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Corrigé du devoir Surveillé de Mathématiques n°6

1. Sujet type EDHEC

Corrigé de I’exercice 1. On considere deux variables aléatoires réelles X et Y définies sur un méme espace
probabilisé (2, A, P), indépendantes et suivant toutes deux la loi normale centrée réduite (de densité notée
¢ et de fonction de répartition notée ®). On pose Z = max{X,Y} et 'on se propose de déterminer la loi de
Z, son espérance et sa variance.
(1) (a) Montrons que Z est une variable aléatoire a densité. Pour ce faire, on va calculer la fonction de
répartition de Z. Pour tout z € R, on trouve que :

Fz(z) = P([Z <z]) = P(Ilmax{X,Y} < z]) = P([X <z]N[Y < z]).
Comme X et Y sont indépendantes et suivent la loi normale centrée réduite, on obtient que :
Fs(x) = P(IX < a])P()Y < a]) = 0(2)®(x) = 0(a).

Comme @ est la fonction de répartition de la loi normale centrée réduite, la fonction @ est de classe
C! sur R. En particulier, la fonction Fz = ®2 est de classe C! sur R comme carré d’une fonction de
classe C! sur R. Par conséquent :

Z est une variable & densité. ‘

(b) Vérifions que Z admet pour densité la fonction f définie pour tout z € R par f(z) = 2¢(z)®(z).
D’aprés la question précédente, une densité de Z est donnée par la dérivée de Fy = ®2. Dés lors,
une densité f de Z est donnée pour tout x € R par f(z) = (®2)'(x) = 2 (z)®(x), et donc :

/(@) = 20()D(2).

2
(2) (a) Rappelons la valeur de l'intégrale fj;; e~ T dt. D’apres le cours, on sait que :

+o0 .2
/ e zdt=+2m.

—00

(b) Etablissons la convergence et déterminons la valeur de fj::) e~t"dt. Pour ce faire, on pose u = /2t.
Alors u est une bijection strictement croissante de R dans R, de classe C! sur R. De plus, on voit
que du = v/2dt, que u tend vers —oo quand t tend vers —oo et que u tend vers 400 quand ¢ tend

vers +00. Deés lors, par changement de variable, on trouve que :

+oo Tooo w2 d 1 Too e
/ e_tht :/ e (P _ o e~ 2 du.
—00 —00 \/i \/5 — o0

. . . s ez ez +oo 42 . s 12
En particulier, on obtient par linéarité que I'intégrale f_oo e~t"dt converge si et seulement si 'inté-

+oo _wu? . N N . . e
grale f_oo e~z du. Mais comme cette derniére converge d’apres le cours, il s’ensuit que l'intégrale

fj;o e~ dt converge, et que de plus :

oo 2, 1 oo u2d 1 Nor
e " dt = — e 2du=—=X .
/m ﬂ/oo V2

Par conséquent, on en déduit que :

+oo
I'intégrale / e~V dt converge et vaut /7.

—00

(c) Vérifions que ¢'(z) = —zp(z) pour tout x € R. Pour tout = € R, on trouve que :

o' (z) = (e_ )/ = —xe_% = —zp(z).

Par conséquent, on en déduit que :

8
N

’Vm ER, ¢(x)= —xgo(x).‘




(d) A laide d’une intégration par parties, montrons que :

/+oo f( )d 1 N 1 /+oo 7t2dt
rf(x)der = — + — e .
0 V2 T Jy

Pour ce faire, on se fixe un réel ¢ > 0, et l'on pose u(z) = zp(z) = —¢'(z) et v(r) = ®(x) pour tout
x € [0,c]. Alors u et v sont de classe C! sur [0, c]. De plus, par intégration par parties et linéarité de
I'intégrale, on trouve que :

/Oc:vf(x)dx = /OCngo(:r)@(x)dx

= —2p(c)®(c) + 2¢(0)®(0) + 2/: ezw e

= —20(c)®(c) + 20(0)®(0) + % /Oceﬂdsc.

o2
Comme ¢(c) = \/%6_7 tend vers 0 quand ¢ tend vers 400, que ®(0) = 1 et que ®(c) tend vers 1

quand ¢ tend vers +oo, il s’ensuit que :

¢ p 5y L 11 [t 2y
Oxf(:C)xc—:}oo X\/T?X§+;O e xZ.

Par conséquent, on en déduit que :

oo 1 L[t e
rf(x)dr = — + 7/ e " dt.
| at@ie = =2 [

(e) Montrons de méme 1’égalité suivante :

0 1 1[0 e

Pour ce faire, on se fixe un réel ¢ < 0, et 'on pose u(z) = zp(z) = —¢'(z) et v(r) = ®(x) pour tout
x € [e,0]. Alors u et v sont de classe C! sur [c,0]. De plus, par intégration par parties et linéarité de
I'intégrale, on trouve comme a la question précédente que :

0 0
/ zf(x)dxr = =20(0)®(0) 4+ 2p(c)P(c) + %/ e da.

o2
Comme ¢(c) = \/%6_7 tend vers 0 quand ¢ tend vers —oo, que ®(0) = 5 et que ®(c) tend vers 0
quand ¢ tend vers —oo, il s’ensuit que :

0 J oy L 11 -y
fo(x)l‘g:}m— XEX§+; 7006 xZ.

Par conséquent, on en déduit que :

0 1 1[0 e
/ xf(a:)dx:—ﬁ—l—;/ e~ " dt.
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(f) Montrons que Z admet une espérance et donnons sa valeur. D’apres ce qui précede, les intégrales
fi)oc zf(x)dx et f0+oo zf(x)dx convergent. Dés lors, l'intégrale fj;o zf(x)dx converge absolument,
et donc Z admet une espérance. De plus, d’aprés la relation de Chasles et les questions précédentes,

on trouve que :
—+oo

E(Z) = / zf(x)dx

— 00

/0 a:f(x)dx+/0+oo xf(z)dx

— 00

1 1[0 e 1 1 [t e
—— 4 = e dt+—+—/ e dt
V2T F/,oo V2r Ty

1 [t 2 1
= — tdt = —.
s /_OO € T

Par conséquent, on en déduit que :

1
Z admet une espérance et E(Z) = —

7

Montrons que X2 et Z2 suivent la méme loi. Pour ce faire, on commence par calculer la fonction de

répartition Fx2 de X2, puis une densité fy> de X2. Pour tout z € R, on a :

Fx(z) = P([X? < 2]).

Si z < 0, alors on voit que [X? < z] = (), et donc Fyz(z) = 0. Si maintenant z > 0, alors on a :

Fxz(z) = P([X? < 2]) = P([-Vr < X < Va]) = Fx(Va) — Fx(—Vx).

Par dérivation, on obtient que, pour tout > 0 :

fxe(@) -

:%ﬁhW@HﬂwW:%%fa

Des lors, il s’ensuit qu’une densité de X? est définie pour tout € R par :

{ L =% si >0

2mx

Fx2(@) =15 si <0

A présent, calculons la fonction de répartition Fz» de Z2, puis une densité fz» de Z2. Pour tout

z € R, on trouve que :
Fy(z) = P([Z* < 2]).

Si o < 0, alors on voit que [Z2 < 2] = ), et donc Fy2(x) = 0. Si maintenant x > 0, alors on a :

Fpe(z) = P([2* < 2]) = P([—Vz < Z < V7)) = Fz(Vz) — Fz(—Vx).

D’apres la question (1)(b
fz2(x) =

=

, on obtient par dérivation que, pour tout = > 0 :

[f2(Vz) + f2(—V7)]

‘ -

2V/x

-

_ [20(v/2) B (V) + 20(—v/T)®(—/7)]

[N}
[ S
8

1 _w@? 1 _vm?
= 3 2XEX6 2 CIJ(\/E)+2><E><
= e E [0(va) + (V)]

V21w

Comme la densité ¢ de la loi normale centrée réduite est une fonction paire, on voit que la fonction

® — ®(0) est impaire, et done :

(—vz) — ©(0) = —[2(Vz) — (0)],
ce qui entraine apres calculs que, pour tout x > 0 :

O(—\/1) + &(/x) = 20(0) = 2 x % =1



Dés lors, il s’ensuit qu’une densité de Z2 est définie pour tout = € R par :

—z .
L e=5 si >0

fz2(33)={ ma si 2 <0

Comme X?2 et Z? ont méme densité, on en déduit que :

o

’ X? et Z? suivent la méme loi. ‘

(b) Calculons E(Z?), puis donnons la valeur de la variance de Z. Comme X2 et Z?2 suivent la méme
loi, elles ont méme espérance, et donc E(Z2%) = E(X?). Mais comme X est une variable normale
centrée réduite, on sait que F(X) = 0 et V(X) = 1. Deés lors, d’apres la formule de Koenig-Huygens,
on trouve que :

EX)=V(X)+EX)*=1+0%=1.
Par conséquent, on en déduit que :
E(Z?) =1.

Toujours d’apres la formule de Koenig-Huygens et d’aprés la question (2)(f), on trouve que :

V(Z)=E(Z*) - E(Z)?=1- (\/1%)2

Par conséquent, on en déduit que :

(4) Ecrivons une fonction en Python qui, étant donné un entier n > 1, réalise et affiche n simulations de la
variable aléatoire Z. Pour ce faire, on pourra utiliser la commande rd.normal, et ce comme suit :

import numpy as np
import numpy.random as rd

def simulz(n):

x=rd.normal(0,1,n)

y=rd.normal(0,1,n)

z=np.zeros(n)

for i in range(n):
u=np.array([x[i],y[i1])
z[il=np.max (u)

return z

Corrigé de ’exercice 2. Soit a un réel > 0. On considére deux variables aléatoires réelles X et Y définies
sur un méme espace probabilisé (2, A, P), indépendantes et suivant toutes deux la loi uniforme sur [0, a[. On
pose Z = |X — Y|, et on admet que —Y, X — Y, Z sont des variables a densité définies sur (€2, A, P).

(1) (a) Déterminons une densité de —Y . Pour ce faire, on commence par calculer la fonction de répartition
F_y de =Y. Pour tout z € R, on a :

Foy(e) = P([=Y <a]) = P([Y =2 —2]) = 1 = P([Y < —1]).
Comme Y est une variable a densité, on sait que P([Y < —z]) = P([Y < —x]), et donc :
F_y(zx)=1-P([Y < —z]) =1— Fy(—x).

Par dérivation, on obtient que f_y(z) = fy(—z) pour tout z # 0, —a. Mais comme Y suit la loi
uniforme sur [0, a[, on en déduit qu’une densité de —Y est donnée par :

si € [—a,0]

1
foy(@) = { 0 si = & [—a,0]
(b) Montrons que X — Y admet pour densité la fonction g définie pour tout « € R par :
a—|z| |
pe si € [—a,al
0 si z ¢ [—a,al

Comme X et Y sont indépendantes, X et —Y le sont aussi d’apres le lemme des coalitions. Dés lors,
comme X et —Y sont des variables a densité, de densités bornées sur R, on sait d’apres le cours

g(r) =



que leur somme X — Y admet une densité g définie pour tout € R par le produit de convolution
suivant :

“+oo
g(z) = /_ fx (@) foy (z —t)dt.

Comme X suit la loi uniforme sur [0,a[, on voit que fx(t) = L sit € [0,a] et que fx(t) = O si
t ¢ [0,al, ce qui entraine que :

mmzzfmuku—wm:iquu—ww

Posons alors u = x —t. Alors u est une bijection strictement décroissante de R dans R, de classe C!

sur R. De plus, on voit queu =z sit =0, que u =x —asit = a et que du = —dt. Par changement
de variables, on obtient que :
1 r—a 1 xT
g(z) = f/ —fov(u)du = f/ foy (u)du.
a xr a r—a

Supposons d’abord que z < —a. Alors on voit que £ — a < —a et que f_y(u) = 0 pour tout
u € [z — a, x|, ce qui entraine que :

1 xr
g(x) = 7/ 0du = 0.
a r—a
Supposons maintenant que = € [—a, 0]. Alors on voit que —a <z <0, que —2a < x —a < —a, que
foy(u) = % pour tout u € [—a, z] et que f_y (u) =0 pour tout u & [—a,z], et donc :

g(z) = 7/‘” ldu = i[x— (—a)] = ! [a— (—2)] = a —2|x\.

a? a

A présent, supposons que xz € [0,a]. Alors on voit que 0 < z < a, que —a < x —a < 0, que

f-y(u) =L pour tout u € [—a,0] et que f_y(u) =0 pour tout u & [—a,0], et donc :

a— |z|

0
g(x)zl/ Yiu=L10—(@-a) = ~a—a]= .

a Jo_ya a a? a?

Enfin, supposons que x > a. Alors on voit que 2 —a > 0 et que f_y (u) = 0 pour tout u € [z — a, 2],

ce qui entraine que :

1 x
= — d = U.
g(x) p /x Odu =0

—a

Par conséquent, X — Y admet pour densité la fonction g définie pour tout x € R par :

{a—m| si € [—a,al
0 si z ¢ [—a,al

(2) On désigne par G la fonction de répartition de X — Y.
(a) Exprimons la fonction de répartition H de Z en fonction de G. Pour tout © € R, on a :
H(z) = P(1Z <a]) = P(|X - Y| < al]).
Si z < 0, alors on voit que [|X — Y| < z] =0, et donc H(z) = 0. Si maintenant x > 0, alors :
Hz)=P(|X-Y|<z]))=P(]-2 < X =Y <1z]) = G(z) - G(—x).

Par conséquent, on en déduit que :

e R

(b) Montrons qu’une densité de Z est donnée par la fonction h définie pour tout z € R par :

h(m):{ w si z€l0,qa
0 si z ¢]0,qa

Pour ce faire, il suffit de remarquer que la fonction de répartition H de Z est dérivable sur R\
{0, —a, a} comme différence de fonctions dérivables. De plus, comme Z = |X — Y| et que X,Y sont
des variables uniformes sur [0, a[, on voit que 0 < X < aet0 <Y < a,desorte que —a < X-Y < q,
et donc 0 < Z < a. En particulier, le support de Z est contenu dans [0, a], et donc H(z) = 0 pour
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tout * < —a et H(x) = 1 pour tout > a. Par dérivation, il s’ensuit que H'(x) = 0 pour tout
z & [0, al]. De plus, pour tout x €]0,al, on a :

a— |z a—|—x 2(a — x
2l , a=l—al _2a=2)

H'(z) = G'(x) + G'(-2) = — 2 2

a a [¢

Par conséquent, on en déduit que Z admet pour densité :

h(z) = { Laag 2) 51 x € [0,d]
0 si z ¢10,qa

Montrons que Z admet une espérance et une variance et calculons-les. Par définition, on sait que Z
admet une variance si et seulement si I'intégrale fj;o t2h(t)dt converge absolument. Mais comme h est

nulle en dehors de [0, a), il s’ensuit que Z admet une variance si et seulement si intégrale [ t2h(t)dt
converge absolument, c’est-a-dire converge (vu que th(t) > 0 pour tout ¢t € [0, a]). Comme la fonction A
est continue sur [0, a], il s’ensuit que t — t2h(t) est continue sur [0, a], et donc I'intégrale foa t2h(t)dt
est faussement impropre. En particulier, elle converge, ce qui entraine que Z admet une variance (et
donc aussi une espérance). Par conséquent :

’ Z admet une espérance et une variance. ‘

A présent, calculons E(Z). D’aprés les questions précédentes, on a :

a a _ o B )
E(Z):/0 th(t)dt:/o Wdt/o Mdt.

[¢ a

Par des calculs simples, on trouve que :

“ 2at — 2t 2 237" e 248
BZ)=[| L= D2 =L,
(2) /0 a? {a 3a2]0 a 3a®

Par conséquent, on en déduit apres simplification que :

E(Z) =

a
3

Enfin, calculons V(Z). D’aprés les questions précédentes, on a :

a a 2 _ " ) B 5
Bz = [ enmar= [ 0=l g [F 20020,
0 0 a2 0 5

a

Par des calculs simples, on trouve que :
E(zQ)_/a2at2_2t3dt_ 27t3 27254(1—% &2_0172
) a? ~13a  4a?], 3 2 6

D’apres la formule de Koenig-Huygens, on obtient que :
a? a2 a a
V(2) = B(2%) - B(2)* = - - (7) - -

Par conséquent, on en déduit apres simplification que :

Ecrivons une fonction en Python qui, étant donnés un réel a > 0 et deux entiers n,m > 1, réalise
et affiche n simulations de la variable aléatoire Z, puis affiche 'histogramme correspondant pour une
subdivision de l'intervalle [0, 2a] en m classes de méme amplitude. Pour ce faire, on utilise la commande
rd.random pour simuler des variables uniformes, ainsi que la commande plt.hist pour construire
I’histogramme, et ce comme suit :



import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt

def simul2(a,n,m):
z=np.zeros (n)
for i in range(n):
z[i]=(a*rd.random() )+ (a*rd.random())
print (z)
c=np.linspace (0, (2*a) ,m)
plt.hist(x,c)
plt.show()

Corrigé de ’exercice 3. Soit n € N et soit E = Ry,11[z]. Pour tout k& € {0,...,2n + 1}, on admet
que 'expression x +— 271 x g%,c désigne le polynoéme 2 — x2"*t1=k On désigne par Id 'endomorphisme

identique de E et par f I'application qui, & tout élément P de E, associe le polynome f(P) : x — 22" 1P (1).
(1) Montrons que f est un endomorphisme de E. Tout d’abord, on peut remarquer que, pour tout polynéme
P:z+— Zifgl arz® € E et pour tout € R*, on a :

2n+1 1 k 2n+1
P — 2n+1 - _ 277,+1—k.
FEE) =Y (=) =Y ma
k=0 k=0
Si I'on effectue le changement d’indices [ = 2n + 1 — k, alors on trouve que, pour tout x € R :

2n+1

f(P)(x) = Z agni11@'.
1=0

En particulier, on voit que f(P) appartient & E, et donc f est une application de E dans E. Pour
montrer que f est un endomorphisme de F, il reste a vérifier que f est linéaire. Soient P,Q) € E et

soient A, u € R. Pour tout z € R*, on trouve que :
FOPHIQ @) = 0P 1) (1) = [ 41p (1) 4 [0 (1) | = v s @)

d’ou il s’ensuit que f(AP + p@) = Af(P) + nf(Q), et donc f est linéaire. Par conséquent :

‘ f est un endomorphisme de E. ‘

(2) (a) Vérifions que f o f =1Id. Pour tout P € E, on trouve que :

1 1 2n+1 1
rese) =gy = (xme (L)) = xmx (1) < (1) =pon.
Comme ceci est vrai pour tout P € E, on en déduit que :
fof=1Id.

(b) Comme f o f =1d, le polynéme X2 —1 = (X — 1)(X + 1) est annulateur de f, et donc :

‘ 1 et — 1 sont les deux valeurs propres possibles de f. ‘

(3) Soit P:xz+—> Zii’gl arpz® un élément quelconque de ker(f — Id).

(a) Montrons que les ax (0 < k < 2n + 1) sont solutions du systéme : Vk € {0,...,n}, ar = aspnt1—k-
Comme P appartient a ker(f —Id), on voit que f(P)— P =0 et f(P) = P, ce qui entraine avec les
calculs de la question (1) que, pour tout z € R :

2n-+1 2n+1

f(P)(z) = Z azni112' = P(z) = Z apzh.
=0 k=0

Comme deux polynomes sont égaux si et seulement si les coefficients de leurs écritures réduites sont
égaux, on obtient que as,11-_k = ag pour tout k € {0, ...,2n + 1}. En particulier, on a :

‘Vk €{0,...,n}, ar = asnt1—k- ‘




) . . . 14 2n+1
(b) Déterminons une base de ker(f — Id). Pour ce faire, considérons un élément P : z — an'g apx
de ker(f —Id), que 'on commence par écrire sous la forme suivante, pour tout z € R :

2n+1

P = Zakx + Z apz”

k=n-+1

Si 'on effectue le changement d’indices I = 2n 4+ 1 — k dans la deuxiéme somme de droite, alors on
trouve que, pour tout z € R :

n n n n
_ k 2n+1—-1 __ k 2n+1—k
T) = E arx +E A2n41-1T = E ax +E A2n41—kT :
k=0 =0 k=0 k=0

Comme P appartient & ker(f — Id), on sait d’aprés la question précédente que ay = agp41—k pour
tout k € {0,...,n}, ce qui nous donne que, pour tout z € R :

E apT +§ ag x2n+1 k _ E ak T +x2n+1 k:)

k=0

Si l'on pose Py : x — 2¥ + xQ"H’k pour tout k € {0,...,n}, alors on voit que tout élément P de
ker(f — Id) est combinaison linéaire des Py, et donc :

ker(f —1Id) C Vect(Py, ..., Py).
Par ailleurs, on trouve que, pour tout k € {0,...,n} et pour tout = € R* :

F(PO(z) = a2+ [(1)k " (1)+k] = ARk Py,

€T €T

ce qui entraine que Py appartient & ker(f — Id) pour tout &k € {0, ...,n}, et donc :
ker(f —Id) = Vect(Py, ..., Py).

En particulier, la famille (P, ..., P,) est génératrice dans ker(f — Id). Mais comme Py est de degré
2n+1—k pour tout k € {0, ...,n}, la famille (P, ..., P,) est constituée de polynomes de degrés deux
a deux distincts, et donc elle est libre. Par conséquent :

2n+1
5 e

(r— 142 o P TR e 2™ 2™t est une base de ker(f — Id).

(4) En procédant exactement comme a la question (3), on montre aussi que :

(1 — 2

o g — TR s 2™ — ™) est une base de ker(f + Id).

(5) Pour tout P: 2 +— Yot apah € E et tout Q : 2 — Yot bya® € E, on pose :

2n+1

P(P,Q) =Y arby.

k=0
(a) Montrons que ¢ est un produit scalaire sur E. Pour ce faire, on va montrer que ¢ est une forme
bilinéaire symétrique définie positive, et ce en plusieurs étapes :

Premiére étape : ¢ est symétrique.

2n+1 2n+1

En effet, pour tout P:z— > ;"0 apz® € E et tout Q 1z — > ;7 bra* € E, on a:

2n+1 2n+1

Zakbk—zbkak— (@, P),

d’ou il s’ensuit que ¢ est symétrique.

Deuxiéme étape : ¢ est bilinéaire.

En effet, pour tous éléments P : @ — Yt aga®, Q i x— Yot bpa, R Y3 ek
de E et pour tous A, u € R, on trouve par linéarité de la somme que :
2n-+1 2n+1 2n+1

PP +pQ.R) = > (Aag +pbe)er =X Y axcr + 1 Y brek = Ap(P,R) + pp(Q, R),
k=0 k=0 k=0



ce qui entraine que ¢ est linéaire a gauche, et donc bilinéaire par symétrie.

Troisiéme étape : ¢ est définie positive.

En effet, pour tout élément P : z — Ziigl arz® de E, on a :

2n-+1
¢(P,P)= > aj >0,
k=0

et donc ¢ est positive. De plus, si ¢(P, P) = 0, alors on voit que a; = 0 pour tout &k € {0, ...,2n+1},
et donc P = 0. En particulier, la forme bilinéaire ¢ est définie positive.

Par conséquent, on en déduit que :

‘ ¢ est un produit scalaire sur E. ‘

(b) Etablissons que f est un endomorphisme symétrique de E. Soient P, Q) deux éléments de E, de la
forme P : x —> Zifo'l arz® et Q 1 x — Z?:O'I brz®. D’aprés la question (1), on sait que, pour
tout x € R :

2n+1 2n+1

FP)(@) =) asni1-ka® et f(Q)x) =D bans1sa’.
k=0 k=0

Deés lors, on obtient par définition du produit scalaire que :

2n+1

e(f(P),Q) = Z a2n+1—kbr-
k=0

Si I'on effectue le changement d’indices [ = 2n 4+ 1 — k£ dans la somme de droite, alors on a :

2n+1 2n+1
@(f(P)vQ) = Z alb2n+1—l = Z b2n+1—kak = @(f(Q))P) = ‘P(Paf(Q))
=0 k=0

Mais comme ceci est vrai pour tous P, € F, on en déduit que :

‘ f est un endomorphisme symétrique de E. ‘

(¢) Montrons que ker(f + Id) et ker(f — Id) sont supplémentaires orthogonaux. Comme f est un en-
domorphisme symétrique, ’espace vectoriel E est somme directe des sous-espaces propres de f, qui
sont de plus deux a deux orthogonaux. Mais comme les seules valeurs de f sont 1 et —1 d’apres les
questions précédentes, il s’ensuit que F_1(f) = ker(f+1d) et E1(f) = ker(f —Id) sont orthogonaux
et que de plus £ = E_1(f) ® E1(f). En particulier :

‘ker( f+1d) et ker(f —1d) sont supplémentaires orthogonaux dans F. ‘

Corrigé du probléme 1. On considére 'espace euclidien R? muni du produit scalaire canonique, lequel
est défini pour tout u = (x,y,2) € R3 et tout v’ = (2,3, 2') € R® par (u,u') = xa’ + yy’ + 22’. La norme
du vecteur u est définie par ||ul| = \/(u,u). On désigne par B = (ey, €3, e3) la base canonique de R3, et on
rappelle que cette base est orthonormée pour le produit scalaire (, ). Le but de ce probléme est de montrer que
Pon peut trouver une famille F = (eq, ..., e,,) de cardinal maximal, formée de n vecteurs unitaires deux & deux
distincts de R3, ainsi qu’un réel a tels que, pour tout couple d’entiers (i,j) vérifiant 1 < i < j < n, on ait :
(u;, u;) = a. La partie 1 permet d’obtenir un résultat d’algebre linéaire utile pour la suite, la partie 2 étudie
les propriétés d’une telle famille et la partie 3 propose la construction d’une famille solution du probléme pour
n = 4 (cette valeur est d’ailleurs la valeur maximale possible de n mais ce résultat ne sera pas démontré ici).

Partie 1 : Soit n est un entier > 2. Pour tout a € R, on désigne par M, la matrice de M,,(R) dont les
éléments diagonaux sont tous égaux a 1, les autres étant égaux & a. On note I la matrice identité de M,,(R)
et J la matrice de M,,(R) dont tous les coefficients valent 1.

(1) (a) Comme la matrice J a tous ses coefficients égaux a 1, elle est symétrique réelle. Dés lors, d’apres le
théoreme spectral, il s’ensuit que :

J est diagonalisable.
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(b)

Calculons J? et déterminons les deux valeurs propres de J. Par des calculs simples, on a :
1 ... 1 1 ... 1 n .. n
J2=1: : : =
1 ... 1 1 ... 1 n .. n

Par conséquent, on en déduit que :
J? =nl.

Dés lors, comme le polynéme P :  — x? — nz est annulateur de J, on voit que 0 et n sont les
seules valeurs propres possibles de J. Reste a vérifier que ce sont bien des valeurs propres de J. Par
des calculs simples, on trouve que :

1 ... 1 1 n 1 1
S N 2 B B S
1 .. 1 1 n 1 1
et donc N est bien valeur propre de J. De la méme maniere, on obtient que :
1 0 1 1
1 1 -1 0 -1 -1
AL O =19=0] Of e | O]=#o0,
1 1 : : ; ;
0 0 0 0

et donc 0 est aussi valeur propre de J. Par conséquent :

0 et n sont les seules valeurs propres de J.

Calculons les valeurs propres de M,. Pour ce faire, on va déterminer une base de vecteurs propres
de J. Comme 0 et n sont les seules valeurs propres de J, on commence par calculer une base de
Ey(J). Soit X un vecteur colonne de composantes 1, ..., Z,,. Alors :

1 ... 1 1 0
XeEb(J) = JX=0X <= : : l=1:
1 ... 1 Tn 0
En termes de coordonnées, cela nous donne que (z1,...,2,) est solution du systéme linéaire :
{x1+x2+...+xn:O
Si 'on choisit xs, ..., z, comme parametres, alors on trouve que 1 = —Ts — ... — &, et donc :
-1 -1
1 0
X €Ey(J) <= g mzn€R, X=a | O |+ 4z, | :
: 0
0 1
-1 -1
1 0
<— X € Vect 0 oy |
: 0
0 1

Pour tout k € {2,...,n}, on désigne par Ej le vecteur de composantes —1,0,...0,1,0,...,0 (ot 1 est
placé en k-éme position). D’apres ce qui précede, on voit que :

Eo(J) = Vect (Ea, ..., E,) .

Deés lors, il s’ensuit que (FEa, ..., E,) est une famille génératrice de Ey(J). Comme ces vecteurs
forment un systéme réduit (pour la méthode du pivot de Gauss), on voit que rg(Es, ..., E,) =n—1,
et donc Ey(J) est de dimension (n—1). Mais comme (Es, ..., E,,) est une famille génératrice & (n—1)
éléments d’un espace vectoriel de dimension (n — 1), il s’ensuit que :

‘ (Es, ..., Ey) est une base de Eo(J). ‘
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A présent, calculons une base de E,(J). Comme n est une valeur propre de J, on voit que
dim E, (J) > 1. De plus, comme E,(J) et Ey(J) sont en somme directe, on trouve que :

dim E,(J) <n —dim Ey(J) =1,

et donc E,,(J) est de dimension 1. En outre, si l'on désigne par E; le vecteur de composantes 1, ..., 1,
alors on voit d’aprés la question précédente que JE; = Fy, et donc E; appartient & E,(J). Comme
E; est non nul, il constitue une famille libre de E,,(.J), et donc une base de E,,(J) car dim E,,(J) = 1.
En particulier :

‘ (E1) est une base de E,(J). ‘

En résumé, on obtient que :

’ (E1, Es, ..., Ey) est une base de vecteurs propres de J.

Passons maintenant au calcul des valeurs propres de M,. Tout d’abord, on voit que :

) . 1 1+ (n—1a 1
MaEl = . . ' = = []- + (nf 1)(1] )
- -oa 1 1+ (n—1a 1

d’ou il s’ensuit que 1+ (n — 1)a est valeur propre de M,. De la méme fagon, on trouve que, pour
tout k € {2,...,n} :

-1 —1+a -1
0 0 0
1 a a :
a 1 0 0 0
Mo By, = . L= azt | T@=D] 1 |
a a 1 0 O 0
0 0 0

d’otut il s’ensuit que a — 1 est aussi valeur propre de M,. Mais comme la famille (E1, ..., E,) est une
base de vecteurs propres de M,, on en déduit que 1+ (n—1)a et a — 1 sont les seules valeurs propres
de M,. Par conséquent :

a—1et 14 (n—1)a sont les seules valeurs propres de M,.

(b) Montrons que M, est inversible si et seulement si : a # 1 et a # ——15. Par définition, la matrice M,
est inversible si et seulement si 0 n’est pas valeur propre de M,. Mais comme a — 1 et 1 4+ (n — 1)a
sont les seules valeurs propres de M,, il s’ensuit que M, est inversible si et seulement si a — 1 # 0
et 1+ (n—1)a#0, et donc :

M, est inversible si et seulement si : a # 1 et a # 7
n—

(3) Ecrivons une fonction en Python qui, étant donnés un réel a et un entier n > 2, affiche la matrice M,
puis détermine si cette matrice est inversible ou pas. Pour ce faire, on part du fait que la matrice M,
se décompose sous la forme M, = aJ + (1 — a)I, et on utilise les questions précédentes comme suit :
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import numpy as np

def matrice(a,n):
m=np.zeros([n,n])
for i in range(n):
for j in range(n):
if i==j:
m[i,jl=1
else:
m[i,jl=a
print (m)
if a==1 or a==-1/(n-1):
print(’la matrice n est pas inversible’)
else:
print(’la matrice est inversible’)

Partie 2 : On suppose que l'on a trouvé une famille (uq,...,u,) formée de n vecteurs unitaires et deux a
deux distincts de R3 et un réel o solutions du probleme.

(1)

3)

Soient Aq, ..., A, des réels tels que ZZ':l Arur = 0. Montrons que :

A1

Pour tout [ € {1,...,n}, on obtient par bilinéarité du produit scalaire que :

<Z )\kukaul> = Z)\Muk,uz) =0.
k=1 k=1

Comme les u; sont des vecteurs unitaires, on voit que (u;, w;) = 1 pour tout I. De plus, comme (u;, u;) =
« pour tout couple d’entiers (i, 7) tels que 1 <14 < j < n, et que le produit scalaire est symétrique, on
trouve que (ug,u;) = « si k # [. Dés lors, il s’ensuit que, pour tout ! € {1,...,n} :

Z )\k<uk,ul> =al+...+aN_1+ N+ alNg+ ... +ar, =0.
k=1

Comme M, est la matrice de M,,(R) dont les éléments diagonaux sont tous égaux a 1, les autres étant
égaux a a, I’égalité ci-dessus n’est ni plus ni moins que la I-eme composante du vecteur :

A1
U=M,| :
An
Par conséquent, on en déduit que :
A1
My| : | =0.
An

Déterminons la valeur maximale de n lorsque o # 1 et # fﬁ. Dans ces conditions, on sait d’apres la
question (2)(b) de la partie 1 que la matrice M,, est inversible. Dés lors, d’aprés la question précédente,
on obtient que :

n )\1 )\1
=0 = M| :|=0 = =0 = M=..=)\=0
h=1 An An

En particulier, la famille (w1, ..., u,, ) est libre. Mais comme il s’agit d’une famille de R?, elle doit compter
au plus 3 éléments, et donc la valeur maximale de n est donnée par :

Etude du cas o« = 1.
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(a) Ecrivons l'inégalité de Cauchy-Schwarz pour w; et u; avec ¢ # j. D’apres le cours, on voit que :
[(w, ug)| < Jluall x Jlugll.

Comme les u; sont unitaires et que (u;, uj) = « = 1 pour tous i, j avec i # j, on obtient que :

[y )] = Ilaal] < Il ] |

De plus, on sait d’apres le cours qu’il y a égalité dans l'inégalité de Cauchy-Schwarz si et seulement
si les vecteurs u; et u; sont colinéaires. Des lors, il existe un réel a; ; tel que u; = a; ju;, et donc :

(wi ug) = (aiguy, ug) = aigllu;)|* = aiy x 1=a=1.
Par conséquent, on en déduit que, si i # j :
U; = Uyj-

(b) D’apres ce qui précede, tous les vecteurs u; sont égaux. Mais comme la famille (uq, ..., u, ) est formée
de vecteurs deux & deux distincts, cette famille n’a qu’un seul élément, et donc :

n=1.

(4) Dans cette question, on admet qu'’il existe une famille (uq, us, us, us) formée de 4 vecteurs unitaires et
deux & deux distincts de R? solution du probleme.

(a) Donnons la valeur de o. Comme la famille (u1,uz, uz, us) comporte 4 éléments de R3, elle n’est pas
libre. Deés lors, d’aprés la question (1) de la partie 2, on sait que la matrice M, n’est pas inversible.
D’apres la question (2)(b) de la partie 1, il s’ensuit que « =1 ou a = fé. Mais d’apres la question
(3)(b) de la partie 2, on sait que, si @ = 1, alors n = 1, ce qui est impossible car n = 4 par hypotheése.
Par conséquent :

(b) Montrons que (u1,us,u3) est une base de R3. Comme cette famille comporte 3 éléments et que R?
est de dimension 3, il suffit de montrer que la famille (uy,us,us) est libre. Soient A1, A2, A5 € R tels
que A\juq + Asus + Agug = 0. Alors on voit que A\juq + Asus + Agug + 0uy = 0, ce qui entraine d’apres
la question (1) de la partie 2 que :

A1
A2
A3
0

M,

D’apres la question (2)(a) de la partie 1 et comme o = —%, on sait que le noyau de M, (c’est-a-dire

le sous-espace propre Eg(M,)) est engendré par le vecteur colonne E7, dont toutes les composantes
sont égales a 1. Des lors, il existe un réel 6 tel que :

A 1
1

A3 R
1

d’otut il s’ensuit que § = 0, et donc Ay = Aa = A3 = 0. En particulier, la famille (uq,us,us) est libre,
et donc :

(w1, u2,us) est une base de R3.

(c) Calculons les coordonnées de uy dans cette base. Soient A1, Az, A3 € R les coordonnées de uy dans
la base C = (uy,us,us). Par définition, on voit que Ajuy + Asus + Azuz = ug, et donc Ajug + Agus +
Asug — ug = 0. D’apres la question (1) de la partie 2, ceci entraine que :

A
A2
A3
-1

M,
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D’apres la question (2)(a) de la partie 1 et comme « = —%, on sait que le noyau de M, est engendré

par le vecteur colonne F;. Dés lors, il existe un réel 0 tel que :

A1 1
X |
As | 0 1]’
-1 1
d’ou il s’ensuit que 8 = —1, et donc \; = Ay = A3 = —1. En particulier, la matrice colonne des

coordonnées de uy dans la base C est donnée par :

-1
mate(ug) = | —1
-1

Partie 3 : On se propose de trouver des familles solutions du probléme dans certains cas.

(1) Donnons une famille solution du probleme posé pour n = 3 et « = 0. Sin = 3 et a = 0, il s’agit de
trouver une famille de 3 vecteurs deux & deux orthogonaux et tous unitaires, c’est-a-dire une famille
orthonormale de R3 & 3 éléments. On voit alors que la base canonique de R® convient. Dés lors :

‘ la base canonique de R? est solution du probléme pour n = 3 et a = 0.

(2) On pose v1 = ey, vg = —%61 + ?62 et vy = —%el - @eg.
(a) Montrons que (v1,va,v3) est solution du probléme posé pour o = f%. Par définition, on voit que

ces 3 vecteurs sont deux a deux distincts. De plus, ils sont unitaires car :

forll =1, el = \/<—;) ¥ (f) 1 sl = W_;) . (_Vf) :1

Reste a vérifier que (v1,v2) = (v1,v3) = (v2,v3) = —3. Par bilinéarité du produit scalaire et vu que
(e1,€2) est une famille orthonormée, on trouve que :

1 V3 1 V3 1
(vi,v2) = <€17 —-e1+ €2> = ——(e1,e1) + —(e1,e2) = 3

2 2 2 2

De la méme fagon, on obtient que :

(v1,v3) = (e —le —ﬁe ——1<e e>—§<e e}——1
1, Y3/ — 1721 22_2171 2172_2~

Par des calculs analogues, on trouve que :

(ogvs) = (Lo V3., L V3,
2,U3 - 2 1 2 2 2 1 2 2
1\2 V3\?
= D) (e1,e1) — 5 (e2,€2)
_ 1.3 _ 1
4 4 2’
Par conséquent, on en déduit que :
1
la famille (v1, ve, v3) est solution du probléme pour « = —3

Déterminons deux réels A, p tels que la famille (uq, ug, us, us) = (€3, Av1 + pes, Ava + pes, Avs + pes)
soit solution du probléeme posé pour n = 4. Par définition, cela signifie que o = —%, que les vecteurs
de cette famille sont deux & deux distincts (et donc A # 0), et que de plus :

(ur,u1) = {ug, ug) = (ug, uz) = (uqg,ug) =1

(ui,u2) = (u1,uz) = (u1,us) = (uz,uz) = (ug, us) = (uz, usg) = —%
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Apres calculs, on trouve que A, 1 sont solutions du systéme :

A2 w2 =1
142 2 _ 1
AT+ p = -3,

po= -3

d’ott il s’ensuit apres résolution que A% = %, et donc \ = i%. Par conséquent :

22 1

(u1,us,us, ug) est solution du probléeme pour n =4, A = j:T et pu = —3

(3) Ecrivons une fonction en Python qui, étant donnés 3 vecteurs unitaires et distincts u,v,w de R3,
détermine si la famille (u,v,w) est solution du probléme ou pas, et affiche la valeur de « dans ce cas.
Pour ce faire, on doit vérifier que (u,v) = (u, w) = (v, w), ce qui revient a contrdler que (u,v) = (u, w)
et (u,v) = (v,w), et dans ce cas « = (u, v). Dés lors, on peut procéder comme suit :

import numpy as np

def vecteurs(u,v,w):
x=np. sum(u*v)
y=np.sum(u*w)
z=np . sum (v*w)
if x==y and y==z:
print(’les vecteurs sont solutions du probleme’)
print (x)
else:
print(’les vecteurs ne sont pas solutions du probleme’)
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2. Sujet type HEC-ESCP Maths I

Corrigé du probléme 2. Dans ce probleme, on s’intéresse a des opérations de transport dans des situations
déterministes ou aléatoires, modélisées de maniere discrete ou continue, dans le but de trouver un programme
de transport optimal dont le cofit serait le plus faible possible. Les parties I, IT et IIT sont largement indé-
pendantes. Toutes les variables aléatoires considérées dans ce probléme sont supposées définies sur le méme
espace probabilisé (€, A, P). Sous réserve d’existence, on note E(Z) l'espérance d’une variable aléatoire Z.
Enfin, pour tout entier N > 1, on note £y l'ensemble des applications de [1, N] dans [1, N].

Préliminaire

(1) Soit p un réel vérifiant 0 < p < 1. On considére une variable aléatoire X suivant la loi exponentielle de
parameétre 1. Pour tout w € Q, on pose Y (w) = |[pX(w)], ou | | désigne la fonction partie entiére.

(a)

Vérifions tout d’abord que Y est une variable aléatoire discrete. Comme X suit une loi exponentielle,
on voit que X () = Ry, ce qui entraine que (pX) () = Ry, et donc Y (£2) C N. En particulier,
Pensemble Y (2) est au plus dénombrable. De plus, pour tout n € N, on voit que :

IV =n] = [[pX| =n] = [n < pX < n+1] = [ng<”;1} - [Xe [Z,”;H.

Comme X est une variable aléatoire définie sur (€2, .4, P) et que [%, 2l egt un intervalle, il s’ensuit

P
n ntl
p’ p

tout n € N. Par conséquent, on en déduit que :

que I’ensemble [X el [[ est un élément de A, et donc I'ensemble [Y = n] appartient & A pour

\Y est une variable aléatoire discrete. \

A présent, calculons P([Y = n]) pour tout n € N. Pour tout n € N, on a d’apres ce qui précede :

P([Y:n]):P<[2<X<n:1D.

Comme X est une variable & densité, ceci nous donne que, pour tout n € N :

ror-m=re(5) 5 2)

Comme X suit la loi exponentielle de parametre 1, il s’ensuit que, pour tout n € N :

).

n+41 n n+1

P([Y:n]):(l—ei » )—(1—67%>=€75—€7 = (1—67

Par conséquent, on en déduit que, pour tout n € N :

=

P(Y =n)) =e (1 fe_%).

Montrons que la variable aléatoire Y + 1 suit une loi géométrique dont on précisera le parametre.
Pour ce faire, on pose Z =Y + 1. Comme Y (Q2) C N et que P([Y = n]) # 0 pour tout n € N d’apres
la question précédente, on voit que Y (Q2) = N, et donc Z (2) = N*. De plus, on constate d’apres la
question précédente que, pour tout n € N* :

P((Z=n) =P(IY =n—-1)=eF (1-¢77) = (ef%)”*l (1-c#).

Par conséquent, on en déduit que :

Y + 1 suit la loi géométrique de parametre 1 — e,

Etablissons les inégalités strictes : 0 < E(Y) < p. Comme Y +1 suit la loi géométrique de parametre

—1 N . , . N ,
1 — e » d’apres la question précédente, on sait d’apres le cours que Y + 1 admet une espérance

égale A E(Y +1) = —1+. Comme Y = (Y + 1) — 1, ceci entraine par linéarité de I’espérance que
l—e P
Y admet une espérance et que :

1

=

1 e
EY)=EY +1)—-1=—-7-1= — = ,
l—e» l—e» er —1

Comme % > 0, on voit que e# > 1, et donc E (Y) > 0. Posons maintenant f(z) =e* —1 — z pour
tout € R. Alors la fonction f est dérivable sur R, et de plus, on a f'(z) = e* — 1 > 0 pour
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tout = € R . En particulier, la fonction f est strictement croissante sur [0, +-00[, ce qui entraine que
f(x) > f(0) pour tout = > 0, et donc e* —1 > z pour tout z > 0. Comme 1% > 0, ceci entraine que :

1 1
er —1>—>0.
p

Par stricte décroissance de la fonction ¢t — % sur ]0, +o0[, il s’ensuit que 1 — < p, et donc :

er —1

0< E(Y)<p.

(2) (a) Pour tout couple (r,s) € N2, montrons que l'intégrale fol 2" (Inz)*dx est convergente. Dans ce qui
suit, on pose I, s = fol 2" (Inx)® dz pour tout (r,s) € N2. Fixons alors un couple (r, s) € N2. Comme
la fonction & — 2" (In(z))® est continue sur ]0,1], intégrale I, ; est impropre en 0. De plus, on
obtient par croissances comparées que :

2" t1/2 (Inz)* — 0.
z—0*t

En particulier, ceci entraine que :

e = o),

dz

Comme l'intégrale de Riemann fol /s converge et que —

> 0 pour tout z €]0,1], le critere de
r,s) € N% :

S

négligeabilité pour les intégrales entraine que, pour tout

—~

1
I'intégrale I, s = / 2" (Inz)*dx converge.
0

(=1)°s!

(b) Etablissons pour tout couple (r, s) € N2, I'égalité : fol 2" (lnx)*dx = 0 Pour cela, on conserve

les notations de la question précédente. Si 'on pose u = —Inz, c’est-a-dire z = e, alors on
constate que I'application u — e~ % est de classe C* sur ]0, +oc[ et bijective de |0, +oo[ sur ]0, 1|
et que, de plus on a dx = —e “du, u tend vers 400 quand x tend vers 0 et u tend vers 0 quand =

tend vers 1. Par changement de variable, on trouve que :

0 “+o0

I = / (67“)7’ (—u)® x (= ") du = / (=1)* use rHugy,
+o0 0

On effectue & nouveau un changement de variable en posant v = (r + 1)u. A noter que ce dernier

est bien licite car la fonction u — (r + 1)u est affine (vu que » +1 > 0). Comme dv = (r + 1)du,

que v tend vers +oco quand u tend vers +o0o et que v tend vers 0 quand w tend vers 0, on obtient

par changement de variable que :

+oo s d +oo _18
0 r+1 r+1 0 (r+1)

Comme s + 1 est un entier > 0 et que la fonction I' : z — f0+°o v*"le~dv est définie sur R, il
s’ensuit par linéarité de 'intégrale que :
S S
(-1) Y

I, =—"F"-—=T(s+1)= sl
i (r+1)8+1 ( ) (T+1)8+1

Par conséquent, on en déduit que, pour tout (r,s) € N? :

1 s
-1
I, s = / 2" (lnz)’der = (7)54»181'
0 (r+1)

Partie I. Transport dans une situation aléatoire.

On dit que la loi d’une variable aléatoire Y est accessible depuis une variable aléatoire X, s’il existe une
application T : X (Q2) — R telle que la variable aléatoire T'(X) suit la méme loi que Y. L’application T" est
alors appelée une fonction de transport de la variable aléatoire X vers la loi de Y. On associe a T' un cott de
transport C(T') défini, sous réserve d’existence, par : C(T) = E((X — T(X))?). Dans toute cette partie, X
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désigne une variable aléatoire vérifiant X (£2) =|0, 1] et suivant la loi uniforme sur |0, 1], c’est-a-dire admettant
pour densité la fonction fx définie par :

[ 1 siz€lo,1]
Jx (@) = { 0 sinon

(1) Soit p un réel vérifiant 0 < p < 1. Pour tout réel a € [0, 1—p|, on note dans cette question T, la fonction
définie sur |0, 1] par :

(a)

[ 1 siz€la,a+p|
Ta(w) = { 0 sinon

Calculons la probabilité P([T,(X) = 1]) et montrons que les fonctions T, sont des fonctions de
transport de X vers une méme loi que 'on précisera. Comme X est une variable a densité, on
trouve que :

P([T,(X)=1)) = P(la < X <a+p|) = Fx(a+p) — Fx(a).

Comme X suit la loi uniforme sur ]0, 1] et que a,a + p appartiennent & )0, 1], ceci nous donne que :

Mais comme T, (X) ne prend que les valeurs 0 et 1 par construction, il s’ensuit que T, (X) suit la
loi de Bernoulli de parametre p. Par conséquent, on en déduit que :

‘les fonctions T, sont des fonctions de transport de X vers la loi B(p). ‘

Vérifions que le colit de transport C(T,) est égal & = —|— p(1 — p) — 2ap. Comme X est a densité, on
sait d’apres le théoreme de transfert que la Varlable aléatoire (X — T,(X))? admet une espérance
si et seulement si l'intégrale f_ (t — T, (t))? fx (t)dt converge absolument. Comme X suit la loi
uniforme sur |0, 1[, X admet une densité nulle sur | — 0o, 0] U [1, +00[ et ceci revient & vérifier que
I'intégrale fol (t — T,(t))?dt converge absolument. Comme 0 < a < a + p < 1 par hypothese, on
trouve par des calculs simples que :

i R

Comme les fonctlons t—> 1)% et t — t2 sont continues sur les segments [a, a+p), [0, al, [a+p, 1],

les intégrales f Pt — )2dt, [o(t — Tu(t))dt et f — To(t))?dt convergent absolument, et

(t—

T.(t))
donc l'intégrale fo (t—T,(t))?dt converge absolument d’apreés la relation de Chasles, d’ott existence
du cofit de transport C(T,). De plus, d’aprés le théoréme de transfert, la relation de Chasles et la



formule du bindéme, on trouve que :

+oo
[ -0 e

C(Ta)

1

(=T

w (£)* fx(t)dt

dt+/aa+p(t— W (1) dt+/a1+

J
e
X

1
= dt+/ (t—l)zdt—l—/ t2dt
a+p
t —1)31% e8!
- [5],+[57+[5)
3 . 3 |ty
_ @ (atp-1p (@-1° 1 (a+p)°
3 3 3 3 3

(a—1)° +1—(a+p)®
3

ad+(a+p—1)3—

@’ +(a—1)°+3pla— 1) +3p®(a— 1) +p* — (a — 1)°
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(t — Ta(t)?dt

+1—(a+p)3

3

a®+3pla—1)2+3p*(a—1)+p*>+1— (a+p)?
3

a3 + 3pa® — 6pa + 3p + 3p2a —

3p? +p3 + 1 —a® — 3pa®

— 3p2a — p3

3

—6pa +3p —3p* + 1
3 .
Par conséquent, on en déduit apres simplification que :

1
= +p(1 —p) —2ap.

C(Ta) = 3

(¢) Déterminons la valeur de a qui minimise C(T,) et exprimons le colit minimal correspondant en
fonction de p. Comme la fonction affine a — % + p(1 —p) — 2ap est strictement décroissante sur

l'intervalle [0,1 —
avec la question précédente que C(T,

pl, elle atteint son minimum sur [0,1 — p] en a = 1 — p. En particulier, on voit
) est minimal si et seulement si a = 1 — p, et dans ce cas :

C(Th—p) = g +p(1=p) =2p(1 = p) = 5 —p(1 = p).
Par conséquent, on en déduit que :
C (Ty,) est minimal pour a =1 — p et le colt minimal vaut C (Th_,) = s —p(1 —p).
(2) Soit Ty et Ty les applications définies sur |0, 1] par T1(z) = —lnx et To(z) = —In(1 — z).

(a) Vérifions que T; et Ty sont des fonctions de transport de X vers une loi que 1'on précisera. Comme

X suit la loi uniforme sur 0, 1], on sait que X ()
To(X)(Q2) C RY, et donc Frp, (x)(x)
trouve par croissance de I’exponentielle que :

Fryx)(2) = P([=In(X) < 2]) = P([In(X) = —z])

Comme X est a densité, ceci nous donne que, pour tout z > 0 :
FTl(X)(z)

Comme X suit la loi uniforme sur ]0, 1] et que e™*
FTl(X)(x) =1- FX(e_’”) =1—e"".

=P([X >e7"

—P(X>e)=1-P(X <e ) =1—Fx(e™®

=]0, 1[, ce qui entraine que 71(X)(Q) C RY et
= Frp,(x)(z) = 0 pour tout 2 < 0. De plus, pour tout x > 0, on

D

).

appartient a |0, 1[ car & > 0, ceci entraine que :
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En d’autres termes, on vient de trouver que :

1—e™® siz>0
FTI(X)(x) - { 0 sinon

De méme, pour tout z > 0, on trouve par croissance de I’exponentielle que :
Fryox0)(@) = P(I=In(1 = X) < a]) = P([ln(1 = X) > —a) = P([1 - X > ¢,

Comme X suit la loi uniforme sur ]0, 1[ et que e~® appartient & ]0,1[ car & > 0, ceci entraine que :
Fryoo(@) = P(1- X > e ) = P(X <1—¢ ) = Fx(1—e®) = 1—¢™.

En d’autres termes, on vient de trouver que :

1—e™® siz>0
FT2(X)<$) - { 0 sinon

D’apres les calculs ci-dessus, on voit que T3 (X) et T5(X) suivent la loi exponentielle de parametre
1. Par conséquent, on en déduit que :

T, et Ty sont des fonctions de transport de X vers la loi £(1). ‘

Comparons les cofits de transport C(T}) et C(Tz). Pour ce faire, on commence par calculer C(T7).
Comme X est a densité, on sait d’apres le théoréme de transfert que la variable aléatoire (X —T3(X))?

admet une espérance si et seulement si I'intégrale fj;: (t — Ty (t))? fx(t)dt converge absolument.
Comme X suit la loi uniforme sur |0, 1[, X admet une densité nulle sur | — 0o, 0] U [1, +o00[ et ceci
revient & vérifier que l'intégrale fol (t —Ti(t))%dt = fol (t + In(t))2dt converge absolument, c’est-a-
dire converge car I'intégrande est positive. Or on voit par des calculs simples que (¢ + In(t))? =
t2 4 2t In(t) +In?(t) pour tout ¢ €]0, 1[. Comme les intégrales du type fol t" In®(t)dt convergent pour
tout (r,s) € N? d’aprés la question (2) du préliminaire, ceci entraine que les intégrales fol t2dt,
fol tln(t)dt et fol In?(t)dt convergent, et donc l'intégrale fol(t + 1In(t))2dt converge par linéarité de
I'intégration. En particulier, la variable aléatoire (X — T7(X))? admet bien une espérance et le cofit
de transport C'(17) est bien défini. De plus, d’apres le théoréeme de transfert, on trouve que :

e’} 1 1
CMU:/+@—ﬂ@fﬁ@ﬁ:A@—ﬂ@fﬁ@ﬂ:A@+mm%t

— 00

Par linéarité de l'intégration et d’apres la question (2) du préliminaire, ceci nous donne que :

C(T) = /Ol(t +1In(t))2dt

1 1 1
= /t2dt+2/ tln(t)dt+/ In®(t)dt
0 0 0

(=) (=1)! (=1)°
= et PAa it e

_ 1 2x1+2
T3 4 7

Par conséquent, on en déduit apres simplification que :

11

Passons maintenant au calcul de C(T3z). Comme X suit la loi uniforme sur ]0,1[, ¥ = 1 — X suit
aussi la loi uniforme sur ]0,1[. De plus, on voit que X —T5(X) = X +In(1 - X) =1-Y +
In(Y) =1-Y +T1(Y). Comme Y est & densité, on sait d’apres le théoreme de transfert que
la variable aléatoire (X — T»(X))? = (1 — Y + T1(Y))? admet une espérance si et seulement si
l'intégrale f:rf: (1—t+ Ty (t))° fy(t)dt converge absolument. Comme Y suit la loi uniforme sur
10,1[, ¥ admet une densité nulle sur | — 00,0] U [1,+00[ et ceci revient & vérifier que I'intégrale
fol(l —t+Ty(t))3%dt = fol (1—t-+In(t))%dt converge absolument, c’est-a-dire converge car I'intégrande
est positive. Or on voit par des calculs simples que, pour tout ¢ €]0, 1] :

(1—t+In)? =1+t>+ 1) — 2t + 2In(t) — 2tIn(t).
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Comme les intégrales du type fol " In®(t)dt convergent pour tout (r,s) € N? d’aprés la question (2)
du préliminaire, ceci entraine que toutes les intégrales sur [0, 1] des fonctions ci-dessus convergent, et
donc l'intégrale fol(l —t+1In(t))2dt converge par linéarité de 'intégration. En particulier, la variable
aléatoire (X — T5(X))? admet bien une espérance et le cofit de transport C(T) est bien défini. De
plus, d’aprés le théoreme de transfert, on trouve que :

[e%) 1 1
C’(Tz)_/Jr (1—t+Ty (t))zfy(t)dt:/o 1—t+Ty (t))ny(t)dt:/O (1 —t+In(t))3dt.

Par linéarité de l'intégration et d’apres la question (2) du préliminaire, ceci nous donne que :

C(Ty) = A%l—t+m@D%t

1 1 1 1 1 1
_ /1.dt+/ t?dt+/ 1n2(t)dt—2/ tdt+2/ 1n(t)dt—2/ Hn(t)dt
0 0 0 0 0 0

1 (—1)%2! 1 (—1)t1! (—1)t1!
= 1l4+-4+—"FF——2Xx=+2 -2
3Ty e T oy S Ty
1 1
= 1+-+2-1-2+=.
+gt +3
Par conséquent, on en déduit apres simplification que :
5

D’aprés les calculs faits ci-avant, on en déduit que :

\C(Tz) < C(Tl).\

Montrons que toutes les lois géométriques sont accessibles depuis X. Pour ce faire, fixons un réel a €
10, 1[. D’aprés la question (2)(a) de la partie I, on sait que T7(X) = — In(X) suit la loi exponentielle
de parametre 1. De plus, d’apres la question (2) du préliminaire, on voit que |aT1(X)] + 1 suit la

loi géométrique de parametre 1 — e~ . Or, pour tout p €]0, 1], on constate que :

1 1
l—ea=p <« l-p=ecs <+ -=-In(l—p) < a=-
a In(1-p)
Si l'on pose g =1—peta= —@, alors il s’ensuit que la variable aléatoire Y = | —aln(X)] + 1

suit la loi géométrique de parametre p. En particulier, la fonction :

- {NJ[—+ R
: —1In(¢)
t — L—ln(q)J +1

permet d’accéder a la loi G (p) depuis X. Comme ceci est vrai pour tout p €]0, 1], on en déduit que :

‘toutes les lois géométriques sont accessibles depuis X. ‘

3) Dans cette question Y désigne une variable aléatoire admettant une densité Y continue et strictement
’ g
positive sur R.

(a)

Justifions que la fonction de répartition Fy de Y réalise une bijection de R sur l'intervalle |0, 1[.
Comme Y est une variable aléatoire admettant une densité fy continue et strictement positive sur
R, la fonction de répartition Fy est dérivable sur R et de plus, on a (Fy)'(t) = fy(¢t) > 0 pour
tout ¢ € R. En particulier, la fonction Fy est continue et strictement croissante sur R. D’apres
le théoréme de la bijection, la fonction Fy réalise une bijection de R sur Fy (R). Comme Fy est
continue sur R, 'image Fy (R) est un intervalle d’apres le théoréme des valeurs intermédiaires. Mais
comme Fy est strictement croissante sur R, qu’elle tend vers 0 en —oo et vers 1 en +0o en tant que
fonction de répartition, il s’ensuit que Fy (R) =]0, 1[. Par conséquent, on en déduit que :

‘13 fonction Fy réalise une bijection de R sur |0, 1]. ‘

On note Fy ! 1a bijection réciproque de Fy-. Montrons que Fy L est une fonction de transport de la
variable aléatoire X vers la loi de Y. Pour ce faire, on pose Z = Fy, 1(X). Comme Fy est strictement
croissante sur R d’apres la question précédente, on trouve que, pour tout x € R :

Fz(x) = P ([Fy1(X) < 2]) = P([X < Fy(2))).
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Comme Fy (x) appartient & ]0, 1[ pour tout z € R et que X suit la loi uniforme sur ]0, 1, ceci nous
donne que, pour tout x € R :

Fz(z) = P([X < Fy(2)]) = Fx(Fy(z)) = Fy(2),

et donc Y et Z = Fy, L(x ) suivent la méme loi. Par conséquent, on en déduit que :

Fy ! est une fonction de transport de X vers la loi de Y.

(4) Cas particulier : on suppose que Y suit la loi normale centrée réduite. On note Fy la fonction de
répartition de Y et ¢ la densité continue sur R de Y.

(a) Etablissons tout d’abord la convergence de l'intégrale f * yFy (y)e(y)dy. Comme Fy est une fonc-

tion de répartition, elle est & valeurs dans [0, 1], ce qui entraine que 0 < |yFy (y)¢(y)| < |ylp(y) pour
tout y € R. Comme Y suit la loi normale centrée réduite, Y admet une espérance d’apres le cours
et l'intégrale f lyle(y)dy converge. D’apres le critére de comparaison des intégrales de fonctions
positives, I'intégrale f_oo lyFy (y)¢(y)|dy converge. En particulier, I'intégrale fj:j yFy (y)p(y)dy
converge absolument, et donc :

+oo
lintégrale / yFy (y)p(y)dy converge.

—0o0

A présent, montrons que :

+oo 1
[ yFy (y)p(y)dy = NG

Pour ce faire, fixons deux réels a, b tels que a < b, et posons u(y) = Fy(y) et v(y) = —e~ "z pour
12
tout y € [a,b]. Alors u et v sont de classe C! sur [a,b] et de plus, on a u/(y) = p(y) = %6_% et
2
v'(y) = ye~ T pour tout y € [a, b]. Par intégration par parties, on trouve que :

/abyFy(y)w(y)dy = { \/12?*22Fy } +—/e v dy

1 e 1 e
= - e 2 Fy(b) + e 2 Fy(a —1——/ e Ydy.
O+ = TR+ 5 |y
2
Comme Fy tend vers 0 en —oo et vers 1 en +00 en tant que fonction de répartition, que e~ % tend

a2
vers 0 quand b tend vers +oco et que e~ = tend vers 0 quand a tend vers —oo, on obtient par passage
a la limite quand a tend vers —oo et quand b tend vers 400 dans 1’égalité ci-dessus que :

+oo 1 +oo 5
/ yFy (v)p(y)dy = py e Vdy. (%)

Par ailleurs, considérons la fonction :

1
h:y+— —— exp(—y? ex —
Al p(—y°) = \/ﬁ\f p ;

2

N[ =
—

Alors on voit que h est une densité d’une variable aléatoire qui suit la loi N (0 ( ) et donc 'intégrale

12
fjoo h(y)dy converge et vaut 1. En particulier, il s’ensuit par linéarité de I'intégration que :

+o0 5
/ e Vdy =+/m.

— 00

Par conséquent, on en déduit avec 1’égalité (x) que :

+oo 1 1
/_ yFy (y)p(y)dy = 2 X V= NG

Montrons que Uintégrale f *(y — Fy (y))%¢(y)dy est convergente et calculons-la. Pour tout y € R,
)?

p(y) = v*e (y) — 20Fy (e (y) + (Fy () *0(y) (+).

on commence par remarquer que (y — Fy (y)
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Comme Y suit la loi normale centrée réduite, elle admet un moment d’ordre 2 et donc 'intégrale
f_ y) dy converge. De plus, on trouve d’apres la formule de Koenig-Huygens que :

“+o0
/ vo(y)dy=EY?) =V(Y)+EY)?=1+0>=1.
En outre, on sait d’apres la question précédente que l'intégrale f yFy (y)e(y)dy converge et vaut

ﬁ' Par ailleurs, comme (Fy )’ = ¢, on obtient que, pour tous réels a,b tels que a < b :

b

/ 'y 1) 20(0)dy = [1<Fy<y>>3] = LB ) - L(Fv(a)®.
. 3 3 3

a
Comme Fy est une fonction de répartition, elle tend vers 0 en —oo et vers 1 en +o0o. Par passage
a la limite quand a tend vers —oo et quand b tend vers +o0o dans ’égalité ci-dessus, ceci entraine
que Vintégrale [ (Fy (y))2¢(y)dy converge et vaut 1. Dés lors, il s’ensuit d’apres la relation ()
et par linéarité de l'intégration que l'intégrale f *(y — Fy (y))?¢(y)dy converge. De plus, toujours
par linéarité, on trouve que :

+o0 +00 too +oo
/ (v — Fr(1)*0(w)dy = / yPo(y)dy — 2 / yFy (1) () dy + / (Fy (1) (y)dy

— 00 — 00 — 00 — 00

1

1-2
X2f

Par conséquent, on en déduit apres simphﬁcatlon que :

+oo
4 1
Pintégrale /_OO (y — Fy(y))zgo(y)dy converge et vaut 3 ﬁ

(c) Montrons que le coiit de transport C(Fy ') est égal & 3 - ﬁ Comme X est a densité, on sait

d’apres le théoreme de transfert que la variable aléatoire (X — Fy,*(X))? admet une espérance si

et seulement si l'intégrale f_ (t — Fy ' (t))%fx (t)dt converge absolument. Comme X suit la loi
uniforme sur ]0,1[, X admet une den51te nulle sur ] oo ,0] U [1,+00] et ceci revient & vérifier
que l'intégrale I = fol (t — Fy N (1) % fx fo (t — (t))%dt converge absolument, c’est-a-dire

converge car 'intégrande est posmve Posons alors t = Fy( ). D’aprés la question (3)(a) de la
partie I, la fonction Fy est de classe C! et bijective de R sur ]0, 1], et de plus on a dt = p(y)dy,
y tend vers —oo quand ¢ tend vers 0 et y tend vers +o0o quand ¢ tend vers 1. Par changement de
variable, 'intégrale I est de de méme nature que 'intégrale :

+oo

+oo
J= / (Fy (y) — Fy o Fy ()2 (y)dy = / (v — Fy (1)) 0(y)dy,

et de plus, elles sont égales en cas de convergence. Comme l'intégrale J converge et vaut é — ﬁ

d’apreés la question précédente, il s’ensuit que l'intégrale I converge et vaut aussi % T Par

conséquent, on en déduit que :

4 1
le cotit de transport C'(Fy ') est égal & — — —.
Partie II. Transport optimal dans une situation déterministe.

Dans toute cette partie, N désigne un entier supérieur ou égal a 2. On considére N réels dy,ds,...,dy
(appelés points de départ) et N réels a1, aq,...,an (appelés points d’arrivée) vérifiant d; < do < -+ < dy et
a1 < ag <---<ay.Onpose D=1{dy,ds,...,dy} et A={ay,aq9,...,an}.

(1) (a) Montrons que pour tout couple (k,1) € [1, N]?, on a : dyay > dra;+djax, —dja;. Pour ce faire, fixons
un couple (k,1) € [1,N]2. Si k <, alors on voit que di, < d; et a < a; car les suites finies (a;) et
(d;) sont croissantes, ce qui entraine que d —d; < 0 et ar, — a; < 0, et done (d, — d;)(ar —a;) > 0.
Si maintenant k > [, alors on voit que dy > d; et a > a; car les suites finies (a;) et (d;) sont
croissantes, ce qui entraine que d —d; > 0 et ax, — a; > 0, et donc (dy, — d;)(ar — a;) > 0. Dans tous
les cas, on constate que, pour tout (k,[) € [1, N]? :

(dk — dl)(ak - al) 2 0.
et donc dyay, — da; — dyag, + dya; > 0. Par conséquent, on en déduit que, pour tout (k,1) € [1, N]? :

‘dkak > dra; + dyay, — dyag. ‘




b) Montrons que, pour tout N-uplet (p1,pa,...,pn) € RY tel que N: pr=1,ona:
+ k=1

N N N
Zpkdkak > (Zpkdk> X (Zm%) (1)
k=1 k=1 k=1

Soit (p1,p2, - pn) € (RL)N tel que ZkN:1 pr = 1. Comme dpar > dra; + djar, — dja; pour tout
(k,1) € [1,N]? d’aprés la question précédente et que tous les p; sont positifs par hypotheése, on
obtient par produit que, pour tout (k,l) € [1, N]? :
pepidkar > pepidiar + pepidiar — pepidia;.

Par double sommation sur les entiers k et [, on trouve que :

N N N N

SO omdiar > Y (pepidiar + prpidiar — prpidiar)

k=1 l=1 k=11=1

ce que l'on peut réécrire sous la forme suivante (et ce par linéarité de la somme) :

(30m) () = (3] () (35 ()-8 ()

N N . .
Comme >, pr =Y ,_,; i = 1, ceci entraine que :

N N N N N N
> prdiay, > <Zpkdk> (ZPZW) + (ZPM&) (ZPk%) - pdia.
k=1 k=1 =1 =1 k=1 =1

En d’autres termes, on vient de trouver que :

N N N N
> prdyag > 2 (Zm%) <szaz> - pdiay.
k=1 k=1 =1 =1

En faisant passer la somme de droite ci-dessus de l'autre coté, il s’ensuit que :

N N N
QZpkdkak Z 2 (Zpkdk> (Zplal> .
k=1 k=1 =1

Par conséquent, on en déduit apres division par 2 que :

N N N
> prdrag > (ZPM&) (ZPMl) :
k=1 k=1 =1

(2) Soit ¢t € Ey. On réordonne la liste (£(1),%(2),...,¢(N)) selon les valeurs croissantes et on note alors
(f(l),tA(Q), . ,?(N)) la liste ordonnée obtenue. On a donc #(1) < #(2) < --- < H{(N).

(a) Justifions pour tout n € [1, N] l'inégalité : Ziv:n ayry < ZkN:n gy~ Pour ce faire, fixons un
entier n € [1, N]. Comme la suite finie (a;) est croissante et que £(1) < #(2) < --- < #(N) par
construction, I’expression Zév:n k) correspond a la somme des N —n + 1 plus grands éléments de
la suite (at(l), e at(N)). En particulier, on voit que I’expression Z}Ifzn ) est supérieure ou égale

a la somme de N —n + 1 éléments quelconques de la liste (at(l), e at(N)), et donc :

N N
Z ay(k)y < Z ey
k=n k=n
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(b) On pose do = 0. Justifions I'égalité : S0 dny(n)y = DO ((dn — dn—1) S ay())- Par interver-

sion des sommes, on trouve que :

n=1

N N
5 (un iy atm)
k=n

!
M=
M=

((dn - dn—l) at(k))

3
Il
—

k

k
Z —dp_1 at(k))

1n=

k
<at(k:)
1 n=1

n

I
TTMZ

I
M=

=~
Il

Par télescopage, on obtient que :

N

n=1

Mais comme dy = 0 par convent

N

k=1
ion, on en déduit que :

St

n=1

N N
n—dn_1) Z at(k)) = Zat(k)dk~
k=n k=1

(dn, — dn_1)> .

N k N
3 (<dn NS awf)) 3 (at(m 3 (4, dnn) =S g e — do).
k=n n=1 k=1

Etablissons 'inégalité : ZnN:1 dnayny < 25:1 dna?(n) (2). Pour ce faire, on pose dy = d; et ¢ =

di, — dp pour tout k € [0, N]. Par construction, la suite finie (¢ )o<k<n €st croissante, et donc on a

Cn — Cn—1 > 0 pour tout n € [1, N]. Comme Zév:n ap(ry < ZkN:n gy Pour tout n & [1, N] d’apres

la question (2)(a) de la partie II, on trouve par produit que, pour tout n € [1, N] :

(cn — Cn—

Par sommation sur I'entier n, ceci nous donne avec la question précédente que :

N
Z CnQt(n)
n=1

N N
1) Z a’t(k) < (Cn - Cnfl) Z a/t\(k)
k=n k=n

= Z ((Cn — Cn—l) Z at(k)>
k=n

n=1

IN

N
Z( n — Cn—1 kz:a?(k)>

N
< Z Cn a?(n)
n=1

En revenant a la définition des ¢;, ceci entraine que :

N
Zd

N
- dl at(n Z

Par linéarité de la somme, on obtient que :

Zd Ap(n) — dlzat(n)<2dat() dlza . (%)

n=1 n=1

~

Comme (tA(l),tA(Q), e

,t(N)) est la liste ordonnée selon les valeurs croissantes et obtenue & partir de

t
la liste (£(1),4(2),...,t(N)), ces deux listes comptabilisent les mémes éléments de [1, N] le méme

nombre de fois, et donc :

Par différence dans l'inégalité (x

N N
Z Qy(n) = Z Bny:
n=1 n=1

), on en déduit que :

N N
Zl dnat(n) < Zl dna?(n)
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On appelle programme de transport toute bijection T de D sur A et cott d'un programme de transport
T la somme ¢(T) définie par ¢(T") = S0, (di — T(dk))2.

Soit T le programme de transport défini pour tout k € [1, N] par ’f(dk) = ai. Montrons que le
programine T est optimal, c’est-a-dire que, pour tout programme de transport T, on a : ¢(T) > c(f)
Pour ce faire, fixons une bijection 7' de D sur A. Pour tout k& € [1, N], on désigne par t(k) 1'unique
indice de [1, N] tel que T'(dx) = ayy). Ce faisant, on définit bien une application ¢ de [1, N] dans
[1, N, qui est de plus bijective car T Pest. En particulier, on a :

~

(t(1),£(2),....t(N)) = (1,2,...., N).

Par des calculs simples, on trouve que :

N

N N N
c(T) = (dp =T (dp)* =D di =2 diT (di) + > _ (T (di))*. ()
k=1 k=1

k=1 k=1

Or on voit d’apres la question précédente que :

N N N N N R
Z diT (dy) = deat(;c) < dea?(k) = Z drpayp = Z diT (dy) ,
k=1 k=1 k=1 k=1 k=1

ce qui entraine que —2 Zszl di T (dy) > —2 Zgﬂ diT (dy,). En reportant cette inégalité dans (x), ceci
nous donne que :

N
) > Zd2 —2deT i)+ ) (T (di))?. (%)
k=1 k=1

Par ailleurs, on voit par construction que :

N

ST @) =" (aw)’

k=1 k=1

En particulier, comme I’application ¢ est une bijection de [1, N], la somme des carrés des ayy) est égale
a celle des carrés des ay (vu que les listes (ay(1), ..., ay(ny) €t (a1, ...,an) sont formées des mémes réels
comptés le méme nombre de fois mais dans des ordres éventuellement différents). En d’autres termes,
on a par définition de T:

N

Mz

N N 9
at(k = Zai Z (T dj ) .
k:l k=1 k=1 k=1
En reportant cette égalité dans (xx), il s’ensuit que :
N N N N )
T)deiﬂz:dkf(dkHZ(f( ) Z(dr ) :c(f).
k=1 k=1 k=1

Par conséquent, on en déduit que, pour tout programme de transport 7" :

c(T)Zc(f).

(4) Interprétation probabiliste des inégalités (1) et (2). Soit h une application croissante de R dans R.

(a) Etablissons pour toute variable aléatoire discrete X ne prenant qu’un nombre fini de valeurs, l'in-
égalité : E(Xh(X)) > E(X)E(h(X)). Pour ce faire, considérons une variable aléatoire discréte X
telle que X (Q) = {dy,da,...,dn}, o les d; ont été rangés en ordre strictement croissant. Avec les
notations de la question précédente, on voit que X (2) = D. Par la suite, on pose pr, = P([X = dy])
et h(dy) = ay, pour tout k € [1, N]. Comme la fonction h est croissante et que les d; sont rangés en
ordre croissant, on voit que a; < ... < ay. De plus, on trouve d’apres le théoreme de transfert que :

N N N
X)) = dph(dp)P(X = di]) =Y deh(di)pr = Y darpy.

Comme la famille ([X = di]); < ;< est un systéme complet d’événements, on a Z]kvzl pr = 1. Comme
de plus tous les py sont > 0 (vu que ce sont des probabilités), on obtient d’aprés la question (1)(b)
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de la partie IT que :

N N N
E(Xh(X)) = deakpk > <Zpk-dk> (Zpk%) - (%)
k=1 k=1 k=1

A noter que, dans la démonstration de la question (1)(b) de la partie II, on s’est juste servi de
la croissance de la suite finie (ay), <<, et non de la stricte croissance de cette suite pour établir
la relation (1). En d’autres termes, I'inégalité (1) reste valable si I'on suppose seulement la suite
(ak) <<y croissante. Par ailleurs, on a par définition de I’espérance que :

N

N
E(X)=> dP(X =di]) = prd. (+%)
k=1

k=1
D’apres le théoreme de transfert, on voit aussi que :

N N
E(h(X)) =Y h(de)P (X =di]) =D prag. (x*%)
k=1 k=1

En reportant les égalités (xx) et (x * x) dans I'inégalité (x), on en déduit que :

| B(Xh(X)) > E(X)E(h(X)). |

(b) Montrons que le coefficient de corrélation linéaire de X et h(X) est > 0 lorsque les variances de X
et h(X) sont > 0. D’apres la formule de Koenig-Huygens et la question précédente, on trouve que :

cov(X, (X)) = BE(Xh(X)) — E(X)E(h(X)) > 0.
Comme les écart-types de X et h(X) sont > 0 par hypothese, on en déduit que :
cov(X, h(X))

OXOh(X)

p(X,h(X)) = > 0.

(c) Montrons que, si X est une variable aléatoire discréte suivant la loi uniforme sur [1, N] et si ¢ est
un élément de Ey, alors on a : E(h(X)t(X)) < E(h(X)t(X)). Comme X suit la loi uniforme sur
[1,N], on voit que X(Q) = [1,N] et P([X = k]) = & pour tout k € [1, N]. D’apres le théoréme
de transfert, on trouve que :

N N 1 | X
E(h(X)H(X)) =Y h(k)t(k)P((X = k) = h(k)t(k) 7 = % > hlk)i(k).
k=1 k=1 k=1
De la méme facon, on obtient que E(h(X){(X)) = + Zlk\;l h(k)t(k). Posons alors dj, = h(k) et
ar = k pour tout k € [[1, N]. Comme la fonction h est croissante, on voit que la suite finie (di)1<x<n
est croissante. Comme la suite (ap)i<k<n est strictement croissante par construction, on obtient
avec l'inégalité (2) que :

1 < 1 1< 1Y _
¥ > h(k)t(k) = ¥ > h(k)ag < N > hk)ag,, = v > h(k)Ek). (%)
k=1 k=1 k=1 k=1

A noter que, dans la démonstration de I'inégalité (2), on s’est juste servi de la croissance de la suite
finie (di), <)< et non de la stricte croissance de cette suite. En d’autres termes, 'inégalité (2) reste
valable si Pon suppose seulement la suite (di) << croissante. En retraduisant l'inégalité () en
termes d’espérances, il s’ensuit que :
1 & IR -
E(h(X)H(X)) = + > hlk)t(k) < N > h(k)E(k) = E(h(X)H(X)).
k=1 k=1
Par conséquent, on en déduit que :

—~

E(h(X)H(X)) < E(h(X)1(X)).

Partie III. Transport optimal dans une situation aléatoire

Les définitions de fonction de transport et de coit de tramsport sont identiques d celles données dans le
préambule de la partie I. Dans toute cette partie, U désigne une variable aléatoire vérifiant U(Q2) = [0, 1] et
suivant la loi uniforme sur le segment [0, 1]. Soit Y une variable aléatoire admettant une densité fy nulle hors
d’un segment [, 8] (o < ) et dont la restriction & ce segment est continue et strictement positive. On note
Fy la fonction de répartition de Y. On suppose l'existence d’une fonction g de classe C! sur [0, 1], & valeurs
dans [a, (], telle que la variable aléatoire Z = g(U) suit la méme loi que Y.
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(1) Pour tout entier N > 1, on pose pour tout w € Q :

(a)

Xy(w) = { 1 +]X[U(w” : 0 SU(Z()CQT L et Yy(w)=yg (XNN(W)) .

Trouvons la loi de la variable aléatoire X . Comme U suit la loi uniforme sur [0, 1], on voit que, pour
tout w € Q, on a soit 0 < U(w) < 1, s0it U(w) =1. Si 0 < U(w) < 1,alorsona 0 < NU(w) < N,
ce qui entraine que 1 <1+ NU(w) < N + 1, et donc Xy(w) = |1+ NU(w)| appartient & [1, N]J.
Si maintenant U(w) = 1, alors Xy (w) = N par construction. Dans tous les cas, on constate que
Xn(w) appartient & [1, N pour tout w € Q, et donc :

Xn(Q) C [1,N].

De plus, pour tout k& € [1, N — 1], on trouve par des calculs simples que :

N N

Comme U est une variable & densité, ceci nous donne que, pour tout k € [1, N — 1] :

P([XN:k]):P<[k];1<U<]I;D = Fy (Z’f]) —Fy (k];l)

Comme U suit la loi uniforme sur [0, 1] et que £, 221 appartiennent a [0, 1] pour tout k € [1, N —1],
il ’ensuit que, pour tout k € [1, N — 1] :

fwmwm(ﬁ)zchﬂ LI et Y Y

Par ailleurs, comme Xy (Q2) C [1,N] d’apres ce qui précéde, la famille ([ Xy = k])1<k<ny est un
systeme complet d’événements, et donc :

P([XN—k])—P([L1+NUJ—k])—P([k§1+NU<k+1})—P<{k_1§U<kD.

n—1
-1 1
P([XN:N]_lf;PXN_k: ZN *7:N'

Comme Xy () C [1,N] et que P([Xn = k]) = + pour tout k € [1, N], on en déduit que :
| Xy = U([1,N]).|

Etablissons l'existence d’un réel A > 0 indépendant de N tel que : Vw € Q, |Z(w) — Yy (w)| < 3.
Comme la fonction g est de classe C! sur [0, 1], sa dérivée g’ est continue sur le segment [0,1], et
donc elle est bornée et atteint ses bornes sur [0, 1]. Posons alors A = max,cjo1)|¢'(z)| + 1. Par
construction, on voit que A > 0 et de plus, on a |¢'(z)| < A pour tout = € [0, 1]. D’apres I'inégalité
des accroissements finis, on obtient que, pour tous z,y € [0,1] :

9(z) = g(y)] < Alz —yl.

Comme U (w) et XNT(“) appartiennent a [0, 1] pour tout w € Q d’apres la question précédente, ceci
entraine que, pour tout w € 2 :
Xy (w)

o0 -9 (5) i

ce qui, par définition de Z et Yy, se réécrit sous la forme suivante pour tout w € Q :

XN(LL})
120) - ¥l £|0) - 5
Pour tout w € Q, on distingue deux cas. Si 0 < U(w) < 1, alors on sait que Xy (w) = |1+ NU(w)].
Comme z — 1 < |z] < z pour tout z € R, on obtient que NU(w) < Xy(w) < 14 NU(w), ce qui
entraine que U(w) < XNT(W) < % + U(w), et donc :

< AU (w) —

)

XN (w) 1
— < -,
'U(“) N |°N
Par application de I'inégalité (x), il s’ensuit que :
XN (w) A
Z -Y <A — < —.
12(0) = Y] <2 |U) - T < 4
Si maintenant U(w) = 1, alors on voit que :
XN (o.)) N 1
—_—— | = —_— = < —_
Uw)-—x§ I=5=0=5%
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Toujours par application de I'inégalité (x), il s’ensuit que :

B XN(W)‘

IA

1260) = Y] <A fo) - 242 < 4

Dans tous les cas, on vient de montrer que |U(w) — Yy (w)| < 4 pour tout w € , et donc :

A
IAN>0, Vwe D, |Z(w) — Yn(w)| < N

(¢) Montrons que pour tout réel y, on a : Fy (y — %) < P([Yny < y]). D’apres la question précédente,
on sait que |Z(w) — Yy (w)| < % pour tout w € ©, et donc :

R < 2(0) ~ Yr(w) < o

En particulier, on a Yy (w) < Z(w) + % pour tout w € Q. Dés lors, pour tout y € R, on obtient
que, si l'événement [Z + 4 < y] est réalisé, I'événement [Yy < y] l'est aussi, et donc on a I'inclusion
[Z + % < y] C [Yn < y]. Par croissances des probabilités, on trouve que, pour tout y € R :

P({Z+;‘Z<yD < P([Yn <vy)).

De plus, comme Y et Z suivent la méme loi et que Y est a densité, la variable aléatoire Z est aussi
a densité, et donc on a pour tout y € R :

no-3)-r(frsv-2]) ([ 4o o[ o n

Comme Y et Z suivent la méme loi, il s’ensuit que, pour tout y € R :

Fy <y - ;‘7) = Fyz (y - ;}) < P([Yn <y)).

Par conséquent, on en déduit que, pour tout y € R :

B (5= 4) < PO <o),

2) Pour tout k € [1, N], on pose ty (k) = g(£). On définit alors t & partir de t, comme ¢ & partir de ¢
N
dans la question (2) de la partie IIL.
(a) Etablissons pour tout k € [1, N] les inégalités : Fy (tAN(k‘) - 3) < P(lyy < tn(k)]) < +. D’apres
la question précédente, on sait que, pour tout y € R :

A
By (v 5 ) < POV <.
En particulier, on obtient en remplacant y par ¢y (k) que, pour tout k € [1,N] :
—~ A —~
Fy (tN(k) — N) < P ([YN < tN(k)}) .

ce qui nous donne la premiere inégalité a démontrer. Pour la deuxiéme, on commence par remarquer

que, pour k =1 :
P <m]) = (Jo (32 <m0)]).
XN (w)

Comme Xy suit la loi uniforme sur [1, N] d’aprés la question (1)(a) de la partie III, =55~ est

toujours de la forme ﬁ avec i € [1,N] pour tout w € Q, et donc g(XTN) est a valeurs dans

Pensemble {g(&), ..., g(X)} = {tn(1), ..., tx(N)}. Comme les tn (i) sont El\)tenus a/l\)artir des tn(7)
en les rangeant en ordre croissant, on voit que {tn(1),...,txn(N)} = {tn(1),...,tx(N)}, et donc
g (3%) est a valeurs dans I'ensemble {tx(1),...,tx(N)}. Comme les £y(i) sont rangés en ordre
croissant, on constate que fy(1) est le plus petit élément de {#x(1),...,tx(N)}. En particulier, il

s'ensuit que g (&) > tn (1), et donc :

P([YN <t/;(1)D :P([g <)§\]fv> <$(1)D —=0< %
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Dés lors, I'inégalité de droite & démontrer est vraie pour k = 1. A présent, fixons un entier k € [2, N].
Comme précédemment, on trouve que :

P({YN <t/§(k:)D :P([g ()](VN> <G(k)D- (+)

Comme {tn (1), ..., tx(N)} = {En (1), ....,tn (N)}, il existe pour tout 7 € [1, N] un indice i, € [1, N]
tel que tn(r) = ty(iy) = g (%) Comme tN/(\z) = g (%) pour tout i € [1, N] par construction, il
existe donc des iiliiices i1,42,..., N tels que tx(r) =ty (iy) = g (%) pour tout r € [1, N]. A noter
que, comme les ¢y (i) sont obtenus & partir des ¢ty () en les rangeant en ordre croissant, les listes
tn(1), ..t (N) et Tx (1), ..., Ex (N) comptabilisent les mémes réels comptés le méme nombre de fois.
En particulier, on peut supposer que les indices 41, ..., iy sont deux a deux distincts, ce que l'on fera
désormais. Par construction, on voit que :

7 (5) @) = w0t} = 50 T5 ) = {5 (35) o9 () |-

N(W)) < tn(k), et montrons que Xy (w) appartient &

Fixons alors un élément w € Q tel que g (X
{41,142, ...,15—1 }. Pour ce faire, on raisonne par ’absurde et on suppose que Xy (w) ¢ {i1,%2, ..., 9k—1}

Alors il existe un indice r € [k, N] tel que g (M> =g(%) = tn(i,) = tn(r). Comme les

tN(i) sont rangés en ordre croissant, il s’ensuit que g (XNT(W)) > t/]; (k), ce qui est impossible car

XN(M) < tN(k) par hypothese, et donc on a bien Xy (w) € {i1, 2, ..., ix—1}. Partant de 14, on a

obtenu I'inclusion suivante :
k—1
XN —~ .
r=1
Par croissance des probabilités, ceci nous donne avec la relation (*) que :
k—1

P ([ <iv w)]) =P<[g (fﬁ) <E§<k>]) <p (U[XN=M>.

r=1
Par incompatibilité, ceci entraine que :
k—1

P([YN <t§§(k)D <3 P(Xn=14)).

Comme Xy suit la loi uniforme sur [1, N ]] d’aprés la question (1)(a) de la partie III, il vient :

P([vw<in()]) < ZP XN—ZT)—k];la

et donc P ({YN < t/];(k)}) < % pour tout k € [2, N], ce qui conclut la démonstration de I'inégalité
de droite. Par conséquent, on en déduit que, pour tout k € [1, N] :

Fy (t?(k)—fv) <P ([yrw<in®)]) < %

On note Fy, ! 1a fonction réciproque de la restriction a [a, ] de la fonction Fy. Montrons que, pour
tout entier N > 1, on a :

v (3) < v mw (7 (5)+5):

Montrons tout d’abord que Fy ! est une bijection de [0, 1] sur [a, 3]. Pour ce faire, on désigne par G
la restriction de Fy a [, §]. Comme fy est continue et strictement positive sur [«, 5] par hypothese,
la fonction G est de classe C! sur [, 3] et de plus, on a G'(z) = fy(x) > 0 pour tout = € [a, A].
En particulier, la fonction G est continue et strictement croissante sur [a, §], et donc G réalise
une bijection de [, ] sur G([a, f]) d’aprés le théoréme de la bijection. Comme G est continue,
Pensemble G([a, 8]) est un intervalle d’apres le théoréme des valeurs intermédiaires. Comme fy est
nulle en dehors de [«, §], la fonction Fy est constante sur les intervalles | — oo, o] et [3, +oo[. Comme
Fy tend vers 0 en —oo et vers 1 en 400 en tant que fonction de répartition, on obtient que Fy est
égale & 0 sur | — 0o, ] et égale & 1 sur [S,+o0o[. En particulier, on voit que G(a) = Fy (o) =0 et
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G(B) = Fy(B) = 1. Comme G est croissante sur [a, 5] et que G([a, f]) est un intervalle, il s’ensuit
que G([a, f]) = [0,1]. En particulier, la fonction G réalise une bijection de [a, 5] dans [0, 1], et donc
Fy* est bien une bijection de [0, 1] sur [a, A].

Passons maintenant & I'inégalité & démontrer. D’apres la question (2)(b) de la partie II, on obtient
en prenant D = A = {1,2,.. N} (et donc dy, = a, = k pour tout k € [1, N]) que :

N
> ktn (k) = Z dia, ) < Z drag, g = Z ktn (k)
k=1 k=1 k=1 k=1

Comme ty(k) =g (%) pour tout k € [1, N] par hypothése, ceci nous donne que :

Zkg( ) ZktN

En divisant le tout par N2, ceci entraine par linéarité de la somme que :

P a(k) < A a0

Pour tout k£ € [1, N], on sait d’aprés la question précédente que 0 < Fy(t/;(k}) - %) < % < 1.
Comme g est a valeurs dans [, 8] par hypothése, on voit que ty(k) = g(%) appartient a [a, (]
pour tout k € [1,N]. Comme les y (k) correspondent aux ty(k) rangés en ordre croissant, on
obtient que #y (k) appartient aussi & [a, 8] pour tout k € [1, N]. Comme X\ > 0, ceci entraine que
tn (k) — 2 < B pour tout k € [1, N]. On distingue deux cas.

Supposons tout d’abord que fy (k) — 2 appartient a [a, ). Comme Fy est strictement croissante
sur [o, £, la fonction Fy ! est strictement croissante sur [0, 1] d’aprés le théoréme de la bijection.
Mais comme Fy (tn (k) — %) < & d’apres la question précédente, il s’ensuit que :

— A k
tn(k)— = <F =).
N -5 <At (3)
Supposons maintenant que ty (k) — % < a. Comme Fy! est & valeurs dans [a, 3], on voit que :

—~ A k
tN(k)N<a§F;1(N>.

Dans tous les cas, on vient de montrer que, pour tout k € [1, N] :

—~ k A
—1

tn (ki) < FY (N) + N

Comme % > 0 pour tout k € [1, N], il s’ensuit par sommation que :

ke 1S4 (1 () 2).

k=1

Des lors, on obtient en associant les inégalités (x) et (xx) que :

N N N
1Nk [k 1 — 1 (kY A
— N 2= )<=V <=y = — — .
N;NQ(N)—N;NW(@—NZN(FY (N)+N)

Par conséquent, on en déduit que :

v (R s R (5 (5) )

Montrons l'inégalité E(Ug(U)) < E(UFy*(U)). D’aprés la question précédente, on sait que :

1k [k 1Nk (k) A
N 2y 2) <=V )+ =),
N;N9<N)—NI§N<FY (N>+N>

Par linéarité de la somme, ceci nous donne que :
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ce que l'on peut réécrire sous la forme :
N N
1 k k 1 k. (k A N(N+1)
=Y Zgl= )<= ZFH = =
N;N9<N)_N;NY (N>+N3 2 ()

Comme les fonctions z — xg(z) et x — 2F, ' (z) sont continues sur [0,1], le théoréme sur les
sommes de Riemann entraine que :
N 1 N 1
o1k [k o1&k Lk .
N1—1>I-rs-loo i 2 ~7 <N> —/0 xg(z)dr et N1—1>r—ri-10<> N ; NFY (N) _/0 zFy (x)dx.

Comme %w tend vers 0 quand N tend vers +oo, il s’ensuit par passage a la limite quand N

tend vers +o0o dans l'inégalité (%) que :

/01 xg(z)dr < /01 Py (x)de. (%)

Comme U suit la loi uniforme sur [0, 1], on obtient avec le théoréme de transfert que :

BUsW) = [ ag@fo@is = [ wge)fol@)de = [ aga)a.

—00

+oo

De la méme fagon, on voit par transfert que E (UFy *(U)) = [, #Fy ! ()dz. Par conséquent, on en
déduit en retraduisant 'inégalité (xx) en termes d’espérances que :

E(Ug(U)) < B(UFy ' (U)).

Parmi les fonctions de transport de classe C! de U vers la loi de Y, trouvons une fonction de
transport 7* de coflit minimal. Pour cela, on conserve les notations de la question (2)(b) de la partie
III, et on désigne par G la restriction de Fy & lintervalle [, 3]. D’apres la question (2)(b) de la
partie II1, on sait que G est une bijection de [a, 8] sur [0, 1]. Comme G est de classe C! sur [a, 3] et
que G'(z) = fy(x) > 0 pour tout = € [a, 3], sa bijection réciproque G~! est de classe C! sur [0,1].
On pose alors :

V=G"YU).

Comme G est une bijection de [a, 8] sur [0, 1], la fonction G=1 est une bijection de [0, 1] sur [a, 3].
En particulier, elle est & valeurs dans [, 8], ce qui entraine que V(2) = G=1(U)(Q) C [a, 8], et donc
Fy(z)=0siz < aet Fy(x) =1siz > 8. Comme Fy est nulle sur | — 00, a] et égale & 1 sur |8, +00]
d’apres les arguments de la question (2)(b) de la partie III, on obtient que Fy (z) = 0 = Fy(z) si
x<aet Fy(zx) =1= Fy(x) si x > 8 (x). De plus, comme G est strictement croissante sur [, ],
on a pour tout x € [a, (] :

Fy(z) = P(IG™'(U) < al) = P([U < G(x)).

Comme G est est une bijection de [a, 8] sur [0,1], on voit que G(z) appartient a [0, 1] pour tout
x € [a, B]. Mais comme U suit la loi uniforme sur [0, 1], il s’ensuit que, pour tout x € [«, 3] :

Fy(z) = P([U < G(2)]) = Fy(G(x)) = G(x) = Fy (). (+*)

D’apres les égalités (x) et (xx), il s’ensuit que Fy-(z) = Fy (x) pour tout x € R, et donc V = G~(U)
suit la méme loi que Y. Par conséquent, on en déduit que :

‘ G~ est une fonction de transport de classe C! de U vers la loi de Y. ‘

Reste & montrer que G~! est une fonction de transport de cofit minimal. Par définition du cofit de
transport et par linéarité de ’espérance, on voit que :

C(G)=E((U-6")")=EU?) -2B U6 (U)+E((G1)),
Comme G~1(U) et Y suivent la méme loi d’aprés ce qui précéde, leurs moments d’ordre 2 sont
égaux, ce qui entraine que :
C(GY)=E(U?) -2E([UG"(U))+E(Y?.
Considérons une fonction de transport g de classe C! de la variable aléatoire U vers la loi de Y.

Comme g(U) et Y suivent la méme loi par définition d’une fonction de transport, on trouve comme
précédemment que :

Clg)=E(U?)—2EUgU))+E(Y?).
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Par différence, il s’ensuit que :
Clg)-C(G™")=2[E(UG'(U)) - EUyU)).

Comme E (UGY(U)) = E(UFy ' (U)) > E (Ug(U)) d’aprés la question (2)(c) de la partie III, ceci
entraine que C (g) — C (G™') > 0, et donc C (g) = C (G™'). Par conséquent, on en déduit que :

G~ ! est une fonction de transport de cofit minimal parmi les fonctions de transport
de classe C! de U vers la loi de Y.

On suppose que Y = |4U —2|. Déterminons T™* et C(T™*). Pour ce faire, on commence par déterminer
la fonction de répartition Fy. Comme U suit la loi uniforme sur [0, 1], on voit que 0 < U < 1, ce
qui entraine que —2 < 4U —2 < 2, et donc 0 <Y = |4U — 2| < 2. En particulier, on a Y(Q2) C [0, 2],
et donc Fy(x) =0siz < 0et Fy(z) =1si x> 2. De plus, pour tout x € [0,2], on trouve par des
calculs simples que :

Fe(a) = P[0 -2l <o) = P (o a0 -2 <) = P ([ - v < T4 2]).

Comme x appartient & [0, 2], on voit que § appartient a [O, %}, et donc %—!—% et % — % appartiennent

a [0,1]. Deés lors, comme U suit la loi uniforme sur [0, 1], il s’ensuit que, pour tout x € [0, 2] :

1 T 1 =z 1 =z 1 =z T
Fy@)=Fy(-4+Z) -, (=)= 2 _(2_Z)=2
v (@) U<2+4> U(z 4) 571 (2 4) 2

Par conséquent, on en déduit que :

0 si <0

Fy(x) = si xz€l0,2]

N8

1 si xz>2

En particulier, on voit que Y est une variable a densité, de densité fy égale a % sur [0,2] et nulle
partout ailleurs, et donc fy est continue et strictement positive sur [0, 2] et nulle en dehors de [0, 2].
De plus, avec les notations des questions précédentes, on a pour tout = € [0,2] :
x
G(z) = Fy(z) = 5
Des lors, il s’ensuit que G~'(x) = 2x pour tout = € [0,1]. Par conséquent, on en déduit avec la
question précédente que, pour tout z € [0,1] :

‘T*(m) =G Y(z) =2z ‘

Reste a calculer C(T™). D’apres le résultat ci-dessus, on voit que T*(U) = 2U, et donc :
C(T")=E ((U — T (U))2) —E ((U - 2U)2) = E(U?).
Comme U suit la loi uniforme sur [0, 1], la formule de Koenig-Huygens nous donne que :
1 1 1

C(T*)=EU?*) =V({U)+ EU)? = 5Ti- 3

Par conséquent, on en déduit que :

o) = é




