Lycée Clemenceau Samedi 14 février 2026
ECG 2 Durée : 4 heures

Devoir Surveillé de Mathématiques n°6

Remarques : Il est toujours permis d’admettre les résultats de questions précédentes pour traiter les questions
sutvantes. Chaque réponse doit étre démonitrée et toutes les étapes des calculs doivent étre données. On
attachera un soin tout particulier a la clarté et a la propreté de la rédaction. Les téléphones portables et les
calculatrices, ainsi que tous matériels électroniques sont interdits. Tous les étudiants auront le choir entre
deux sujets, un de type EDHEC' et un autre de type HEC-ESCP Maths I. Ils indiqueront lisiblement sur leur
premiére copie le sujet qu’ils auront choisi, et ne pourront traiter que les questions de ce sujet. Si un(e)
étudiant(e) traite une question du sujet qu’il/elle n’a pas indiqué en début de copie, cette question ne sera pas
corrigée.

1. Sujet type EDHEC

Exercice 1. On considére deux variables aléatoires réelles X et Y définies sur un méme espace probabilisé
(Q, A, P), indépendantes et suivant toutes deux la loi normale centrée réduite (de densité notée ¢ et de
fonction de répartition notée ®). On pose Z = max{X,Y} et I'on se propose de déterminer la loi de Z, son
espérance et sa variance.

(1) (a) Montrer que Z est une variable aléatoire & densité.
Vérifier que Z admet pour densité la fonction f définie pour tout = € R par f(z) = 2p(x)®(z).

)
) Rappeler la valeur de I'intégrale fjooj e 7 dt.
b) En déduire la convergence et la valeur de fj;o et dt.
) Vérifier que ¢'(z) = —xp(x) pour tout z € R.
)

En déduire a ’aide d’une intégration par parties que :

/+oo f( )d 1 N 1 /+oo 7t2dt
rTl\xr)ar = —— — e .
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(e) Montrer de méme ’égalité suivante :

0 1 1[0 e

(f) En déduire que Z admet une espérance et donner sa valeur.
(3) (a) Montrer que X2 et Z? suivent la méme loi.

(b) Calculer E(Z?), puis donner la valeur de la variance de Z.
(4) Ecrire une fonction en Python qui, étant donné un entier n > 1, réalise et affiche n simulations de la
variable aléatoire Z.

Exercice 2. Soit a un réel > 0. On considére deux variables aléatoires réelles X et Y définies sur un
méme espace probabilisé (€, .4, P), indépendantes et suivant toutes deux la loi uniforme sur [0,a[. On pose
Z =|X =Y/, et on admet que —Y, X —Y, Z sont des variables & densité définies sur (2, A, P).
(1) (a) Déterminer une densité de —Y.
(b) En déduire que X —Y admet pour densité la fonction g définie pour tout x € R par :

a— |z|

g(x):{ 3 si € [—a,al
0 si z¢[—a,d]

(2) On désigne par G la fonction de répartition de X — Y.
(a) Exprimer la fonction de répartition H de Z en fonction de G.
(b) En déduire qu’une densité de Z est donnée par la fonction h définie pour tout = € R par :

h(x):{ Ha—2) si z€]0,d]

a2
0 si z¢]0,d]

(3) Montrer que Z admet une espérance et une variance et les calculer.

(4) A T'aide de la fonction rd.random, écrire une fonction en Python qui, étant donnés un réel a > 0
et deux entiers n,m > 1, réalise et affiche n simulations de la variable aléatoire Z, puis affiche
I'histogramme correspondant pour une subdivision de l'intervalle [0, a] en m classes de méme ampli-
tude.



Exercice 3. Soit n € N et soit F = Ry,41[z]. Pour tout k& € {0,...,2n + 1}, on admet que 'expression
x — 22 % L désigne le polynome x — 22" +t1=* On désigne par Id ’'endomorphisme identique de E et
z g g
par f Papplication qui, & tout élément P de E, associe le polynome f(P) : x — 2?1 P (%)
(1) Montrer que f est un endomorphisme de E.
(2) (a) Vérifier que fo f =1Id.
(b) En déduire les deux valeurs propres possibles de f.
(3) Soit P:xz+— Zifgl apx® un élément quelconque de ker(f — Id).
(a) Montrer que les ag (0 < k < 2n + 1) sont solutions du systéme : Vk € {0,...,n}, ax = a2n+1—k-
(b) En déduire une base de ker(f —Id).
(4) Déterminer de la méme fagon une base de ker(f + Id).
(5) Pour tout P:z+— Y it agah € E et tout Q : x — it bzt € E, on pose :
2n+1
p(P,Q) = Z agbg.
k=0
(a) Montrer que ¢ est un produit scalaire sur E.
(b) Etablir que f est un endomorphisme symétrique de E.
(¢) En déduire que ker(f +Id) et ker(f — Id) sont supplémentaires orthogonaux dans E.

Probléme 1. On considere 'espace euclidien R? muni du produit scalaire canonique, lequel est défini pour
tout u = (z,y,2) € R? et tout v/ = (2/,y,2') € R? par (u,v') = z2’ + yy’ + 2z2’. La norme du vecteur u est
définie par |jul| = \/(u,u). On désigne par B = (ey, es,e3) la base canonique de R?, et on rappelle que cette
base est orthonormée pour le produit scalaire (, ). Le but de ce probléme est de montrer que I’'on peut trouver
une famille F = (e, ..., e,) de cardinal maximal, formée de n vecteurs unitaires deux & deux distincts de R3
ainsi qu'un réel « tels que, pour tout couple d’entiers (4, j) vérifiant 1 < i < j <mn, on ait : (u;,u;) = o. La
partie 1 permet d’obtenir un résultat d’algebre linéaire utile pour la suite, la partie 2 étudie les propriétés
d’une telle famille et la partie 3 propose la construction d’une famille solution du probléme pour n = 4 (cette
valeur est d’ailleurs la valeur maximale possible de n mais ce résultat ne sera pas démontré ici).

Partie 1 : Soit n est un entier > 2. Pour tout ¢ € R, on désigne par M, la matrice de M, (R) dont
les éléments diagonaux sont tous égaux a 1, les autres étant égaux a a. On note I la matrice identité de
M, (R) et J la matrice de M,,(R) dont tous les coefficients valent 1.

(1) (a) La matrice J est-elle diagonalisable? Justifier.
(b) Calculer J? et en déduire les deux valeurs propres de J.

(2) (a) Utiliser une base de vecteurs propres de J pour calculer les valeurs propres de M,.
(b) En déduire que M, est inversible si et seulement si : a # 1 et a # —ﬁ.

(3) Ecrire une fonction en Python qui, étant donnés un réel a et un entier n > 2, affiche la matrice M,
puis détermine si cette matrice est inversible ou pas.

Partie 2 : On suppose que l'on a trouvé une famille (uq,...,u,) formée de n vecteurs unitaires et deux &
deux distincts de R3 et un réel o solutions du probleme.

(1) Soient Ay, ..., A, des réels tels que Y ,_; Apur = 0. Montrer que :
A

(2) En déduire la valeur maximale de n lorsque @ # 1 et # ——=.
(3) Etude du cas a = 1.
(a) Ecrire I'inégalité de Cauchy-Schwarz pour u; et u; avec ¢ # j. A quelle condition a-t-on égalité?
(b) En déduire que n = 1.
(4) Dans cette question, on admet qu’il existe une famille (ug,us,us, uys) formée de 4 vecteurs unitaires
et deux & deux distincts de R? solution du probleme.
(a) Donner la valeur de a.
(b) Montrer que (u1,ug,u3) est une base de R3.
(¢) Calculer les coordonnées de uy dans cette base.

Partie 3 : On se propose de trouver des familles solutions du probleme dans certains cas.
(1) Donner une famille solution du probléeme posé pour n = 3 et o = 0.
(2) On pose vy = ey, vy = —%el + §62 et vy = —%el - @ez

. . . _ 1
(a) Montrer que (v1,v2,v3) est solution du probleme posé pour a = —3.



(b) Déterminer deux réels A, p tels que la famille (e3, Avy + pes, Ava + pes, Avs + pes) soit solution
du probléeme posé pour n = 4.
(3) Ecrire une fonction en Python qui, étant donnés 3 vecteurs unitaires et distincts u,v,w de R3,
détermine si (u, v, w) est solution du probléme ou pas, et affiche la valeur de o dans ce cas.

2. Sujet type HEC-ESCP Maths I

Probleme 2. Dans ce probleme, on s’intéresse a des opérations de transport dans des situations déterministes
ou aléatoires, modélisées de maniere discrete ou continue, dans le but de trouver un programme de transport
optimal dont le cotit serait le plus faible possible. Les parties I, IT et III sont largement indépendantes. Toutes
les variables aléatoires considérées dans ce probleme sont supposées définies sur le méme espace probabilisé
(Q, A, P). Sous réserve d’existence, on note E(Z) l'espérance d’une variable aléatoire Z. Enfin, pour tout
entier N > 1, on note £y ensemble des applications de [1, N] dans [1, N].

Préliminaire
(1) Soit p un réel vérifiant 0 < p < 1. On considére une variable aléatoire X suivant la loi exponentielle

de parametre 1. Pour tout w € Q, on pose Y (w) = |pX(w)], ot | | désigne la fonction partie entiere.
(a) Vérifier que Y est une variable aléatoire discrete. Calculer P([Y = n]) pour tout n € N.

(b) Montrer que la variable aléatoire Y + 1 suit une loi géométrique dont on précisera le parametre.

(c) Etablir les inégalités strictes : 0 < E(Y) < p.

(a) Pour tout couple (r,s) € N? montrer que I'intégrale fol 2" (Inx)*dx est convergente (on pourra

utiliser le changement de variable u = —Inz apres avoir justifié précisément sa validité).

1 ,
. —1)%s!
(b) Etablir pour tout couple (r,s) € N?, I'égalité : /0 2" (Inz)’de = (r(—|—1))58+1

(2)

a

Partie I. Transport dans une situation aléatoire.

On dit que la loi d’'une variable aléatoire Y est accessible depuis une variable aléatoire X, s’il existe une
application T : X(Q) — R telle que la variable aléatoire T(X) suit la méme loi que Y. L’application T est
alors appelée une fonction de transport de la variable aléatoire X vers la loi de Y. On associe a T" un cout
de transport C(T) défini, sous réserve d’existence, par C(T) = E((X — T(X))?). Dans toute cette partie, X
désigne une variable aléatoire vérifiant X (2) =]0, 1] et suivant la loi uniforme sur ]0, 1], ¢’est-a-dire admettant
pour densité la fonction fy définie par :

s ={ g G

(1) Soit p un réel vérifiant 0 < p < 1. Pour tout réel a € [0,1 — p], on note dans cette question T, la
fonction définie sur |0, 1] par :

Ta(as){ 1 siz€la,a+p|

0 sinon

(a) Calculer la probabilité P([T,(X) = 1]) et en déduire que les fonctions T, sont des fonctions de
transport de X vers une méme loi que I'on précisera.
(b) Vérifier que le cott de transport C(T,) est égal &  + p(1 — p) — 2ap.
(¢) En déduire la valeur de a qui minimise C(T,) et exprimer le coiit minimal correspondant en
fonction de p.
(2) Soit Ty et T les applications définies sur ]0, 1] par 71 (z) = —lnx et To(x) = —In(1 — z).
(a) Vérifier que T3 et T sont des fonctions de transport de X vers une loi que 'on précisera.
(b) En utilisant les résultats du préliminaire, comparer les coiits de transport C(T}) et C(T3).
(¢) A laide du préliminaire, montrer que toutes les lois géométriques sont accessibles depuis X.
(3) Dans cette question, Y désigne une variable aléatoire admettant une densité fy- continue et strictement
positive sur R.
(a) Justifier que la fonction de répartition Fy de Y réalise une bijection de R sur I'intervalle |0, 1].
(b) On note Fy ! Ja bijection réciproque de Fy. Montrer que Fy 1 est une fonction de transport de
la variable aléatoire X vers la loi de Y.
(4) Cas particulier: on suppose que Y suit la loi normale centrée réduite. On note Fy la fonction de
répartition de Y et ¢ la densité continue sur R de Y.
(a) Etablir la convergence de l'intégrale fjs y Fy (y) ¢(y)dy, puis montrer & I'aide d’une intégration
par parties que :

+oo 1
/_ v ) o)y = 5=

(b) Montrer que l'intégrale fjoc: (y— Fy(y))2g0(y)dy est convergente et la calculer.



(c) En déduire que le cofit de transport C(Fy ') est égal & 3 - #

Partie II. Transport optimal dans une situation déterministe.
Dans toute cette partie, N désigne un entier supérieur ou égal a 2. On considére N réels dy,ds,...,dN
(appelés points de départ) et N réels ay,as,...,an (appelés points d’arrivée) vérifiant dy < do < -+ < dy et
a1 <ag <--+-<ay. Onpose D={dy,dsa,...,dv} et A={aj,aq,...,an}.
(1) (a) Montrer que pour tout couple (k,1) € [1, N]?, on a: drax > dra; + dyag — dya;.
(b) En déduire & laide d’une double sommation que, pour tout N-uplet (p1,p2,...,pn) € Rﬁ tel

N
que ), pr=1,0ona:

N N N
Zpkdkak > (Zpkdk> x (ZPk%) (1)
k=1 k=1 k=1

(2) Soit ¢ € Ey. On réordonne la liste (¢(1),%(2),...,t(NN)) selon les valeurs croissantes et on note alors
(£(1),%(2),...,#(N)) la liste ordonnée obtenue. On a donc #(1) < #(2) < --- < #(N).
(a) Justifier pour tout n € [1, N, I'inégalité : ij:n ap(ry < Zg:n Az -

)
(b) (?n pose do = 0. Justifier I'égalité : 25:1 dnay(n) = 25:1 ((dn — dp—1) Zi\’:n (k) -
(c¢) Etablir I'inégalité : ZnN:1 dny(n) < 25:1 dnaziny- (2)

On appelle programme de transport toute bijection T de D sur A et cott d’un programme de transport
T la somme ¢(T') définie par ¢(T) = 25:1 (di — T(dk))Z.

(3) Soit T le programme de transport défini pour tout k € [1, N] par T(d)) = ax. Déduire des questions
précédentes que le programme T est optimal, c’est-a-dire que, pour tout programme de transport 7T,
ona: ¢(T) > c(T).

(4) Interprétation probabiliste des inégalités (1) et (2). Soit h une application croissante de R dans R.

(a) En utilisant I'inégalité (1), établir pour toute variable aléatoire discrete X ne prenant qu’un
nombre fini de valeurs, l'inégalité : E(Xh(X)) > E(X)E(h(X)).

(b) Que peut-on en déduire pour le coefficient de corrélation linéaire de X et h(X) lorsque les
variances de X et h(X) sont strictement positives?

(¢) En utilisant I'inégalité (2), montrer que, si X est une variable aléatoire discréte suivant la loi
uniforme sur [1, N] et si ¢ est un élément de Ey, alors on a : E(h(X)t(X)) < E(h(X)t(X)).

Partie III. Transport optimal dans une situation aléatoire

Les définitions de fonction de transport et de cott de transport sont identiques a celles données dans le
préambule de la partie I. Dans toute cette partie, U désigne une variable aléatoire vérifiant U () = [0, 1] et
suivant la loi uniforme sur le segment [0, 1]. Soit ¥ une variable aléatoire admettant une densité fy nulle hors
d’un segment [«, 8] (o < ) et dont la restriction & ce segment est continue et strictement positive. On note
Fy la fonction de répartition de Y. On suppose l’existence d'une fonction g de classe C! sur [0, 1], & valeurs
dans [a, (], telle que la variable aléatoire Z = g(U) suit la méme loi que Y.

(1) Pour tout entier N > 1, on pose pour tout w €  :

[ [1+NUWw)| si 0<U(w)<1 [ Xn(w)
XN(“’)_{ N s Uw =1 ¢ WW=g(—F—)
(a) Trouver la loi de la variable aléatoire X .
(b) Etablir I'existence d'un réel A > 0 indépendant de N tel que : Vw € Q, |Z(w) — Vi (w)| < %-
(¢) Montrer que pour tout réel y, on a : Fy (y — %) < P([Yn < y]).
(2) Pour tout k € [1, N, on pose ty(k) = g(%) On définit alors £y & partir de ¢, comme ¢ & partir de
t dans la question (2) de la partie II.
(a) Etablir pour tout k € [1, N] les inégalités : Fy (tn(k) — %) < P([Yn < tn(k)]) < £
b) On note Fy ! la fonction réciproque de la restriction & [a, 8] de la fonction Fy. Montrer que
( ) Y p q I q )
pour tout entier N > 1, on a :
N N
1 k k 1 k k A
- —g(=)<=Y = (F'=)+=].
Nkz_lNg<N) = N?_%N( Y <N>+N>
(c) En déduire 'inégalité E(Ug(U)) < E(UFy*(U)).
(3) (a) Parmi les fonctions de transport de classe C! de U vers la loi de Y, trouver une fonction de

transport T de colit minimal.
(b) On suppose que Y = [4U — 2|. Déterminer 7% et C(T™).



