
Lycée Clemenceau Samedi 14 février 2026
ECG 2 Durée : 4 heures

Devoir Surveillé de Mathématiques no6

Remarques : Il est toujours permis d’admettre les résultats de questions précédentes pour traiter les questions
suivantes. Chaque réponse doit être démontrée et toutes les étapes des calculs doivent être données. On
attachera un soin tout particulier à la clarté et à la propreté de la rédaction. Les téléphones portables et les
calculatrices, ainsi que tous matériels électroniques sont interdits. Tous les étudiants auront le choix entre
deux sujets, un de type EDHEC et un autre de type HEC-ESCP Maths I. Ils indiqueront lisiblement sur leur
première copie le sujet qu’ils auront choisi, et ne pourront traiter que les questions de ce sujet. Si un(e)
étudiant(e) traite une question du sujet qu’il/elle n’a pas indiqué en début de copie, cette question ne sera pas
corrigée.

1. Sujet type EDHEC

Exercice 1. On considère deux variables aléatoires réelles X et Y définies sur un même espace probabilisé
(Ω,A, P ), indépendantes et suivant toutes deux la loi normale centrée réduite (de densité notée φ et de
fonction de répartition notée Φ). On pose Z = max{X,Y } et l’on se propose de déterminer la loi de Z, son
espérance et sa variance.

(1) (a) Montrer que Z est une variable aléatoire à densité.

(b) Vérifier que Z admet pour densité la fonction f définie pour tout x ∈ R par f(x) = 2φ(x)Φ(x).

(2) (a) Rappeler la valeur de l’intégrale
∫ +∞
−∞ e−

t2

2 dt.

(b) En déduire la convergence et la valeur de
∫ +∞
−∞ e−t2dt.

(c) Vérifier que φ′(x) = −xφ(x) pour tout x ∈ R.
(d) En déduire à l’aide d’une intégration par parties que :∫ +∞

0

xf(x)dx =
1√
2π

+
1

π

∫ +∞

0

e−t2dt.

(e) Montrer de même l’égalité suivante :∫ 0

−∞
xf(x)dx = − 1√

2π
+

1

π

∫ 0

−∞
e−t2dt.

(f) En déduire que Z admet une espérance et donner sa valeur.

(3) (a) Montrer que X2 et Z2 suivent la même loi.

(b) Calculer E(Z2), puis donner la valeur de la variance de Z.
(4) Ecrire une fonction en Python qui, étant donné un entier n ≥ 1, réalise et affiche n simulations de la

variable aléatoire Z.

Exercice 2. Soit a un réel > 0. On considère deux variables aléatoires réelles X et Y définies sur un
même espace probabilisé (Ω,A, P ), indépendantes et suivant toutes deux la loi uniforme sur [0, a[. On pose
Z = |X − Y |, et on admet que −Y,X − Y,Z sont des variables à densité définies sur (Ω,A, P ).

(1) (a) Déterminer une densité de −Y .
(b) En déduire que X − Y admet pour densité la fonction g définie pour tout x ∈ R par :

g(x) =

{
a− |x|
a2

si x ∈ [−a, a]

0 si x ̸∈ [−a, a]
.

(2) On désigne par G la fonction de répartition de X − Y .
(a) Exprimer la fonction de répartition H de Z en fonction de G.
(b) En déduire qu’une densité de Z est donnée par la fonction h définie pour tout x ∈ R par :

h(x) =

{
2(a− x)

a2
si x ∈ [0, a]

0 si x ̸∈ [0, a]
.

(3) Montrer que Z admet une espérance et une variance et les calculer.
(4) A l’aide de la fonction rd.random, écrire une fonction en Python qui, étant donnés un réel a > 0

et deux entiers n,m ≥ 1, réalise et affiche n simulations de la variable aléatoire Z, puis affiche
l’histogramme correspondant pour une subdivision de l’intervalle [0, a] en m classes de même ampli-
tude.
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Exercice 3. Soit n ∈ N et soit E = R2n+1[x]. Pour tout k ∈ {0, ..., 2n + 1}, on admet que l’expression
x 7−→ x2n+1 × 1

xk désigne le polynôme x 7−→ x2n+1−k. On désigne par Id l’endomorphisme identique de E et

par f l’application qui, à tout élément P de E, associe le polynôme f(P ) : x 7−→ x2n+1P
(
1
x

)
.

(1) Montrer que f est un endomorphisme de E.
(2) (a) Vérifier que f ◦ f = Id.

(b) En déduire les deux valeurs propres possibles de f .

(3) Soit P : x 7−→
∑2n+1

k=0 akx
k un élément quelconque de ker(f − Id).

(a) Montrer que les ak (0 ≤ k ≤ 2n+ 1) sont solutions du système : ∀k ∈ {0, ..., n}, ak = a2n+1−k.
(b) En déduire une base de ker(f − Id).

(4) Déterminer de la même façon une base de ker(f + Id).

(5) Pour tout P : x 7−→
∑2n+1

k=0 akx
k ∈ E et tout Q : x 7−→

∑2n+1
k=0 bkx

k ∈ E, on pose :

φ(P,Q) =

2n+1∑
k=0

akbk.

(a) Montrer que φ est un produit scalaire sur E.
(b) Etablir que f est un endomorphisme symétrique de E.
(c) En déduire que ker(f + Id) et ker(f − Id) sont supplémentaires orthogonaux dans E.

Problème 1. On considère l’espace euclidien R3 muni du produit scalaire canonique, lequel est défini pour
tout u = (x, y, z) ∈ R3 et tout u′ = (x′, y′, z′) ∈ R3 par ⟨u, u′⟩ = xx′ + yy′ + zz′. La norme du vecteur u est

définie par ∥u∥ =
√
⟨u, u⟩. On désigne par B = (e1, e2, e3) la base canonique de R3, et on rappelle que cette

base est orthonormée pour le produit scalaire ⟨, ⟩. Le but de ce problème est de montrer que l’on peut trouver
une famille F = (e1, ..., en) de cardinal maximal, formée de n vecteurs unitaires deux à deux distincts de R3

ainsi qu’un réel α tels que, pour tout couple d’entiers (i, j) vérifiant 1 ≤ i < j ≤ n, on ait : ⟨ui, uj⟩ = α. La
partie 1 permet d’obtenir un résultat d’algèbre linéaire utile pour la suite, la partie 2 étudie les propriétés
d’une telle famille et la partie 3 propose la construction d’une famille solution du problème pour n = 4 (cette
valeur est d’ailleurs la valeur maximale possible de n mais ce résultat ne sera pas démontré ici).

Partie 1 : Soit n est un entier ≥ 2. Pour tout a ∈ R, on désigne par Ma la matrice de Mn(R) dont
les éléments diagonaux sont tous égaux à 1, les autres étant égaux à a. On note I la matrice identité de
Mn(R) et J la matrice de Mn(R) dont tous les coefficients valent 1.

(1) (a) La matrice J est-elle diagonalisable? Justifier.
(b) Calculer J2 et en déduire les deux valeurs propres de J .

(2) (a) Utiliser une base de vecteurs propres de J pour calculer les valeurs propres de Ma.
(b) En déduire que Ma est inversible si et seulement si : a ̸= 1 et a ̸= − 1

n−1 .

(3) Ecrire une fonction en Python qui, étant donnés un réel a et un entier n ≥ 2, affiche la matrice Ma

puis détermine si cette matrice est inversible ou pas.

Partie 2 : On suppose que l’on a trouvé une famille (u1, ..., un) formée de n vecteurs unitaires et deux à
deux distincts de R3 et un réel α solutions du problème.

(1) Soient λ1, ..., λn des réels tels que
∑n

k=1 λkuk = 0. Montrer que :

Mα

λ1

...
λn

 = 0.

(2) En déduire la valeur maximale de n lorsque α ̸= 1 et ̸= − 1
n−1 .

(3) Etude du cas α = 1.
(a) Ecrire l’inégalité de Cauchy-Schwarz pour ui et uj avec i ̸= j. A quelle condition a-t-on égalité?
(b) En déduire que n = 1.

(4) Dans cette question, on admet qu’il existe une famille (u1, u2, u3, u4) formée de 4 vecteurs unitaires
et deux à deux distincts de R3 solution du problème.
(a) Donner la valeur de α.
(b) Montrer que (u1, u2, u3) est une base de R3.
(c) Calculer les coordonnées de u4 dans cette base.

Partie 3 : On se propose de trouver des familles solutions du problème dans certains cas.

(1) Donner une famille solution du problème posé pour n = 3 et α = 0.

(2) On pose v1 = e1, v2 = − 1
2e1 +

√
3
2 e2 et v3 = − 1

2e1 −
√
3
2 e2.

(a) Montrer que (v1, v2, v3) est solution du problème posé pour α = − 1
2 .
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(b) Déterminer deux réels λ, µ tels que la famille (e3, λv1 + µe3, λv2 + µe3, λv3 + µe3) soit solution
du problème posé pour n = 4.

(3) Ecrire une fonction en Python qui, étant donnés 3 vecteurs unitaires et distincts u, v, w de R3,
détermine si (u, v, w) est solution du problème ou pas, et affiche la valeur de α dans ce cas.

2. Sujet type HEC-ESCP Maths I

Problème 2. Dans ce problème, on s’intéresse à des opérations de transport dans des situations déterministes
ou aléatoires, modélisées de manière discrète ou continue, dans le but de trouver un programme de transport
optimal dont le coût serait le plus faible possible. Les parties I, II et III sont largement indépendantes. Toutes
les variables aléatoires considérées dans ce problème sont supposées définies sur le même espace probabilisé
(Ω,A, P ). Sous réserve d’existence, on note E(Z) l’espérance d’une variable aléatoire Z. Enfin, pour tout
entier N ≥ 1, on note EN l’ensemble des applications de J1, NK dans J1, NK.

Préliminaire

(1) Soit p un réel vérifiant 0 < p < 1. On considère une variable aléatoire X suivant la loi exponentielle
de paramètre 1. Pour tout ω ∈ Ω, on pose Y (ω) = ⌊pX(ω)⌋, où ⌊ ⌋ désigne la fonction partie entière.
(a) Vérifier que Y est une variable aléatoire discrète. Calculer P ([Y = n]) pour tout n ∈ N.
(b) Montrer que la variable aléatoire Y + 1 suit une loi géométrique dont on précisera le paramètre.

(c) Établir les inégalités strictes : 0 < E(Y ) < p.

(2) (a) Pour tout couple (r, s) ∈ N2, montrer que l’intégrale
∫ 1

0
xr(lnx)sdx est convergente (on pourra

utiliser le changement de variable u = − lnx après avoir justifié précisément sa validité).

(b) Établir pour tout couple (r, s) ∈ N2, l’égalité :

∫ 1

0

xr(lnx)sdx =
(−1)ss!

(r + 1)s+1
.

Partie I. Transport dans une situation aléatoire.
On dit que la loi d’une variable aléatoire Y est accessible depuis une variable aléatoire X, s’il existe une
application T : X(Ω) −→ R telle que la variable aléatoire T (X) suit la même loi que Y . L’application T est
alors appelée une fonction de transport de la variable aléatoire X vers la loi de Y . On associe à T un coût
de transport C(T ) défini, sous réserve d’existence, par C(T ) = E

(
(X − T (X))2

)
. Dans toute cette partie, X

désigne une variable aléatoire vérifiant X(Ω) =]0, 1[ et suivant la loi uniforme sur ]0, 1[, c’est-à-dire admettant
pour densité la fonction fX définie par :

fX(x) =

{
1 si x ∈]0, 1[
0 sinon

.

(1) Soit p un réel vérifiant 0 < p < 1. Pour tout réel a ∈ [0, 1 − p], on note dans cette question Ta la
fonction définie sur ]0, 1[ par :

Ta(x) =

{
1 si x ∈]a, a+ p[
0 sinon

(a) Calculer la probabilité P ([Ta(X) = 1]) et en déduire que les fonctions Ta sont des fonctions de
transport de X vers une même loi que l’on précisera.

(b) Vérifier que le coût de transport C(Ta) est égal à
1
3 + p(1− p)− 2ap.

(c) En déduire la valeur de a qui minimise C(Ta) et exprimer le coût minimal correspondant en
fonction de p.

(2) Soit T1 et T2 les applications définies sur ]0, 1[ par T1(x) = − lnx et T2(x) = − ln(1− x).
(a) Vérifier que T1 et T2 sont des fonctions de transport de X vers une loi que l’on précisera.
(b) En utilisant les résultats du préliminaire, comparer les coûts de transport C(T1) et C(T2).
(c) A l’aide du préliminaire, montrer que toutes les lois géométriques sont accessibles depuis X.

(3) Dans cette question, Y désigne une variable aléatoire admettant une densité fY continue et strictement
positive sur R.
(a) Justifier que la fonction de répartition FY de Y réalise une bijection de R sur l’intervalle ]0, 1[.
(b) On note F−1

Y la bijection réciproque de FY . Montrer que F−1
Y est une fonction de transport de

la variable aléatoire X vers la loi de Y .
(4) Cas particulier: on suppose que Y suit la loi normale centrée réduite. On note FY la fonction de

répartition de Y et φ la densité continue sur R de Y .

(a) Établir la convergence de l’intégrale
∫ +∞
−∞ y FY (y)φ(y)dy, puis montrer à l’aide d’une intégration

par parties que : ∫ +∞

−∞
y FY (y)φ(y)dy =

1

2
√
π
.

(b) Montrer que l’intégrale
∫ +∞
−∞

(
y − FY (y)

)2
φ(y)dy est convergente et la calculer.
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(c) En déduire que le coût de transport C(F−1
Y ) est égal à 4

3 − 1√
π
.

Partie II. Transport optimal dans une situation déterministe.
Dans toute cette partie, N désigne un entier supérieur ou égal à 2. On considère N réels d1, d2, . . . , dN
(appelés points de départ) et N réels a1, a2, . . . , aN (appelés points d’arrivée) vérifiant d1 < d2 < · · · < dN et
a1 < a2 < · · · < aN . On pose D = {d1, d2, . . . , dN} et A = {a1, a2, . . . , aN}.

(1) (a) Montrer que pour tout couple (k, l) ∈ J1, NK2, on a: dkak ≥ dkal + dlak − dlal.
(b) En déduire à l’aide d’une double sommation que, pour tout N -uplet (p1, p2, . . . , pN ) ∈ RN

+ tel

que
∑N

k=1 pk = 1, on a :

N∑
k=1

pkdkak ≥

(
N∑

k=1

pkdk

)
×

(
N∑

k=1

pkak

)
(1)

(2) Soit t ∈ EN . On réordonne la liste
(
t(1), t(2), . . . , t(N)

)
selon les valeurs croissantes et on note alors(

t̂(1), t̂(2), . . . , t̂(N)
)
la liste ordonnée obtenue. On a donc t̂(1) ≤ t̂(2) ≤ · · · ≤ t̂(N).

(a) Justifier pour tout n ∈ J1, NK, l’inégalité :
∑N

k=n at(k) ≤
∑N

k=n at̂(k).

(b) On pose d0 = 0. Justifier l’égalité :
∑N

n=1 dnat(n) =
∑N

n=1

(
(dn − dn−1)

∑N
k=n at(k)

)
.

(c) Établir l’inégalité :
∑N

n=1 dnat(n) ≤
∑N

n=1 dnat̂(n). (2)

On appelle programme de transport toute bijection T de D sur A et coût d’un programme de transport

T la somme c(T ) définie par c(T ) =
∑N

k=1

(
dk − T (dk)

)2
.

(3) Soit T̂ le programme de transport défini pour tout k ∈ J1, NK par T̂ (dk) = ak. Déduire des questions

précédentes que le programme T̂ est optimal, c’est-à-dire que, pour tout programme de transport T ,

on a : c(T ) ≥ c(T̂ ).
(4) Interprétation probabiliste des inégalités (1) et (2). Soit h une application croissante de R dans R.

(a) En utilisant l’inégalité (1), établir pour toute variable aléatoire discrète X ne prenant qu’un
nombre fini de valeurs, l’inégalité : E(Xh(X)) ≥ E(X)E(h(X)).

(b) Que peut-on en déduire pour le coefficient de corrélation linéaire de X et h(X) lorsque les
variances de X et h(X) sont strictement positives?

(c) En utilisant l’inégalité (2), montrer que, si X est une variable aléatoire discrète suivant la loi

uniforme sur J1, NK et si t est un élément de EN , alors on a : E(h(X)t(X)) ≤ E(h(X)t̂(X)).

Partie III. Transport optimal dans une situation aléatoire
Les définitions de fonction de transport et de coût de transport sont identiques à celles données dans le
préambule de la partie I. Dans toute cette partie, U désigne une variable aléatoire vérifiant U(Ω) = [0, 1] et
suivant la loi uniforme sur le segment [0, 1]. Soit Y une variable aléatoire admettant une densité fY nulle hors
d’un segment [α, β] (α < β) et dont la restriction à ce segment est continue et strictement positive. On note
FY la fonction de répartition de Y . On suppose l’existence d’une fonction g de classe C1 sur [0, 1], à valeurs
dans [α, β], telle que la variable aléatoire Z = g(U) suit la même loi que Y .

(1) Pour tout entier N ≥ 1, on pose pour tout ω ∈ Ω :

XN (ω) =

{
⌊1 +NU(ω)⌋ si 0 ≤ U(ω) < 1

N si U(ω) = 1
et YN (ω) = g

(
XN (ω)

N

)
.

(a) Trouver la loi de la variable aléatoire XN .
(b) Etablir l’existence d’un réel λ > 0 indépendant de N tel que : ∀ω ∈ Ω, |Z(ω)− YN (ω)| ≤ λ

N .

(c) Montrer que pour tout réel y, on a : FY

(
y − λ

N

)
≤ P ([YN < y]).

(2) Pour tout k ∈ J1, NK, on pose tN (k) = g
(

k
N

)
. On définit alors t̂N à partir de tN , comme t̂ à partir de

t dans la question (2) de la partie II.

(a) Etablir pour tout k ∈ J1, NK les inégalités : FY

(
t̂N (k)− λ

N

)
≤ P ([YN < t̂N (k)]) < k

N .

(b) On note F−1
Y la fonction réciproque de la restriction à [α, β] de la fonction FY . Montrer que,

pour tout entier N ≥ 1, on a :

1

N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N

(
F−1
Y

(
k

N

)
+

λ

N

)
.

(c) En déduire l’inégalité E(Ug(U)) ≤ E(UF−1
Y (U)).

(3) (a) Parmi les fonctions de transport de classe C1 de U vers la loi de Y , trouver une fonction de
transport T ∗ de coût minimal.

(b) On suppose que Y = |4U − 2|. Déterminer T ∗ et C(T ∗).


