs simples que, pour tout x € R :

O(P)(z) = [(2*—1)(a®+ba)]”

[2°+ (b—1)2® — bx]”

= 202 +6(b— 1)z = 20(2®+ bx).

Des lors, il s’ensuit par identification que 6(b — 1) = 20b, et donc b= —2 et P3 : x — 3 — %x

7
Par conséquent, on en déduit que :

3
Py:zr—1, P:or—u, Pz:mr—anfg, Ps:x»—mc?’—?x.

(2) Partie II : étude d’un produit scalaire sur F.

(a) Montrons que ( , ) est un produit scalaire sur E. Pour ce faire, on va montrer que (,) est une forme
bilinéaire symétrique définie positive, et ce en plusieurs étapes :

Premiére étape : (, ) est symétrique.

En effet, pour tous P, @ € F, on voit que :

1 1
(P.Q) = / (1 - #)P(H)Q(t)dt = / (1 - 2)Q()P(t)dt = (Q. P),

-1 -1

d’ott il s’ensuit que (, ) est symétrique.

Deuxiéme étape : (, ) est bilinéaire.

En effet, pour tous P,Q, R € E et pour tous A\, u € R, on trouve par linéarité de I'intégrale que :
WP @R = [ (- P + Q)] R
1
_ /_1 PR (1 — 12) + pQOR(1)(1 — 13)] dt
1

= /\/1 (1—t2)P(t)R(t)dt+u/ (1 —t)Q)R(t)dt

-1 -1

— MP,R) + u(Q, R).

ce qui entraine que (, ) est linéaire a gauche, et donc bilinéaire par symétrie.

Troisiéme étape : (, ) est définie positive.

En effet, pour tout P € E, on voit que (1 — t?)P%(t) > 0 pour tout ¢ € [—1,1], et donc par
positivité de l'intégrale, on obtient que :

1
(P, P) :/ (1 —t*)P%(t)dt > 0,

-1
d’otut il s’ensuit que ( , ) est positive. De plus, si (P, P) = 0, alors on voit par stricte positivité de
intégrale que (1—t2)P?(t) = 0 pour tout ¢ € [—1,1] (car la fonction t — (1 —¢2)P?(t) est continue
et positive sur [—1,1]), et donc P(t) = 0 pour tout ¢ €] — 1, 1[. En particulier, le polynéme P admet
une infinité de racines, et donc P est le polyndome nul, d’oti il s’ensuit que la forme bilinéaire ( , )
est définie positive.

Par conséquent, on en déduit que :

‘ (, ) est un produit scalaire sur E.
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(b) Montrons que ® est un endomorphisme symétrique de E. Comme P est un endomorphisme de E
d’apres la question (1)(c) de la partie I, il suffit de montrer que ® est symétrique. Pour ce faire,
on va procéder & des intégrations par parties. Soient P,Q € E et posons u(t) = ((t> — 1)P(t)) et
v(t) = (1 —#3)Q(t) pour tout t € [—1,1]. Alors u et v sont de classe C* sur [—1,1]. Par intégration
par parties, on trouve que :

1
(B(P),Q) = / (12— 1)P(B)"(1 - 2)Q()dt

-1

1 1

= / o (tu(t)dt = [u(t)v(t)]l_lf/ u(t)v' (t)dt

-1 -1

1

(2 = 1)P®)Y (2 - 1)Q®)] ., - / (2 = 1P@®) (1~ t)Q(t)) dt

—1

1
0-0- - / ((1— 2)P@Y (1 — Q1)) dt

—1

1
| @=epwy - ey
A présent, posons u(t) = (1 —t2)P(t) et v(t) = (1 —t3)Q(t))’ pour tout t € [—1,1]. Alors u et v
sont de classe C! sur [—1, 1]. Par intégration par parties, on trouve que :

@(P).Q) = / (L= 1P (1 - Q) di

Il Il
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o \
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= (®(@),P) = (P2Q).

Par conséquent, on en déduit que :

‘ ® est un endomorphisme symétrique de FE. ‘

(¢) Montrons que la base (Fy, ..., P,,) de la question (1)(h)(#4i) est orthogonale. Comme ® est un endo-
morphisme symétrique de F, on sait d’apres le cours que les sous-espaces propres de ® sont deux a
deux orthogonaux. Mais comme la base (P, ..., P,,) est constituée de vecteurs propres de ® pour des
valeurs propres distinctes, on en déduit que les polynémes Fy, ..., P, sont deux a deux orthogonaux,
et donc :

‘la base (P, ..., P;) est orthogonale. ‘

(d) Soit j un élément de {1,...,n}.

(i) Montrons que, pour tout polynéme S de degré < j, on a : (S, P;) = 0. D’aprés les questions
précédentes, on sait que la famille (P, ..., P,,) est une base de E = R,,[x] pour tout n € N*. En
particulier, en posant n = j — 1, on voit que la famille (P, ..., P;_1) est une base de R;_4[z].
Des lors, pour tout S € R;_[z], il existe des réels ao, ..., a;_1 tels que :

S=ayPy+ ..+ ajflpjfl.
Par bilinéarité du produit scalaire, on trouve que :

<S, PJ> = <a0P0 + ...+ ij,1Pj,1, Pj> = a0<P(), Pj> + ...+ aj,1<Pj,1,Pj>.
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(iii)

Mais comme la famille (P, ..., P,) est orthogonale d’apres la question (2)(c), on a :
<S,Pj> = ag X 0—|—...+(lj_1 x 0=0.

Par conséquent, on en déduit que :

\vs eR,_i[z], (S,P;)=0. \

Montrons que P; ne garde pas un signe constant sur | — 1,1[. Pour ce faire, on considere le
produit scalaire (x — 1, P;). Par définition du produit scalaire, des polynémes P, et d’apres la
question précédente, on obtient que :
1
-1
Des lors, comme (1—#2) > 0 pour tout ¢ €] —1, 1], on obtient en contraposant la stricte positivité
de l'intégrale que :

’ P; ne peut étre de signe constant sur | — 1, 1[. ‘

Montrons que P; admet au moins une racine d’ordre de multiplicité impair dans | —1, 1[. Pour ce
faire, on raisonne par I’absurde et on suppose que P; n’admet pas de racine d’ordre de multiplicité
impair dans | — 1, 1[. Alors, on voit que le polynéme réel P; peut se factoriser dans R[z] sous la
forme suivante, pour tout = € R :

’
T S

T
Pix) =0 [[ (@ =2)"™ [[ @ = 2" [ (=® + piz + @)™ .
i=1 i=1 i=1
ol A1, ..., A, sont des éléments de | —1,1[, Aj,..., AL, sont des réels extérieurs & | —1,1[, ot 6 € R*
et ott 22 + p;x + ¢; a un discriminant < 0 pour tout i € {1,...,s}. En particulier, chacun des
facteurs de cette factorisation est de signe constant sur | — 1,1[, et donc le polynéme P; est de
signe constant sur | — 1, 1], ce qui est impossible d’aprés la question précédente. Par conséquent :

‘ P; admet au moins une racine de multiplicité impaire dans | — 1, 1[. ‘

(e) Soit j un élément de {1, ...,n}, soient 1, ...,z les racines d’ordre de multiplicité impair de P; dans
] —1,1] et soit S: x +— (x — x1)...(T — Tpm)-

(1)

Justifions que : m < j. D’apres le cours, on sait que le degré j de P; est inférieur ou égal au
nombre de racines de P; comptées avec multiplicité. En particulier, le degré j de P; est supérieur
ou égal au nombre de racines de P;. Mais comme m désigne le nombre de racines de P; d’ordre
de multiplicité impair contenues dans | — 1, 1[, il s’ensuit que :

Montrons que le polynéme S,, P; garde un signe constant sur | — 1, 1[. D’apres le cours, on voit

que le polynéme réel P; peut se factoriser dans R[z] sous la forme suivante, pour tout € R :

m

Py(z) = 0] (@ — )™ [ (@ — a})™" H (x —2)™ H (22 + piz+ )™
=1

=1 =1 i=1

.
<.

ol Z1, ..., T, sont les racines d’ordre de multiplicité impair contenues dans | —1, 1], ou &1, ..., 2/,
sont les racines d’ordre de multiplicité pair contenues dans | —1,1[, ot %, ..., 2!/ ,, sont les racines
extérieures a | — 1, 1[, ot € R* et ott 2% + p;x + ¢; a un discriminant < 0 pour tout i € {1, ..., s}.

Par produit avec S,,,, on obtient que :

m m’ m S
Sm(@)Pi(@) =0 [[ (z — )" T [[ (@ - ) T (= )™ 11 =+ piz+a:)™ .
i=1 i=1 i=1 i=1
Des lors, on voit que les facteurs des deuxieme, troisieme et quatriéme produits de droite sont
de signe constant sur | — 1, 1[. Mais comme n; est impair pour tout ¢ € {1,...,m}, il s’ensuit que
n; + 1 est pair pour tout i € {1,...,m}, et donc les facteurs du premier produit de droite sont
positifs sur R. En particulier, le premier produit de droite est de signe constant sur | — 1, 1], et
donc :

‘ Sy Pj garde un signe constant sur | — 1, 1]. ‘




(iii)

(iv)
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Montrons par ’absurde que m = j. Pour ce faire, supposons que m < j. D’apres la question
précédente, on sait que le polynéme S, P; est de signe constant sur | — 1, 1[. Comme S,, P; est
continu et non identiquement nul sur | — 1, 1], il s’ensuit par stricte positivité de I'intégrale que :

1
(S, ;) = / (1= 12)8,, (1) P, (1)dt

~1
est du signe de Sy, P;, c’est-a-dire que (S, P;) > 0si S, Pj > 0 sur | — 1,1[, et (S,,, Pj) <0
si Sy P; < 0 sur | — 1,1[. Dans tous les cas, on voit que (Sy,,P;) # 0. Par ailleurs, comme
m < j, on voit que deg(Sy,) = m < j, et donc (S,,, P;) = 0 d’apres la question (2)(d)(i), d’out

contradiction. Par conséquent :

Montrons que P; admet j racines simples réelles distinctes toutes situées dans | — 1, 1[. D’aprés
la, question précédente, on sait que m = j, ce qui signifie que le degré de P; est égal au nombre
de racines d’ordre de multiplicité impair situées dans | — 1,1[. Mais comme le degré de P; est
supérieur ou égal au nombre de racines de P; comptées avec multiplicité, il s’ensuit que toutes
les racines de P; sont situées dans | — 1, 1] et d’ordre de multiplicité égal & 1. En particulier, P;
admet exactement j racines, qui sont de plus simples et situées dans | — 1, 1[. Par conséquent :

P; admet j racines simples toutes situées dans | — 1, 1[. ‘




