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Corrigé du devoir Surveillé de Mathématiques no6

1. Sujet type EDHEC

Corrigé de l’exercice 1. On considère deux variables aléatoires réelles X et Y définies sur un même espace
probabilisé (Ω, A, P ), indépendantes et suivant toutes deux la loi normale centrée réduite (de densité notée
φ et de fonction de répartition notée Φ). On pose Z = max{X, Y } et l’on se propose de déterminer la loi de
Z, son espérance et sa variance.

(1) (a) Montrons que Z est une variable aléatoire à densité. Pour ce faire, on va calculer la fonction de
répartition de Z. Pour tout x ∈ R, on trouve que :

FZ(x) = P ([Z ≤ x]) = P ([max{X, Y } ≤ x]) = P ([X ≤ x] ∩ [Y ≤ x]).
Comme X et Y sont indépendantes et suivent la loi normale centrée réduite, on obtient que :

FZ(x) = P ([X ≤ x])P ([Y ≤ x]) = Φ(x)Φ(x) = Φ2(x).
Comme Φ est la fonction de répartition de la loi normale centrée réduite, la fonction Φ est de classe
C1 sur R. En particulier, la fonction FZ = Φ2 est de classe C1 sur R comme carré d’une fonction de
classe C1 sur R. Par conséquent :

Z est une variable à densité.

(b) Vérifions que Z admet pour densité la fonction f définie pour tout x ∈ R par f(x) = 2φ(x)Φ(x).
D’après la question précédente, une densité de Z est donnée par la dérivée de FZ = Φ2. Dès lors,
une densité f de Z est donnée pour tout x ∈ R par f(x) = (Φ2)′(x) = 2Φ′(x)Φ(x), et donc :

f(x) = 2φ(x)Φ(x).

(2) (a) Rappelons la valeur de l’intégrale
∫ +∞

−∞ e− t2
2 dt. D’après le cours, on sait que :∫ +∞

−∞
e− t2

2 dt =
√

2π.

(b) Etablissons la convergence et déterminons la valeur de
∫ +∞

−∞ e−t2
dt. Pour ce faire, on pose u =

√
2t.

Alors u est une bijection strictement croissante de R dans R, de classe C1 sur R. De plus, on voit
que du =

√
2dt, que u tend vers −∞ quand t tend vers −∞ et que u tend vers +∞ quand t tend

vers +∞. Dès lors, par changement de variable, on trouve que :∫ +∞

−∞
e−t2

dt =
∫ +∞

−∞
e

−( u√
2

)2 du√
2

= 1√
2

∫ +∞

−∞
e− u2

2 du.

En particulier, on obtient par linéarité que l’intégrale
∫ +∞

−∞ e−t2
dt converge si et seulement si l’inté-

grale
∫ +∞

−∞ e− u2
2 du. Mais comme cette dernière converge d’après le cours, il s’ensuit que l’intégrale∫ +∞

−∞ e−t2
dt converge, et que de plus :∫ +∞

−∞
e−t2

dt = 1√
2

∫ +∞

−∞
e− u2

2 du = 1√
2

×
√

2π.

Par conséquent, on en déduit que :

l’intégrale
∫ +∞

−∞
e−t2

dt converge et vaut
√

π.

(c) Vérifions que φ′(x) = −xφ(x) pour tout x ∈ R. Pour tout x ∈ R, on trouve que :

φ′(x) =
(

e− x2
2

)′
= −xe− x2

2 = −xφ(x).

Par conséquent, on en déduit que :

∀x ∈ R, φ′(x) = −xφ(x).
1
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(d) A l’aide d’une intégration par parties, montrons que :∫ +∞

0
xf(x)dx = 1√

2π
+ 1

π

∫ +∞

0
e−t2

dt.

Pour ce faire, on se fixe un réel c > 0, et l’on pose u(x) = xφ(x) = −φ′(x) et v(x) = Φ(x) pour tout
x ∈ [0, c]. Alors u et v sont de classe C1 sur [0, c]. De plus, par intégration par parties et linéarité de
l’intégrale, on trouve que :∫ c

0
xf(x)dx =

∫ c

0
2xφ(x)Φ(x)dx

= −2
∫ c

0
φ′(x)Φ(x)dx

= −2
∫ c

0
u′(x)v(x)dx

= −2 [u(x)v(x)]c0 + 2
∫ c

0
u(x)v′(x)dx

= −2 [φ(x)Φ(x)]c0 + 2
∫ c

0
φ(x)Φ′(x)dx

= −2φ(c)Φ(c) + 2φ(0)Φ(0) + 2
∫ c

0

(
e− x2

2
√

2π

)2

dx

= −2φ(c)Φ(c) + 2φ(0)Φ(0) + 2
∫ c

0

e−x2

2π
dx

= −2φ(c)Φ(c) + 2φ(0)Φ(0) + 1
π

∫ c

0
e−x2

dx.

Comme φ(c) = 1√
2π

e− c2
2 tend vers 0 quand c tend vers +∞, que Φ(0) = 1

2 et que Φ(c) tend vers 1
quand c tend vers +∞, il s’ensuit que :∫ c

0
xf(x)dx −→

c→+∞
2 × 1√

2π
× 1

2 + 1
π

∫ +∞

0
e−x2

dx.

Par conséquent, on en déduit que :∫ +∞

0
xf(x)dx = 1√

2π
+ 1

π

∫ +∞

0
e−t2

dt.

(e) Montrons de même l’égalité suivante :∫ 0

−∞
xf(x)dx = − 1√

2π
+ 1

π

∫ 0

−∞
e−t2

dt.

Pour ce faire, on se fixe un réel c < 0, et l’on pose u(x) = xφ(x) = −φ′(x) et v(x) = Φ(x) pour tout
x ∈ [c, 0]. Alors u et v sont de classe C1 sur [c, 0]. De plus, par intégration par parties et linéarité de
l’intégrale, on trouve comme à la question précédente que :∫ 0

c

xf(x)dx = −2φ(0)Φ(0) + 2φ(c)Φ(c) + 1
π

∫ 0

c

e−x2
dx.

Comme φ(c) = 1√
2π

e− c2
2 tend vers 0 quand c tend vers −∞, que Φ(0) = 1

2 et que Φ(c) tend vers 0
quand c tend vers −∞, il s’ensuit que :∫ 0

c

xf(x)dx −→
c→−∞

−2 × 1√
2π

× 1
2 + 1

π

∫ 0

−∞
e−x2

dx.

Par conséquent, on en déduit que :∫ 0

−∞
xf(x)dx = − 1√

2π
+ 1

π

∫ 0

−∞
e−t2

dt.
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(f) Montrons que Z admet une espérance et donnons sa valeur. D’après ce qui précède, les intégrales∫ 0
−∞ xf(x)dx et

∫ +∞
0 xf(x)dx convergent. Dès lors, l’intégrale

∫ +∞
−∞ xf(x)dx converge absolument,

et donc Z admet une espérance. De plus, d’après la relation de Chasles et les questions précédentes,
on trouve que :

E(Z) =
∫ +∞

−∞
xf(x)dx

=
∫ 0

−∞
xf(x)dx +

∫ +∞

0
xf(x)dx

= − 1√
2π

+ 1
π

∫ 0

−∞
e−t2

dt + 1√
2π

+ 1
π

∫ +∞

0
e−t2

dt

= 1
π

∫ +∞

−∞
e−t2

dt = 1√
π

.

Par conséquent, on en déduit que :

Z admet une espérance et E(Z) = 1√
π

.

(3) (a) Montrons que X2 et Z2 suivent la même loi. Pour ce faire, on commence par calculer la fonction de
répartition FX2 de X2, puis une densité fX2 de X2. Pour tout x ∈ R, on a :

FX2(x) = P ([X2 ≤ x]).
Si x < 0, alors on voit que [X2 ≤ x] = ∅, et donc FX2(x) = 0. Si maintenant x > 0, alors on a :

FX2(x) = P ([X2 ≤ x]) = P ([−
√

x ≤ X ≤
√

x]) = FX(
√

x) − FX(−
√

x).
Par dérivation, on obtient que, pour tout x > 0 :

fX2(x) = 1
2
√

x

[
fX(

√
x) + fX(−

√
x)
]

= 1√
2πx

e− x
2 .

Dès lors, il s’ensuit qu’une densité de X2 est définie pour tout x ∈ R par :

fX2(x) =
{ 1√

2πx
e− x

2 si x > 0
0 si x ≤ 0 .

A présent, calculons la fonction de répartition FZ2 de Z2, puis une densité fZ2 de Z2. Pour tout
x ∈ R, on trouve que :

FZ2(x) = P ([Z2 ≤ x]).
Si x < 0, alors on voit que [Z2 ≤ x] = ∅, et donc FZ2(x) = 0. Si maintenant x > 0, alors on a :

FZ2(x) = P ([Z2 ≤ x]) = P ([−
√

x ≤ Z ≤
√

x]) = FZ(
√

x) − FZ(−
√

x).
D’après la question (1)(b), on obtient par dérivation que, pour tout x > 0 :

fZ2(x) = 1
2
√

x

[
fZ(

√
x) + fZ(−

√
x)
]

= 1
2
√

x

[
2φ(

√
x)Φ(

√
x) + 2φ(−

√
x)Φ(−

√
x)
]

= 1
2
√

x

[
2 × 1√

2π
× e− (

√
x)2
2 Φ(

√
x) + 2 × 1√

2π
× e− (−

√
x)2

2 Φ(−
√

x)
]

= 1√
2πx

e− x
2
[
Φ(

√
x) + Φ(−

√
x)
]

.

Comme la densité φ de la loi normale centrée réduite est une fonction paire, on voit que la fonction
Φ − Φ(0) est impaire, et donc :

Φ(−
√

x) − Φ(0) = −[Φ(
√

x) − Φ(0)],
ce qui entraine après calculs que, pour tout x > 0 :

Φ(−
√

x) + Φ(
√

x) = 2Φ(0) = 2 × 1
2 = 1.
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Dès lors, il s’ensuit qu’une densité de Z2 est définie pour tout x ∈ R par :

fZ2(x) =
{ 1√

2πx
e− x

2 si x > 0
0 si x ≤ 0 .

Comme X2 et Z2 ont même densité, on en déduit que :

X2 et Z2 suivent la même loi.

(b) Calculons E(Z2), puis donnons la valeur de la variance de Z. Comme X2 et Z2 suivent la même
loi, elles ont même espérance, et donc E(Z2) = E(X2). Mais comme X est une variable normale
centrée réduite, on sait que E(X) = 0 et V (X) = 1. Dès lors, d’après la formule de Koenig-Huygens,
on trouve que :

E(X2) = V (X) + E(X)2 = 1 + 02 = 1.

Par conséquent, on en déduit que :

E(Z2) = 1.

Toujours d’après la formule de Koenig-Huygens et d’après la question (2)(f), on trouve que :

V (Z) = E(Z2) − E(Z)2 = 1 −
(

1√
π

)2
.

Par conséquent, on en déduit que :

V (Z) = 1 − 1
π

.

(4) Ecrivons une fonction en Python qui, étant donné un entier n ≥ 1, réalise et affiche n simulations de la
variable aléatoire Z. Pour ce faire, on pourra utiliser la commande rd.normal, et ce comme suit :

import numpy as np
import numpy.random as rd

def simulz(n):
x=rd.normal(0,1,n)
y=rd.normal(0,1,n)
z=np.zeros(n)
for i in range(n):

u=np.array([x[i],y[i]])
z[i]=np.max(u)

return z

Corrigé de l’exercice 2. Soit a un réel > 0. On considère deux variables aléatoires réelles X et Y définies
sur un même espace probabilisé (Ω, A, P ), indépendantes et suivant toutes deux la loi uniforme sur [0, a[. On
pose Z = |X − Y |, et on admet que −Y, X − Y, Z sont des variables à densité définies sur (Ω, A, P ).

(1) (a) Déterminons une densité de −Y . Pour ce faire, on commence par calculer la fonction de répartition
F−Y de −Y . Pour tout x ∈ R, on a :

F−Y (x) = P ([−Y ≤ x]) = P ([Y ≥ −x]) = 1 − P ([Y < −x]).
Comme Y est une variable à densité, on sait que P ([Y < −x]) = P ([Y ≤ −x]), et donc :

F−Y (x) = 1 − P ([Y ≤ −x]) = 1 − FY (−x).
Par dérivation, on obtient que f−Y (x) = fY (−x) pour tout x ̸= 0, −a. Mais comme Y suit la loi
uniforme sur [0, a[, on en déduit qu’une densité de −Y est donnée par :

f−Y (x) =
{ 1

a si x ∈ [−a, 0]
0 si x ̸∈ [−a, 0] .

(b) Montrons que X − Y admet pour densité la fonction g définie pour tout x ∈ R par :

g(x) =
{

a − |x|
a2 si x ∈ [−a, a]

0 si x ̸∈ [−a, a]
.

Comme X et Y sont indépendantes, X et −Y le sont aussi d’après le lemme des coalitions. Dès lors,
comme X et −Y sont des variables à densité, de densités bornées sur R, on sait d’après le cours
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que leur somme X − Y admet une densité g définie pour tout x ∈ R par le produit de convolution
suivant :

g(x) =
∫ +∞

−∞
fX(t)f−Y (x − t)dt.

Comme X suit la loi uniforme sur [0, a[, on voit que fX(t) = 1
a si t ∈ [0, a[ et que fX(t) = 0 si

t ̸∈ [0, a[, ce qui entraine que :

g(x) =
∫ a

0
fX(t)f−Y (x − t)dt = 1

a

∫ a

0
f−Y (x − t)dt.

Posons alors u = x − t. Alors u est une bijection strictement décroissante de R dans R, de classe C1

sur R. De plus, on voit que u = x si t = 0, que u = x − a si t = a et que du = −dt. Par changement
de variables, on obtient que :

g(x) = 1
a

∫ x−a

x

−f−Y (u)du = 1
a

∫ x

x−a

f−Y (u)du.

Supposons d’abord que x < −a. Alors on voit que x − a < −a et que f−Y (u) = 0 pour tout
u ∈ [x − a, x], ce qui entraine que :

g(x) = 1
a

∫ x

x−a

0du = 0.

Supposons maintenant que x ∈ [−a, 0]. Alors on voit que −a ≤ x ≤ 0, que −2a ≤ x − a ≤ −a, que
f−Y (u) = 1

a pour tout u ∈ [−a, x] et que f−Y (u) = 0 pour tout u ̸∈ [−a, x], et donc :

g(x) = 1
a

∫ x

−a

1
a

du = 1
a2 [x − (−a)] = 1

a2 [a − (−x)] = a − |x|
a2 .

A présent, supposons que x ∈ [0, a]. Alors on voit que 0 ≤ x ≤ a, que −a ≤ x − a ≤ 0, que
f−Y (u) = 1

a pour tout u ∈ [−a, 0] et que f−Y (u) = 0 pour tout u ̸∈ [−a, 0], et donc :

g(x) = 1
a

∫ 0

x−a

1
a

du = 1
a2 [0 − (x − a)] = 1

a2 [a − x] = a − |x|
a2 .

Enfin, supposons que x > a. Alors on voit que x − a > 0 et que f−Y (u) = 0 pour tout u ∈ [x − a, x],
ce qui entraine que :

g(x) = 1
a

∫ x

x−a

0du = 0.

Par conséquent, X − Y admet pour densité la fonction g définie pour tout x ∈ R par :

g(x) =
{

a − |x|
a2 si x ∈ [−a, a]

0 si x ̸∈ [−a, a]
.

(2) On désigne par G la fonction de répartition de X − Y .
(a) Exprimons la fonction de répartition H de Z en fonction de G. Pour tout x ∈ R, on a :

H(x) = P ([Z ≤ x]) = P ([|X − Y | ≤ x]).

Si x < 0, alors on voit que [|X − Y | ≤ x] = ∅, et donc H(x) = 0. Si maintenant x ≥ 0, alors :

H(x) = P ([|X − Y | ≤ x]) = P ([−x ≤ X − Y ≤ x]) = G(x) − G(−x).

Par conséquent, on en déduit que :

H(x) =
{

G(x) − G(−x) si x ≥ 0
0 si x < 0 .

(b) Montrons qu’une densité de Z est donnée par la fonction h définie pour tout x ∈ R par :

h(x) =
{ 2(a − x)

a2 si x ∈ [0, a]
0 si x ̸∈ [0, a]

.

Pour ce faire, il suffit de remarquer que la fonction de répartition H de Z est dérivable sur R \
{0, −a, a} comme différence de fonctions dérivables. De plus, comme Z = |X − Y | et que X, Y sont
des variables uniformes sur [0, a[, on voit que 0 ≤ X ≤ a et 0 ≤ Y ≤ a, de sorte que −a ≤ X −Y ≤ a,
et donc 0 ≤ Z ≤ a. En particulier, le support de Z est contenu dans [0, a], et donc H(x) = 0 pour
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tout x < −a et H(x) = 1 pour tout x > a. Par dérivation, il s’ensuit que H ′(x) = 0 pour tout
x ̸∈ [0, a]. De plus, pour tout x ∈]0, a[, on a :

H ′(x) = G′(x) + G′(−x) = a − |x|
a2 + a − | − x|

a2 = 2(a − x)
a2 .

Par conséquent, on en déduit que Z admet pour densité :

h(x) =
{ 2(a − x)

a2 si x ∈ [0, a]
0 si x ̸∈ [0, a]

.

(3) Montrons que Z admet une espérance et une variance et calculons-les. Par définition, on sait que Z

admet une variance si et seulement si l’intégrale
∫ +∞

−∞ t2h(t)dt converge absolument. Mais comme h est
nulle en dehors de [0, a], il s’ensuit que Z admet une variance si et seulement si l’intégrale

∫ a

0 t2h(t)dt
converge absolument, c’est-à-dire converge (vu que th(t) ≥ 0 pour tout t ∈ [0, a]). Comme la fonction h
est continue sur [0, a], il s’ensuit que t 7−→ t2h(t) est continue sur [0, a], et donc l’intégrale

∫ a

0 t2h(t)dt
est faussement impropre. En particulier, elle converge, ce qui entraine que Z admet une variance (et
donc aussi une espérance). Par conséquent :

Z admet une espérance et une variance.

A présent, calculons E(Z). D’après les questions précédentes, on a :

E(Z) =
∫ a

0
th(t)dt =

∫ a

0

2t(a − t)
a2 dt =

∫ a

0

2at − 2t2

a2 dt.

Par des calculs simples, on trouve que :

E(Z) =
∫ a

0

2at − 2t2

a2 dt =
[

t2

a
− 2t3

3a2

]a

0
= a2

a
− 2a3

3a2 − 0.

Par conséquent, on en déduit après simplification que :

E(Z) = a

3 .

Enfin, calculons V (Z). D’après les questions précédentes, on a :

E(Z2) =
∫ a

0
t2h(t)dt =

∫ a

0

2t2(a − t)
a2 dt =

∫ a

0

2at2 − 2t3

a2 dt.

Par des calculs simples, on trouve que :

E(Z2) =
∫ a

0

2at2 − 2t3

a2 dt =
[

2t3

3a
− 2t4

4a2

]a

0
= 2a2

3 − a2

2 = a2

6 .

D’après la formule de Koenig-Huygens, on obtient que :

V (Z) = E(Z2) − E(Z)2 = a2

6 −
(a

3

)2
= a2

6 − a2

9 .

Par conséquent, on en déduit après simplification que :

V (Z) = a2

18 .

(4) Ecrivons une fonction en Python qui, étant donnés un réel a > 0 et deux entiers n, m ≥ 1, réalise
et affiche n simulations de la variable aléatoire Z, puis affiche l’histogramme correspondant pour une
subdivision de l’intervalle [0, 2a] en m classes de même amplitude. Pour ce faire, on utilise la commande
rd.random pour simuler des variables uniformes, ainsi que la commande plt.hist pour construire
l’histogramme, et ce comme suit :
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import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt

def simul2(a,n,m):
z=np.zeros(n)
for i in range(n):

z[i]=(a*rd.random())+(a*rd.random())
print(z)
c=np.linspace(0,(2*a),m)
plt.hist(x,c)
plt.show()

Corrigé de l’exercice 3. Soit n ∈ N et soit E = R2n+1[x]. Pour tout k ∈ {0, ..., 2n + 1}, on admet
que l’expression x 7−→ x2n+1 × 1

xk désigne le polynôme x 7−→ x2n+1−k. On désigne par Id l’endomorphisme
identique de E et par f l’application qui, à tout élément P de E, associe le polynôme f(P ) : x 7−→ x2n+1P

( 1
x

)
.

(1) Montrons que f est un endomorphisme de E. Tout d’abord, on peut remarquer que, pour tout polynôme
P : x 7−→

∑2n+1
k=0 akxk ∈ E et pour tout x ∈ R∗, on a :

f(P )(x) = x2n+1
2n+1∑
k=0

ak

(
1
x

)k

=
2n+1∑
k=0

akx2n+1−k.

Si l’on effectue le changement d’indices l = 2n + 1 − k, alors on trouve que, pour tout x ∈ R :

f(P )(x) =
2n+1∑
l=0

a2n+1−lx
l.

En particulier, on voit que f(P ) appartient à E, et donc f est une application de E dans E. Pour
montrer que f est un endomorphisme de E, il reste à vérifier que f est linéaire. Soient P, Q ∈ E et
soient λ, µ ∈ R. Pour tout x ∈ R∗, on trouve que :

f(λP+µQ)(x) = x2n+1(λP+µQ)
(

1
x

)
= λ

[
x2n+1P

(
1
x

)]
+µ

[
x2n+1Q

(
1
x

)]
= λf(P )+µf(Q)(x),

d’où il s’ensuit que f(λP + µQ) = λf(P ) + µf(Q), et donc f est linéaire. Par conséquent :

f est un endomorphisme de E.

(2) (a) Vérifions que f ◦ f = Id. Pour tout P ∈ E, on trouve que :

f ◦ f(P ) = f(f(P )) = f

(
X2n+1P

(
1
X

))
= X2n+1 ×

(
1
X

)2n+1
× P

(
1
1
X

)
= P (X) .

Comme ceci est vrai pour tout P ∈ E, on en déduit que :

f ◦ f = Id.

(b) Comme f ◦ f = Id, le polynôme X2 − 1 = (X − 1)(X + 1) est annulateur de f , et donc :

1 et − 1 sont les deux valeurs propres possibles de f.

(3) Soit P : x 7−→
∑2n+1

k=0 akxk un élément quelconque de ker(f − Id).
(a) Montrons que les ak (0 ≤ k ≤ 2n + 1) sont solutions du système : ∀k ∈ {0, ..., n}, ak = a2n+1−k.

Comme P appartient à ker(f − Id), on voit que f(P ) − P = 0 et f(P ) = P , ce qui entraine avec les
calculs de la question (1) que, pour tout x ∈ R :

f(P )(x) =
2n+1∑
l=0

a2n+1−lx
l = P (x) =

2n+1∑
k=0

akxk.

Comme deux polynômes sont égaux si et seulement si les coefficients de leurs écritures réduites sont
égaux, on obtient que a2n+1−k = ak pour tout k ∈ {0, ..., 2n + 1}. En particulier, on a :

∀k ∈ {0, ..., n}, ak = a2n+1−k.
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(b) Déterminons une base de ker(f − Id). Pour ce faire, considérons un élément P : x 7−→
∑2n+1

k=0 akxk

de ker(f − Id), que l’on commence par écrire sous la forme suivante, pour tout x ∈ R :

P =
n∑

k=0
akxk +

2n+1∑
k=n+1

akxk.

Si l’on effectue le changement d’indices l = 2n + 1 − k dans la deuxième somme de droite, alors on
trouve que, pour tout x ∈ R :

P (x) =
n∑

k=0
akxk +

n∑
l=0

a2n+1−lx
2n+1−l =

n∑
k=0

akxk +
n∑

k=0
a2n+1−kx2n+1−k.

Comme P appartient à ker(f − Id), on sait d’après la question précédente que ak = a2n+1−k pour
tout k ∈ {0, ..., n}, ce qui nous donne que, pour tout x ∈ R :

P (x) =
n∑

k=0
akxk +

n∑
k=0

akx2n+1−k =
n∑

k=0
ak

(
xk + x2n+1−k

)
.

Si l’on pose Pk : x 7−→ xk + x2n+1−k pour tout k ∈ {0, ..., n}, alors on voit que tout élément P de
ker(f − Id) est combinaison linéaire des Pk, et donc :

ker(f − Id) ⊂ Vect(P0, ..., Pn).
Par ailleurs, on trouve que, pour tout k ∈ {0, ..., n} et pour tout x ∈ R∗ :

f(Pk)(x) = x2n+1

[(
1
x

)k

+
(

1
x

)2n+1−k
]

= x2n+1−k + xk = Pk(x),

ce qui entraine que Pk appartient à ker(f − Id) pour tout k ∈ {0, ..., n}, et donc :
ker(f − Id) = Vect(P0, ..., Pn).

En particulier, la famille (P0, ..., Pn) est génératrice dans ker(f − Id). Mais comme Pk est de degré
2n+1−k pour tout k ∈ {0, ..., n}, la famille (P0, ..., Pn) est constituée de polynômes de degrés deux
à deux distincts, et donc elle est libre. Par conséquent :

(x 7→ 1 + x2n+1, ..., x 7→ xk + x2n+1−k, ..., x 7→ xn + xn+1) est une base de ker(f − Id).

(4) En procédant exactement comme à la question (3), on montre aussi que :

(x 7→ 1 − x2n+1, ..., x 7→ xk − x2n+1−k, ..., x 7→ xn − xn+1) est une base de ker(f + Id).

(5) Pour tout P : x 7−→
∑2n+1

k=0 akxk ∈ E et tout Q : x 7−→
∑2n+1

k=0 bkxk ∈ E, on pose :

φ(P, Q) =
2n+1∑
k=0

akbk.

(a) Montrons que φ est un produit scalaire sur E. Pour ce faire, on va montrer que φ est une forme
bilinéaire symétrique définie positive, et ce en plusieurs étapes :

Première étape : φ est symétrique.

En effet, pour tout P : x 7−→
∑2n+1

k=0 akxk ∈ E et tout Q : x 7−→
∑2n+1

k=0 bkxk ∈ E, on a :

φ(P, Q) =
2n+1∑
k=0

akbk =
2n+1∑
k=0

bkak = φ(Q, P ),

d’où il s’ensuit que φ est symétrique.

Deuxième étape : φ est bilinéaire.

En effet, pour tous éléments P : x 7−→
∑2n+1

k=0 akxk, Q : x 7−→
∑2n+1

k=0 bkxk, R : x 7−→
∑2n+1

k=0 ckxk

de E et pour tous λ, µ ∈ R, on trouve par linéarité de la somme que :

φ(λP + µQ, R) =
2n+1∑
k=0

(λak + µbk)ck = λ

2n+1∑
k=0

akck + µ

2n+1∑
k=0

bkck = λφ(P, R) + µφ(Q, R),
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ce qui entraine que φ est linéaire à gauche, et donc bilinéaire par symétrie.

Troisième étape : φ est définie positive.

En effet, pour tout élément P : x 7−→
∑2n+1

k=0 akxk de E, on a :

φ(P, P ) =
2n+1∑
k=0

a2
k ≥ 0,

et donc φ est positive. De plus, si φ(P, P ) = 0, alors on voit que ak = 0 pour tout k ∈ {0, ..., 2n+1},
et donc P = 0. En particulier, la forme bilinéaire φ est définie positive.

Par conséquent, on en déduit que :

φ est un produit scalaire sur E.

(b) Etablissons que f est un endomorphisme symétrique de E. Soient P, Q deux éléments de E, de la
forme P : x 7−→

∑2n+1
k=0 akxk et Q : x 7−→

∑2n+1
k=0 bkxk. D’après la question (1), on sait que, pour

tout x ∈ R :

f(P )(x) =
2n+1∑
k=0

a2n+1−kxk et f(Q)(x) =
2n+1∑
k=0

b2n+1−kxk.

Dès lors, on obtient par définition du produit scalaire que :

φ(f(P ), Q) =
2n+1∑
k=0

a2n+1−kbk.

Si l’on effectue le changement d’indices l = 2n + 1 − k dans la somme de droite, alors on a :

φ(f(P ), Q) =
2n+1∑
l=0

alb2n+1−l =
2n+1∑
k=0

b2n+1−kak = φ(f(Q), P ) = φ(P, f(Q)).

Mais comme ceci est vrai pour tous P, Q ∈ E, on en déduit que :

f est un endomorphisme symétrique de E.

(c) Montrons que ker(f + Id) et ker(f − Id) sont supplémentaires orthogonaux. Comme f est un en-
domorphisme symétrique, l’espace vectoriel E est somme directe des sous-espaces propres de f , qui
sont de plus deux à deux orthogonaux. Mais comme les seules valeurs de f sont 1 et −1 d’après les
questions précédentes, il s’ensuit que E−1(f) = ker(f +Id) et E1(f) = ker(f − Id) sont orthogonaux
et que de plus E = E−1(f) ⊕ E1(f). En particulier :

ker(f + Id) et ker(f − Id) sont supplémentaires orthogonaux dans E.

Corrigé du problème 1. On considère l’espace euclidien R3 muni du produit scalaire canonique, lequel
est défini pour tout u = (x, y, z) ∈ R3 et tout u′ = (x′, y′, z′) ∈ R3 par ⟨u, u′⟩ = xx′ + yy′ + zz′. La norme
du vecteur u est définie par ∥u∥ =

√
⟨u, u⟩. On désigne par B = (e1, e2, e3) la base canonique de R3, et on

rappelle que cette base est orthonormée pour le produit scalaire ⟨, ⟩. Le but de ce problème est de montrer que
l’on peut trouver une famille F = (e1, ..., en) de cardinal maximal, formée de n vecteurs unitaires deux à deux
distincts de R3, ainsi qu’un réel α tels que, pour tout couple d’entiers (i, j) vérifiant 1 ≤ i < j ≤ n, on ait :
⟨ui, uj⟩ = α. La partie 1 permet d’obtenir un résultat d’algèbre linéaire utile pour la suite, la partie 2 étudie
les propriétés d’une telle famille et la partie 3 propose la construction d’une famille solution du problème pour
n = 4 (cette valeur est d’ailleurs la valeur maximale possible de n mais ce résultat ne sera pas démontré ici).

Partie 1 : Soit n est un entier ≥ 2. Pour tout a ∈ R, on désigne par Ma la matrice de Mn(R) dont les
éléments diagonaux sont tous égaux à 1, les autres étant égaux à a. On note I la matrice identité de Mn(R)
et J la matrice de Mn(R) dont tous les coefficients valent 1.

(1) (a) Comme la matrice J a tous ses coefficients égaux à 1, elle est symétrique réelle. Dès lors, d’après le
théorème spectral, il s’ensuit que :

J est diagonalisable.
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(b) Calculons J2 et déterminons les deux valeurs propres de J . Par des calculs simples, on a :

J2 =

1 ... 1
...

...
1 ... 1


1 ... 1

...
...

1 ... 1

 =

n ... n
...

...
n ... n

 .

Par conséquent, on en déduit que :

J2 = nJ.

Dès lors, comme le polynôme P : x 7−→ x2 − nx est annulateur de J , on voit que 0 et n sont les
seules valeurs propres possibles de J . Reste à vérifier que ce sont bien des valeurs propres de J . Par
des calculs simples, on trouve que :1 ... 1

...
...

1 ... 1


1

...
1

 =

n
...
n

 = n

1
...
1

 et

1
...
1

 ̸= 0,

et donc N est bien valeur propre de J . De la même manière, on obtient que :

1 ... 1
...

...
1 ... 1




1
−1
0
...
0

 =


0
0
0
...
0

 = 0


1

−1
0
...
0

 et


1

−1
0
...
0

 ̸= 0,

et donc 0 est aussi valeur propre de J . Par conséquent :

0 et n sont les seules valeurs propres de J.

(2) (a) Calculons les valeurs propres de Ma. Pour ce faire, on va déterminer une base de vecteurs propres
de J . Comme 0 et n sont les seules valeurs propres de J , on commence par calculer une base de
E0(J). Soit X un vecteur colonne de composantes x1, ..., xn. Alors :

X ∈ E0(J) ⇐⇒ JX = 0X ⇐⇒

1 ... 1
...

...
1 ... 1


x1

...
xn

 =

0
...
0

 .

En termes de coordonnées, cela nous donne que (x1, ..., xn) est solution du système linéaire :{
x1 + x2 + ... + xn = 0 .

Si l’on choisit x2, ..., xn comme paramètres, alors on trouve que x1 = −x2 − ... − xn, et donc :

X ∈ E0(J) ⇐⇒ ∃x2, ..., xn ∈ R, X = x2


−1
1
0
...
0

+ ... + xn


−1
0
...
0
1



⇐⇒ X ∈ Vect




−1
1
0
...
0

 , ...,


−1
0
...
0
1



 .

Pour tout k ∈ {2, ..., n}, on désigne par Ek le vecteur de composantes −1, 0, ...0, 1, 0, ..., 0 (où 1 est
placé en k-ème position). D’après ce qui précède, on voit que :

E0(J) = Vect (E2, ..., En) .

Dès lors, il s’ensuit que (E2, ..., En) est une famille génératrice de E0(J). Comme ces vecteurs
forment un système réduit (pour la méthode du pivot de Gauss), on voit que rg(E2, ..., En) = n − 1,
et donc E0(J) est de dimension (n−1). Mais comme (E2, ..., En) est une famille génératrice à (n−1)
éléments d’un espace vectoriel de dimension (n − 1), il s’ensuit que :

(E2, ..., En) est une base de E0(J).
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A présent, calculons une base de En(J). Comme n est une valeur propre de J , on voit que
dim En(J) ≥ 1. De plus, comme En(J) et E0(J) sont en somme directe, on trouve que :

dim En(J) ≤ n − dim E0(J) = 1,

et donc En(J) est de dimension 1. En outre, si l’on désigne par E1 le vecteur de composantes 1, ..., 1,
alors on voit d’après la question précédente que JE1 = E1, et donc E1 appartient à En(J). Comme
E1 est non nul, il constitue une famille libre de En(J), et donc une base de En(J) car dim En(J) = 1.
En particulier :

(E1) est une base de En(J).

En résumé, on obtient que :

(E1, E2, ..., En) est une base de vecteurs propres de J.

Passons maintenant au calcul des valeurs propres de Ma. Tout d’abord, on voit que :

MaE1 =


1 a ... a

a 1
. . .

...
...

. . .
. . . a

a ... a 1


1

...
1

 =

1 + (n − 1)a
...

1 + (n − 1)a

 = [1 + (n − 1)a]

1
...
1

 ,

d’où il s’ensuit que 1 + (n − 1)a est valeur propre de Ma. De la même façon, on trouve que, pour
tout k ∈ {2, ..., n} :

MaEk =


1 a ... a

a 1
. . .

...
...

. . .
. . . a

a ... a 1





−1
0
...
0
1
0
...
0


=



−1 + a
0
...
0

a − 1
0
...
0


= (a − 1)



−1
0
...
0
1
0
...
0


,

d’où il s’ensuit que a − 1 est aussi valeur propre de Ma. Mais comme la famille (E1, ..., En) est une
base de vecteurs propres de Ma, on en déduit que 1+(n−1)a et a−1 sont les seules valeurs propres
de Ma. Par conséquent :

a − 1 et 1 + (n − 1)a sont les seules valeurs propres de Ma.

(b) Montrons que Ma est inversible si et seulement si : a ̸= 1 et a ̸= − 1
n−1 . Par définition, la matrice Ma

est inversible si et seulement si 0 n’est pas valeur propre de Ma. Mais comme a − 1 et 1 + (n − 1)a
sont les seules valeurs propres de Ma, il s’ensuit que Ma est inversible si et seulement si a − 1 ̸= 0
et 1 + (n − 1)a ̸= 0, et donc :

Ma est inversible si et seulement si : a ̸= 1 et a ̸= − 1
n − 1 .

(3) Ecrivons une fonction en Python qui, étant donnés un réel a et un entier n ≥ 2, affiche la matrice Ma

puis détermine si cette matrice est inversible ou pas. Pour ce faire, on part du fait que la matrice Ma

se décompose sous la forme Ma = aJ + (1 − a)I, et on utilise les questions précédentes comme suit :
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import numpy as np

def matrice(a,n):
m=np.zeros([n,n])
for i in range(n):

for j in range(n):
if i==j:

m[i,j]=1
else:

m[i,j]=a
print(m)
if a==1 or a==-1/(n-1):

print(’la matrice n est pas inversible’)
else:

print(’la matrice est inversible’)

Partie 2 : On suppose que l’on a trouvé une famille (u1, ..., un) formée de n vecteurs unitaires et deux à
deux distincts de R3 et un réel α solutions du problème.

(1) Soient λ1, ..., λn des réels tels que
∑n

k=1 λkuk = 0. Montrons que :

Mα

λ1
...

λn

 = 0.

Pour tout l ∈ {1, ..., n}, on obtient par bilinéarité du produit scalaire que :〈
n∑

k=1
λkuk, ul

〉
=

n∑
k=1

λk⟨uk, ul⟩ = 0.

Comme les ui sont des vecteurs unitaires, on voit que ⟨ul, ul⟩ = 1 pour tout l. De plus, comme ⟨ui, uj⟩ =
α pour tout couple d’entiers (i, j) tels que 1 ≤ i < j ≤ n, et que le produit scalaire est symétrique, on
trouve que ⟨uk, ul⟩ = α si k ̸= l. Dès lors, il s’ensuit que, pour tout l ∈ {1, ..., n} :

n∑
k=1

λk⟨uk, ul⟩ = αλ1 + ... + αλl−1 + λl + αλl+1 + ... + αλn = 0.

Comme Mα est la matrice de Mn(R) dont les éléments diagonaux sont tous égaux à 1, les autres étant
égaux à α, l’égalité ci-dessus n’est ni plus ni moins que la l-ème composante du vecteur :

U = Mα

λ1
...

λn

 .

Par conséquent, on en déduit que :

Mα

λ1
...

λn

 = 0.

(2) Déterminons la valeur maximale de n lorsque α ̸= 1 et ̸= − 1
n−1 . Dans ces conditions, on sait d’après la

question (2)(b) de la partie 1 que la matrice Mα est inversible. Dès lors, d’après la question précédente,
on obtient que :

n∑
k=1

λkuk = 0 =⇒ Mα

λ1
...

λn

 = 0 =⇒

λ1
...

λn

 = 0 =⇒ λ1 = ... = λn = 0.

En particulier, la famille (u1, ..., un) est libre. Mais comme il s’agit d’une famille de R3, elle doit compter
au plus 3 éléments, et donc la valeur maximale de n est donnée par :

n = 3.

(3) Etude du cas α = 1.
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(a) Ecrivons l’inégalité de Cauchy-Schwarz pour ui et uj avec i ̸= j. D’après le cours, on voit que :

|⟨ui, uj⟩| ≤ ∥ui∥ × ∥uj∥.

Comme les ui sont unitaires et que ⟨ui, uj⟩ = α = 1 pour tous i, j avec i ̸= j, on obtient que :

|⟨ui, uj⟩| = ∥ui∥ × ∥uj∥.

De plus, on sait d’après le cours qu’il y a égalité dans l’inégalité de Cauchy-Schwarz si et seulement
si les vecteurs ui et uj sont colinéaires. Dès lors, il existe un réel ai,j tel que ui = ai,juj , et donc :

⟨ui, uj⟩ = ⟨ai,juj , uj⟩ = ai,j∥uj∥2 = ai,j × 1 = α = 1.

Par conséquent, on en déduit que, si i ̸= j :

ui = uj .

(b) D’après ce qui précède, tous les vecteurs ui sont égaux. Mais comme la famille (u1, ..., un) est formée
de vecteurs deux à deux distincts, cette famille n’a qu’un seul élément, et donc :

n = 1.

(4) Dans cette question, on admet qu’il existe une famille (u1, u2, u3, u4) formée de 4 vecteurs unitaires et
deux à deux distincts de R3 solution du problème.

(a) Donnons la valeur de α. Comme la famille (u1, u2, u3, u4) comporte 4 éléments de R3, elle n’est pas
libre. Dès lors, d’après la question (1) de la partie 2, on sait que la matrice Mα n’est pas inversible.
D’après la question (2)(b) de la partie 1, il s’ensuit que α = 1 ou α = − 1

3 . Mais d’après la question
(3)(b) de la partie 2, on sait que, si α = 1, alors n = 1, ce qui est impossible car n = 4 par hypothèse.
Par conséquent :

α = −1
3 .

(b) Montrons que (u1, u2, u3) est une base de R3. Comme cette famille comporte 3 éléments et que R3

est de dimension 3, il suffit de montrer que la famille (u1, u2, u3) est libre. Soient λ1, λ2, λ3 ∈ R tels
que λ1u1 +λ2u2 +λ3u3 = 0. Alors on voit que λ1u1 +λ2u2 +λ3u3 +0u4 = 0, ce qui entraine d’après
la question (1) de la partie 2 que :

Mα


λ1
λ2
λ3
0

 = 0.

D’après la question (2)(a) de la partie 1 et comme α = − 1
3 , on sait que le noyau de Mα (c’est-à-dire

le sous-espace propre E0(Mα)) est engendré par le vecteur colonne E1, dont toutes les composantes
sont égales à 1. Dès lors, il existe un réel θ tel que :

λ1
λ2
λ3
0

 = θ


1
1
1
1

 ,

d’où il s’ensuit que θ = 0, et donc λ1 = λ2 = λ3 = 0. En particulier, la famille (u1, u2, u3) est libre,
et donc :

(u1, u2, u3) est une base de R3.

(c) Calculons les coordonnées de u4 dans cette base. Soient λ1, λ2, λ3 ∈ R les coordonnées de u4 dans
la base C = (u1, u2, u3). Par définition, on voit que λ1u1 + λ2u2 + λ3u3 = u4, et donc λ1u1 + λ2u2 +
λ3u3 − u4 = 0. D’après la question (1) de la partie 2, ceci entraine que :

Mα


λ1
λ2
λ3
−1

 = 0.
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D’après la question (2)(a) de la partie 1 et comme α = − 1
3 , on sait que le noyau de Mα est engendré

par le vecteur colonne E1. Dès lors, il existe un réel θ tel que :
λ1
λ2
λ3
−1

 = θ


1
1
1
1

 ,

d’où il s’ensuit que θ = −1, et donc λ1 = λ2 = λ3 = −1. En particulier, la matrice colonne des
coordonnées de u4 dans la base C est donnée par :

matC(u4) =

−1
−1
−1

 .

Partie 3 : On se propose de trouver des familles solutions du problème dans certains cas.
(1) Donnons une famille solution du problème posé pour n = 3 et α = 0. Si n = 3 et α = 0, il s’agit de

trouver une famille de 3 vecteurs deux à deux orthogonaux et tous unitaires, c’est-à-dire une famille
orthonormale de R3 à 3 éléments. On voit alors que la base canonique de R3 convient. Dès lors :

la base canonique de R3 est solution du problème pour n = 3 et α = 0.

(2) On pose v1 = e1, v2 = − 1
2 e1 +

√
3

2 e2 et v3 = − 1
2 e1 −

√
3

2 e2.

(a) Montrons que (v1, v2, v3) est solution du problème posé pour α = − 1
2 . Par définition, on voit que

ces 3 vecteurs sont deux à deux distincts. De plus, ils sont unitaires car :

∥v1∥ = 1, ∥v2∥ =

√(
−1

2

)2
+
(√

3
2

)2

= 1, ∥v3∥ =

√(
−1

2

)2
+
(

−
√

3
2

)2

= 1

Reste à vérifier que ⟨v1, v2⟩ = ⟨v1, v3⟩ = ⟨v2, v3⟩ = − 1
2 . Par bilinéarité du produit scalaire et vu que

(e1, e2) est une famille orthonormée, on trouve que :

⟨v1, v2⟩ =
〈

e1, −1
2e1 +

√
3

2 e2

〉
= −1

2 ⟨e1, e1⟩ +
√

3
2 ⟨e1, e2⟩ = −1

2 .

De la même façon, on obtient que :

⟨v1, v3⟩ =
〈

e1, −1
2e1 −

√
3

2 e2

〉
= −1

2 ⟨e1, e1⟩ −
√

3
2 ⟨e1, e2⟩ = −1

2 .

Par des calculs analogues, on trouve que :

⟨v2, v3⟩ =
〈

−1
2e1 +

√
3

2 e2, −1
2e1 −

√
3

2 e2

〉

=
(

−1
2

)2
⟨e1, e1⟩ −

(√
3

2

)2

⟨e2, e2⟩

= 1
4 − 3

4 = −1
2 .

Par conséquent, on en déduit que :

la famille (v1, v2, v3) est solution du problème pour α = −1
2 .

(b) Déterminons deux réels λ, µ tels que la famille (u1, u2, u3, u4) = (e3, λv1 + µe3, λv2 + µe3, λv3 + µe3)
soit solution du problème posé pour n = 4. Par définition, cela signifie que α = − 1

3 , que les vecteurs
de cette famille sont deux à deux distincts (et donc λ ̸= 0), et que de plus :

⟨u1, u1⟩ = ⟨u2, u2⟩ = ⟨u3, u3⟩ = ⟨u4, u4⟩ = 1

⟨u1, u2⟩ = ⟨u1, u3⟩ = ⟨u1, u4⟩ = ⟨u2, u3⟩ = ⟨u2, u4⟩ = ⟨u3, u4⟩ = −1
3

.



15

Après calculs, on trouve que λ, µ sont solutions du système :
λ2 + µ2 = 1

− 1
2 λ2 + µ2 = − 1

3

µ = − 1
3

,

d’où il s’ensuit après résolution que λ2 = 8
9 , et donc λ = ± 2

√
2

3 . Par conséquent :

(u1, u2, u3, u4) est solution du problème pour n = 4, λ = ±2
√

2
3 et µ = −1

3 .

(3) Ecrivons une fonction en Python qui, étant donnés 3 vecteurs unitaires et distincts u, v, w de R3,
détermine si la famille (u, v, w) est solution du problème ou pas, et affiche la valeur de α dans ce cas.
Pour ce faire, on doit vérifier que ⟨u, v⟩ = ⟨u, w⟩ = ⟨v, w⟩, ce qui revient à contrôler que ⟨u, v⟩ = ⟨u, w⟩
et ⟨u, v⟩ = ⟨v, w⟩, et dans ce cas α = ⟨u, v⟩. Dès lors, on peut procéder comme suit :

import numpy as np

def vecteurs(u,v,w):
x=np.sum(u*v)
y=np.sum(u*w)
z=np.sum(v*w)
if x==y and y==z:

print(’les vecteurs sont solutions du probleme’)
print(x)

else:
print(’les vecteurs ne sont pas solutions du probleme’)
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2. Sujet type HEC-ESCP Maths I

Corrigé du problème 2. Dans ce problème, on s’intéresse à des opérations de transport dans des situations
déterministes ou aléatoires, modélisées de manière discrète ou continue, dans le but de trouver un programme
de transport optimal dont le coût serait le plus faible possible. Les parties I, II et III sont largement indé-
pendantes. Toutes les variables aléatoires considérées dans ce problème sont supposées définies sur le même
espace probabilisé (Ω, A, P ). Sous réserve d’existence, on note E(Z) l’espérance d’une variable aléatoire Z.
Enfin, pour tout entier N ≥ 1, on note EN l’ensemble des applications de J1, NK dans J1, NK.

Préliminaire
(1) Soit p un réel vérifiant 0 < p < 1. On considère une variable aléatoire X suivant la loi exponentielle de

paramètre 1. Pour tout ω ∈ Ω, on pose Y (ω) = ⌊pX(ω)⌋, où ⌊ ⌋ désigne la fonction partie entière.
(a) Vérifions tout d’abord que Y est une variable aléatoire discrète. Comme X suit une loi exponentielle,

on voit que X (Ω) = R+, ce qui entraine que (pX) (Ω) = R+, et donc Y (Ω) ⊂ N. En particulier,
l’ensemble Y (Ω) est au plus dénombrable. De plus, pour tout n ∈ N, on voit que :

[Y = n] = [⌊pX⌋ = n] = [n ≤ pX < n + 1] =
[

n

p
≤ X <

n + 1
p

]
=
[
X ∈

[
n

p
,

n + 1
p

[ ]
.

Comme X est une variable aléatoire définie sur (Ω, A, P ) et que [ n
p , n+1

p [ est un intervalle, il s’ensuit

que l’ensemble
[
X ∈ [ n

p , n+1
p [
[

est un élément de A, et donc l’ensemble [Y = n] appartient à A pour
tout n ∈ N. Par conséquent, on en déduit que :

Y est une variable aléatoire discrète.

A présent, calculons P ([Y = n]) pour tout n ∈ N. Pour tout n ∈ N, on a d’après ce qui précède :

P ([Y = n]) = P

([
n

p
⩽ X <

n + 1
p

])
.

Comme X est une variable à densité, ceci nous donne que, pour tout n ∈ N :

P ([Y = n]) = FX

(
n + 1

p

)
− FX

(
n

p

)
.

Comme X suit la loi exponentielle de paramètre 1, il s’ensuit que, pour tout n ∈ N :

P ([Y = n]) =
(

1 − e− n+1
p

)
−
(

1 − e− n
p

)
= e− n

p − e− n+1
p = e− n

p

(
1 − e− 1

p

)
.

Par conséquent, on en déduit que, pour tout n ∈ N :

P ([Y = n]) = e
n
p

(
1 − e− 1

p

)
.

(b) Montrons que la variable aléatoire Y + 1 suit une loi géométrique dont on précisera le paramètre.
Pour ce faire, on pose Z = Y +1. Comme Y (Ω) ⊂ N et que P ([Y = n]) ̸= 0 pour tout n ∈ N d’après
la question précédente, on voit que Y (Ω) = N, et donc Z (Ω) = N∗. De plus, on constate d’après la
question précédente que, pour tout n ∈ N∗ :

P ([Z = n]) = P ([Y = n − 1]) = e− n−1
p

(
1 − e− 1

p

)
=
(

e− 1
p

)n−1 (
1 − e− 1

p

)
.

Par conséquent, on en déduit que :

Y + 1 suit la loi géométrique de paramètre 1 − e− 1
p .

(c) Etablissons les inégalités strictes : 0 < E(Y ) < p. Comme Y +1 suit la loi géométrique de paramètre
1 − e− 1

p d’après la question précédente, on sait d’après le cours que Y + 1 admet une espérance
égale à E (Y + 1) = 1

1−e
− 1

p
. Comme Y = (Y + 1) − 1, ceci entraine par linéarité de l’espérance que

Y admet une espérance et que :

E (Y ) = E (Y + 1) − 1 = 1
1 − e− 1

p

− 1 = e− 1
p

1 − e− 1
p

= 1
e

1
p − 1

.

Comme 1
p > 0, on voit que e

1
p > 1, et donc E (Y ) > 0. Posons maintenant f(x) = ex − 1 − x pour

tout x ∈ R+. Alors la fonction f est dérivable sur R+ et de plus, on a f ′(x) = ex − 1 > 0 pour
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tout x ∈ R∗
+. En particulier, la fonction f est strictement croissante sur [0, +∞[, ce qui entraine que

f(x) > f(0) pour tout x > 0, et donc ex − 1 > x pour tout x > 0. Comme 1
p > 0, ceci entraine que :

e
1
p − 1 >

1
p

> 0.

Par stricte décroissance de la fonction t 7−→ 1
t sur ]0, +∞[, il s’ensuit que 1

e
1
p −1

< p, et donc :

0 < E (Y ) < p.

(2) (a) Pour tout couple (r, s) ∈ N2, montrons que l’intégrale
∫ 1

0 xr(ln x)sdx est convergente. Dans ce qui
suit, on pose Ir,s =

∫ 1
0 xr (ln x)s

dx pour tout (r, s) ∈ N2. Fixons alors un couple (r, s) ∈ N2. Comme
la fonction x 7−→ xr(ln(x))s est continue sur ]0, 1], l’intégrale Ir,s est impropre en 0. De plus, on
obtient par croissances comparées que :

xr+1/2 (ln x)s −→
x→0+

0.

En particulier, ceci entraine que :

xr (ln x)s =
x→0+

o

(
1√
x

)
.

Comme l’intégrale de Riemann
∫ 1

0
dx√

x
converge et que 1√

x
≥ 0 pour tout x ∈]0, 1], le critère de

négligeabilité pour les intégrales entraine que, pour tout (r, s) ∈ N2 :

l’intégrale Ir,s =
∫ 1

0
xr(ln x)sdx converge.

(b) Etablissons pour tout couple (r, s) ∈ N2, l’égalité :
∫ 1

0 xr(ln x)sdx = (−1)ss!
(r+1)s+1 . Pour cela, on conserve

les notations de la question précédente. Si l’on pose u = − ln x, c’est-à-dire x = e−u, alors on
constate que l’application u 7−→ e−u est de classe C1 sur ]0, +∞[ et bijective de ]0, +∞[ sur ]0, 1[
et que, de plus on a dx = −e−udu, u tend vers +∞ quand x tend vers 0 et u tend vers 0 quand x
tend vers 1. Par changement de variable, on trouve que :

Ir,s =
∫ 0

+∞

(
e−u

)r (−u)s ×
(
−e−u

)
du =

∫ +∞

0
(−1)s

use−(r+1)udu.

On effectue à nouveau un changement de variable en posant v = (r + 1)u. A noter que ce dernier
est bien licite car la fonction u 7−→ (r + 1)u est affine (vu que r + 1 > 0). Comme dv = (r + 1)du,
que v tend vers +∞ quand u tend vers +∞ et que v tend vers 0 quand u tend vers 0, on obtient
par changement de variable que :

Ir,s =
∫ +∞

0
(−1)s

(
v

r + 1

)s

e−v dv

r + 1 =
∫ +∞

0

(−1)s

(r + 1)s+1 vs+1−1e−vdv.

Comme s + 1 est un entier > 0 et que la fonction Γ : x 7−→
∫ +∞

0 vx−1e−vdv est définie sur R∗
+, il

s’ensuit par linéarité de l’intégrale que :

Ir,s = (−1)s

(r + 1)s+1 Γ (s + 1) = (−1)s

(r + 1)s+1 s!.

Par conséquent, on en déduit que, pour tout (r, s) ∈ N2 :

Ir,s =
∫ 1

0
xr(ln x)sdx = (−1)s

(r + 1)s+1 s!.

Partie I. Transport dans une situation aléatoire.
On dit que la loi d’une variable aléatoire Y est accessible depuis une variable aléatoire X, s’il existe une
application T : X(Ω) −→ R telle que la variable aléatoire T (X) suit la même loi que Y . L’application T est
alors appelée une fonction de transport de la variable aléatoire X vers la loi de Y . On associe à T un coût de
transport C(T ) défini, sous réserve d’existence, par : C(T ) = E

(
(X − T (X))2). Dans toute cette partie, X
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désigne une variable aléatoire vérifiant X(Ω) =]0, 1[ et suivant la loi uniforme sur ]0, 1[, c’est-à-dire admettant
pour densité la fonction fX définie par :

fX(x) =
{

1 si x ∈]0, 1[
0 sinon .

(1) Soit p un réel vérifiant 0 < p < 1. Pour tout réel a ∈ [0, 1−p], on note dans cette question Ta la fonction
définie sur ]0, 1[ par :

Ta(x) =
{

1 si x ∈]a, a + p[
0 sinon

(a) Calculons la probabilité P ([Ta(X) = 1]) et montrons que les fonctions Ta sont des fonctions de
transport de X vers une même loi que l’on précisera. Comme X est une variable à densité, on
trouve que :

P ([Ta(X) = 1]) = P ([a < X < a + p]) = FX(a + p) − FX(a).

Comme X suit la loi uniforme sur ]0, 1[ et que a, a + p appartiennent à ]0, 1[, ceci nous donne que :

P ([Ta(X) = 1]) = a + p − a = p.

Mais comme Ta(X) ne prend que les valeurs 0 et 1 par construction, il s’ensuit que Ta(X) suit la
loi de Bernoulli de paramètre p. Par conséquent, on en déduit que :

les fonctions Ta sont des fonctions de transport de X vers la loi B(p).

(b) Vérifions que le coût de transport C(Ta) est égal à 1
3 + p(1 − p) − 2ap. Comme X est à densité, on

sait d’après le théorème de transfert que la variable aléatoire (X − Ta(X))2 admet une espérance
si et seulement si l’intégrale

∫ +∞
−∞ (t − Ta (t))2

fX(t)dt converge absolument. Comme X suit la loi
uniforme sur ]0, 1[, X admet une densité nulle sur ] − ∞, 0] ∪ [1, +∞[ et ceci revient à vérifier que
l’intégrale

∫ 1
0 (t − Ta(t))2dt converge absolument. Comme 0 ≤ a < a + p ≤ 1 par hypothèse, on

trouve par des calculs simples que :

(t − Ta(t))2 =
{

(t − 1)2 si t ∈]a, a + p[
t2 sinon .

Comme les fonctions t 7−→ (t−1)2 et t 7−→ t2 sont continues sur les segments [a, a+p], [0, a], [a+p, 1],
les intégrales

∫ a+p

a
(t − Ta(t))2dt,

∫ a

0 (t − Ta(t))2dt et
∫ 1

a+p
(t − Ta(t))2dt convergent absolument, et

donc l’intégrale
∫ 1

0 (t−Ta(t))2dt converge absolument d’après la relation de Chasles, d’où l’existence
du coût de transport C(Ta). De plus, d’après le théorème de transfert, la relation de Chasles et la
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formule du binôme, on trouve que :

C(Ta) =
∫ +∞

−∞
(t − Ta (t))2

fX(t)dt

=
∫ 1

0
(t − Ta (t))2

fX(t)dt

=
∫ a

0
(t − Ta(t))2dt +

∫ a+p

a

(t − Ta(t))2dt +
∫ 1

a+p

(t − Ta(t))2dt

=
∫ a

0
t2dt +

∫ a+p

a

(t − 1)2dt +
∫ 1

a+p

t2dt

=
[

t3

3

]a

0
+
[

(t − 1)3

3

]a+p

a

+
[

t3

3

]1

a+p

= a3

3 + (a + p − 1)3

3 − (a − 1)3

3 + 1
3 − (a + p)3

3

= a3 + (a + p − 1)3 − (a − 1)3 + 1 − (a + p)3

3

= a3 + (a − 1)3 + 3p(a − 1)2 + 3p2(a − 1) + p3 − (a − 1)3 + 1 − (a + p)3

3

= a3 + 3p(a − 1)2 + 3p2(a − 1) + p3 + 1 − (a + p)3

3

= a3 + 3pa2 − 6pa + 3p + 3p2a − 3p2 + p3 + 1 − a3 − 3pa2 − 3p2a − p3

3

= −6pa + 3p − 3p2 + 1
3 .

Par conséquent, on en déduit après simplification que :

C(Ta) = 1
3 + p(1 − p) − 2ap.

(c) Déterminons la valeur de a qui minimise C(Ta) et exprimons le coût minimal correspondant en
fonction de p. Comme la fonction affine a 7−→ 1

3 + p (1 − p) − 2ap est strictement décroissante sur
l’intervalle [0, 1 − p], elle atteint son minimum sur [0, 1 − p] en a = 1 − p. En particulier, on voit
avec la question précédente que C(Ta) est minimal si et seulement si a = 1 − p, et dans ce cas :

C(T1−p) = 1
3 + p(1 − p) − 2p(1 − p) = 1

3 − p(1 − p).

Par conséquent, on en déduit que :

C (Ta) est minimal pour a = 1 − p et le coût minimal vaut C (T1−p) = 1
3 − p (1 − p) .

(2) Soit T1 et T2 les applications définies sur ]0, 1[ par T1(x) = − ln x et T2(x) = − ln(1 − x).
(a) Vérifions que T1 et T2 sont des fonctions de transport de X vers une loi que l’on précisera. Comme

X suit la loi uniforme sur ]0, 1[, on sait que X(Ω) =]0, 1[, ce qui entraine que T1(X)(Ω) ⊂ R∗
+ et

T2(X)(Ω) ⊂ R∗
+, et donc FT1(X)(x) = FT2(X)(x) = 0 pour tout x ≤ 0. De plus, pour tout x > 0, on

trouve par croissance de l’exponentielle que :
FT1(X)(x) = P ([− ln(X) ≤ x]) = P ([ln(X) ≥ −x]) = P ([X ≥ e−x]).

Comme X est à densité, ceci nous donne que, pour tout x > 0 :
FT1(X)(x) = P ([X ≥ e−x]) = 1 − P ([X < e−x]) = 1 − FX(e−x).

Comme X suit la loi uniforme sur ]0, 1[ et que e−x appartient à ]0, 1[ car x > 0, ceci entraine que :
FT1(X)(x) = 1 − FX(e−x) = 1 − e−x.
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En d’autres termes, on vient de trouver que :

FT1(X)(x) =
{

1 − e−x si x > 0
0 sinon .

De même, pour tout x > 0, on trouve par croissance de l’exponentielle que :

FT2(X)(x) = P ([− ln(1 − X) ≤ x]) = P ([ln(1 − X) ≥ −x]) = P ([1 − X ≥ e−x]).

Comme X suit la loi uniforme sur ]0, 1[ et que e−x appartient à ]0, 1[ car x > 0, ceci entraine que :

FT2(X)(x) = P ([1 − X ≥ e−x]) = P ([X ≤ 1 − e−x]) = FX(1 − e−x) = 1 − e−x.

En d’autres termes, on vient de trouver que :

FT2(X)(x) =
{

1 − e−x si x > 0
0 sinon .

D’après les calculs ci-dessus, on voit que T1(X) et T2(X) suivent la loi exponentielle de paramètre
1. Par conséquent, on en déduit que :

T1 et T2 sont des fonctions de transport de X vers la loi E(1).

(b) Comparons les coûts de transport C(T1) et C(T2). Pour ce faire, on commence par calculer C(T1).
Comme X est à densité, on sait d’après le théorème de transfert que la variable aléatoire (X−T1(X))2

admet une espérance si et seulement si l’intégrale
∫ +∞

−∞ (t − T1 (t))2
fX(t)dt converge absolument.

Comme X suit la loi uniforme sur ]0, 1[, X admet une densité nulle sur ] − ∞, 0] ∪ [1, +∞[ et ceci
revient à vérifier que l’intégrale

∫ 1
0 (t − T1(t))2dt =

∫ 1
0 (t + ln(t))2dt converge absolument, c’est-à-

dire converge car l’intégrande est positive. Or on voit par des calculs simples que (t + ln(t))2 =
t2 + 2t ln(t) + ln2(t) pour tout t ∈]0, 1[. Comme les intégrales du type

∫ 1
0 tr lns(t)dt convergent pour

tout (r, s) ∈ N2 d’après la question (2) du préliminaire, ceci entraine que les intégrales
∫ 1

0 t2dt,∫ 1
0 t ln(t)dt et

∫ 1
0 ln2(t)dt convergent, et donc l’intégrale

∫ 1
0 (t + ln(t))2dt converge par linéarité de

l’intégration. En particulier, la variable aléatoire (X − T1(X))2 admet bien une espérance et le coût
de transport C(T1) est bien défini. De plus, d’après le théorème de transfert, on trouve que :

C(T1) =
∫ +∞

−∞
(t − T1 (t))2

fX(t)dt =
∫ 1

0
(t − T1 (t))2

fX(t)dt =
∫ 1

0
(t + ln(t))2dt.

Par linéarité de l’intégration et d’après la question (2) du préliminaire, ceci nous donne que :

C(T1) =
∫ 1

0
(t + ln(t))2dt

=
∫ 1

0
t2dt + 2

∫ 1

0
t ln(t)dt +

∫ 1

0
ln2(t)dt

= (−1)0

(2 + 1)0+1 0! + 2 (−1)1

(1 + 1)1+1 1! + (−1)2

(0 + 1)2+1 2!

= 1
3 − 2 × 1

4 + 2.

Par conséquent, on en déduit après simplification que :

C(T1) = 11
6 .

Passons maintenant au calcul de C(T2). Comme X suit la loi uniforme sur ]0, 1[, Y = 1 − X suit
aussi la loi uniforme sur ]0, 1[. De plus, on voit que X − T2(X) = X + ln(1 − X) = 1 − Y +
ln(Y ) = 1 − Y + T1(Y ). Comme Y est à densité, on sait d’après le théorème de transfert que
la variable aléatoire (X − T2(X))2 = (1 − Y + T1(Y ))2 admet une espérance si et seulement si
l’intégrale

∫ +∞
−∞ (1 − t + T1 (t))2

fY (t)dt converge absolument. Comme Y suit la loi uniforme sur
]0, 1[, Y admet une densité nulle sur ] − ∞, 0] ∪ [1, +∞[ et ceci revient à vérifier que l’intégrale∫ 1

0 (1−t+T1(t))2dt =
∫ 1

0 (1−t+ln(t))2dt converge absolument, c’est-à-dire converge car l’intégrande
est positive. Or on voit par des calculs simples que, pour tout t ∈]0, 1[ :

(1 − t + ln(t))2 = 1 + t2 + ln2(t) − 2t + 2 ln(t) − 2t ln(t).
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Comme les intégrales du type
∫ 1

0 tr lns(t)dt convergent pour tout (r, s) ∈ N2 d’après la question (2)
du préliminaire, ceci entraine que toutes les intégrales sur [0, 1] des fonctions ci-dessus convergent, et
donc l’intégrale

∫ 1
0 (1− t+ln(t))2dt converge par linéarité de l’intégration. En particulier, la variable

aléatoire (X − T2(X))2 admet bien une espérance et le coût de transport C(T2) est bien défini. De
plus, d’après le théorème de transfert, on trouve que :

C(T2) =
∫ +∞

−∞
(1 − t + T1 (t))2

fY (t)dt =
∫ 1

0
(1 − t + T1 (t))2

fY (t)dt =
∫ 1

0
(1 − t + ln(t))2dt.

Par linéarité de l’intégration et d’après la question (2) du préliminaire, ceci nous donne que :

C(T2) =
∫ 1

0
(1 − t + ln(t))2dt

=
∫ 1

0
1.dt +

∫ 1

0
t2dt +

∫ 1

0
ln2(t)dt − 2

∫ 1

0
tdt + 2

∫ 1

0
ln(t)dt − 2

∫ 1

0
t ln(t)dt

= 1 + 1
3 + (−1)22!

(0 + 1)2+1 − 2 × 1
2 + 2 × (−1)11!!

(0 + 1)1+1 − 2 × (−1)11!
(1 + 1)1+1

= 1 + 1
3 + 2 − 1 − 2 + 1

2 .

Par conséquent, on en déduit après simplification que :

C(T2) = 5
6 .

D’après les calculs faits ci-avant, on en déduit que :

C(T2) < C(T1).

(c) Montrons que toutes les lois géométriques sont accessibles depuis X. Pour ce faire, fixons un réel a ∈
]0, 1[. D’après la question (2)(a) de la partie I, on sait que T1(X) = − ln(X) suit la loi exponentielle
de paramètre 1. De plus, d’après la question (2) du préliminaire, on voit que ⌊aT1(X)⌋ + 1 suit la
loi géométrique de paramètre 1 − e− 1

a . Or, pour tout p ∈]0, 1[, on constate que :

1 − e− 1
a = p ⇐⇒ 1 − p = e− 1

a ⇐⇒ 1
a

= − ln (1 − p) ⇐⇒ a = − 1
ln (1 − p) .

Si l’on pose q = 1 − p et a = − 1
ln(q) , alors il s’ensuit que la variable aléatoire Y = ⌊−a ln(X)⌋ + 1

suit la loi géométrique de paramètre p. En particulier, la fonction :

T :
{

]0, 1[ −→ R
t 7−→

⌊
− ln(t)
− ln(q)

⌋
+ 1

permet d’accéder à la loi G (p) depuis X. Comme ceci est vrai pour tout p ∈]0, 1[, on en déduit que :

toutes les lois géométriques sont accessibles depuis X.

(3) Dans cette question, Y désigne une variable aléatoire admettant une densité fY continue et strictement
positive sur R.
(a) Justifions que la fonction de répartition FY de Y réalise une bijection de R sur l’intervalle ]0, 1[.

Comme Y est une variable aléatoire admettant une densité fY continue et strictement positive sur
R, la fonction de répartition FY est dérivable sur R et de plus, on a (FY )′(t) = fY (t) > 0 pour
tout t ∈ R. En particulier, la fonction FY est continue et strictement croissante sur R. D’après
le théorème de la bijection, la fonction FY réalise une bijection de R sur FY (R). Comme FY est
continue sur R, l’image FY (R) est un intervalle d’après le théorème des valeurs intermédiaires. Mais
comme FY est strictement croissante sur R, qu’elle tend vers 0 en −∞ et vers 1 en +∞ en tant que
fonction de répartition, il s’ensuit que FY (R) =]0, 1[. Par conséquent, on en déduit que :

la fonction FY réalise une bijection de R sur ]0, 1[.

(b) On note F −1
Y la bijection réciproque de FY . Montrons que F −1

Y est une fonction de transport de la
variable aléatoire X vers la loi de Y . Pour ce faire, on pose Z = F −1

Y (X). Comme FY est strictement
croissante sur R d’après la question précédente, on trouve que, pour tout x ∈ R :

FZ(x) = P
(
[F −1

Y (X) ≤ x]
)

= P ([X ≤ FY (x)]).
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Comme FY (x) appartient à ]0, 1[ pour tout x ∈ R et que X suit la loi uniforme sur ]0, 1[, ceci nous
donne que, pour tout x ∈ R :

FZ(x) = P ([X ≤ FY (x)]) = FX(FY (x)) = FY (x),

et donc Y et Z = F −1
Y (X) suivent la même loi. Par conséquent, on en déduit que :

F −1
Y est une fonction de transport de X vers la loi de Y.

(4) Cas particulier : on suppose que Y suit la loi normale centrée réduite. On note FY la fonction de
répartition de Y et φ la densité continue sur R de Y .

(a) Etablissons tout d’abord la convergence de l’intégrale
∫ +∞

−∞ yFY (y)φ(y)dy. Comme FY est une fonc-
tion de répartition, elle est à valeurs dans [0, 1], ce qui entraine que 0 ≤ |yFY (y)φ(y)| ≤ |y|φ(y) pour
tout y ∈ R. Comme Y suit la loi normale centrée réduite, Y admet une espérance d’après le cours
et l’intégrale

∫ +∞
−∞ |y|φ(y)dy converge. D’après le critère de comparaison des intégrales de fonctions

positives, l’intégrale
∫ +∞

−∞ |yFY (y)φ(y)|dy converge. En particulier, l’intégrale
∫ +∞

−∞ yFY (y)φ(y)dy
converge absolument, et donc :

l’intégrale
∫ +∞

−∞
yFY (y)φ(y)dy converge.

A présent, montrons que : ∫ +∞

−∞
yFY (y)φ(y)dy = 1

2
√

π
.

Pour ce faire, fixons deux réels a, b tels que a < b, et posons u(y) = FY (y) et v(y) = −e− y2
2 pour

tout y ∈ [a, b]. Alors u et v sont de classe C1 sur [a, b] et de plus, on a u′(y) = φ(y) = 1√
2π

e− y2
2 et

v′(y) = ye− y2
2 pour tout y ∈ [a, b]. Par intégration par parties, on trouve que :∫ b

a

yFY (y)φ(y)dy =
[
− 1√

2π
e− y2

2 FY (y)
]b

a

+ 1
2π

∫ b

a

e−y2
dy

= − 1√
2π

e− b2
2 FY (b) + 1√

2π
e− a2

2 FY (a) + 1
2π

∫ b

a

e−y2
dy.

Comme FY tend vers 0 en −∞ et vers 1 en +∞ en tant que fonction de répartition, que e− b2
2 tend

vers 0 quand b tend vers +∞ et que e− a2
2 tend vers 0 quand a tend vers −∞, on obtient par passage

à la limite quand a tend vers −∞ et quand b tend vers +∞ dans l’égalité ci-dessus que :∫ +∞

−∞
yFY (y)φ(y)dy = 1

2π

∫ +∞

−∞
e−y2

dy. (∗)

Par ailleurs, considérons la fonction :

h : y 7−→ 1√
π

exp(−y2) = 1√
2π

1√
1
2

exp

−1
2

 y√
1
2

2
 .

Alors on voit que h est une densité d’une variable aléatoire qui suit la loi N
(
0, 1

2
)
, et donc l’intégrale∫ +∞

−∞ h(y)dy converge et vaut 1. En particulier, il s’ensuit par linéarité de l’intégration que :∫ +∞

−∞
e−y2

dy =
√

π.

Par conséquent, on en déduit avec l’égalité (∗) que :∫ +∞

−∞
yFY (y)φ(y)dy = 1

2π
×

√
π = 1

2
√

π
.

(b) Montrons que l’intégrale
∫ +∞

−∞ (y − FY (y))2φ(y)dy est convergente et calculons-la. Pour tout y ∈ R,
on commence par remarquer que (y − FY (y))2φ(y) = y2φ (y) − 2yFY (y)φ(y) + (FY (y))2φ(y) (∗).
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Comme Y suit la loi normale centrée réduite, elle admet un moment d’ordre 2 et donc l’intégrale∫ +∞
−∞ y2φ (y) dy converge. De plus, on trouve d’après la formule de Koenig-Huygens que :∫ +∞

−∞
y2φ (y) dy = E(Y 2) = V (Y ) + E(Y )2 = 1 + 02 = 1.

En outre, on sait d’après la question précédente que l’intégrale
∫ +∞

−∞ yFY (y)φ(y)dy converge et vaut
1

2
√

π
. Par ailleurs, comme (FY )′ = φ, on obtient que, pour tous réels a, b tels que a < b :∫ b

a

(FY (y))2φ(y)dy =
[

1
3(FY (y))3

]b

a

= 1
3(FY (b))3 − 1

3(FY (a))3.

Comme FY est une fonction de répartition, elle tend vers 0 en −∞ et vers 1 en +∞. Par passage
à la limite quand a tend vers −∞ et quand b tend vers +∞ dans l’égalité ci-dessus, ceci entraine
que l’intégrale

∫ +∞
−∞ (FY (y))2φ(y)dy converge et vaut 1

3 . Dès lors, il s’ensuit d’après la relation (∗)
et par linéarité de l’intégration que l’intégrale

∫ +∞
−∞ (y − FY (y))2φ(y)dy converge. De plus, toujours

par linéarité, on trouve que :∫ +∞

−∞
(y − FY (y))2φ(y)dy =

∫ +∞

−∞
y2φ(y)dy − 2

∫ +∞

−∞
yFY (y)φ(y)dy +

∫ +∞

−∞
(FY (y))2φ(y)dy

= 1 − 2 × 1
2
√

π
+ 1

3 .

Par conséquent, on en déduit après simplification que :

l’intégrale
∫ +∞

−∞
(y − FY (y))2φ(y)dy converge et vaut 4

3 − 1√
π

.

(c) Montrons que le coût de transport C(F −1
Y ) est égal à 4

3 − 1√
π

. Comme X est à densité, on sait
d’après le théorème de transfert que la variable aléatoire (X − F −1

Y (X))2 admet une espérance si
et seulement si l’intégrale

∫ +∞
−∞ (t − F −1

Y (t))2fX(t)dt converge absolument. Comme X suit la loi
uniforme sur ]0, 1[, X admet une densité nulle sur ] − ∞, 0] ∪ [1, +∞[ et ceci revient à vérifier
que l’intégrale I =

∫ 1
0 (t − F −1

Y (t))2fX(t)dt =
∫ 1

0 (t − F −1
Y (t))2dt converge absolument, c’est-à-dire

converge car l’intégrande est positive. Posons alors t = FY (y). D’après la question (3)(a) de la
partie I, la fonction FY est de classe C1 et bijective de R sur ]0, 1[, et de plus on a dt = φ(y)dy,
y tend vers −∞ quand t tend vers 0 et y tend vers +∞ quand t tend vers 1. Par changement de
variable, l’intégrale I est de de même nature que l’intégrale :

J =
∫ +∞

−∞
(FY (y) − F −1

Y ◦ FY (y))2φ(y)dy =
∫ +∞

−∞
(y − FY (y))2φ(y)dy,

et de plus, elles sont égales en cas de convergence. Comme l’intégrale J converge et vaut 4
3 − 1√

π

d’après la question précédente, il s’ensuit que l’intégrale I converge et vaut aussi 4
3 − 1√

π
. Par

conséquent, on en déduit que :

le coût de transport C(F −1
Y ) est égal à 4

3 − 1√
π

.

Partie II. Transport optimal dans une situation déterministe.
Dans toute cette partie, N désigne un entier supérieur ou égal à 2. On considère N réels d1, d2, . . . , dN

(appelés points de départ) et N réels a1, a2, . . . , aN (appelés points d’arrivée) vérifiant d1 < d2 < · · · < dN et
a1 < a2 < · · · < aN . On pose D = {d1, d2, . . . , dN } et A = {a1, a2, . . . , aN }.

(1) (a) Montrons que pour tout couple (k, l) ∈ J1, NK2, on a : dkak ≥ dkal +dlak −dlal. Pour ce faire, fixons
un couple (k, l) ∈ J1, NK2. Si k ≤ l, alors on voit que dk ≤ dl et ak ≤ al car les suites finies (ai) et
(di) sont croissantes, ce qui entraine que dk − dl ≤ 0 et ak − al ≤ 0, et donc (dk − dl)(ak − al) ≥ 0.
Si maintenant k ≥ l, alors on voit que dk ≥ dl et ak ≥ al car les suites finies (ai) et (di) sont
croissantes, ce qui entraine que dk − dl ≥ 0 et ak − al ≥ 0, et donc (dk − dl)(ak − al) ≥ 0. Dans tous
les cas, on constate que, pour tout (k, l) ∈ J1, NK2 :

(dk − dl)(ak − al) ≥ 0.

et donc dkak − dkal − dlak + dlal ≥ 0. Par conséquent, on en déduit que, pour tout (k, l) ∈ J1, NK2 :

dkak ≥ dkal + dlak − dlal.
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(b) Montrons que, pour tout N -uplet (p1, p2, . . . , pN ) ∈ RN
+ tel que

∑N
k=1 pk = 1, on a :

N∑
k=1

pkdkak ≥

(
N∑

k=1
pkdk

)
×

(
N∑

k=1
pkak

)
(1)

Soit (p1, p2, ..., pN ) ∈ (R+)N tel que
∑N

k=1 pk = 1. Comme dkak ≥ dkal + dlak − dlal pour tout
(k, l) ∈ J1, NK2 d’après la question précédente et que tous les pi sont positifs par hypothèse, on
obtient par produit que, pour tout (k, l) ∈ J1, NK2 :

pkpldkak ≥ pkpldkal + pkpldlak − pkpldlal.

Par double sommation sur les entiers k et l, on trouve que :

N∑
k=1

N∑
l=1

pkpldkak ≥
N∑

k=1

N∑
l=1

(pkpldkal + pkpldlak − pkpldlal) ,

ce que l’on peut réécrire sous la forme suivante (et ce par linéarité de la somme) :(
N∑

l=1
pl

)(
N∑

k=1
pkdkak

)
≥

(
N∑

k=1
pkdk

)(
N∑

l=1
plal

)
+
(

N∑
l=1

pldl

)(
N∑

k=1
pkak

)
−

(
N∑

k=1
pk

)(
N∑

l=1
pldlal

)
.

Comme
∑N

k=1 pk =
∑N

l=1 pl = 1, ceci entraine que :

N∑
k=1

pkdkak ≥

(
N∑

k=1
pkdk

)(
N∑

l=1
plal

)
+
(

N∑
l=1

pldl

)(
N∑

k=1
pkak

)
−

N∑
l=1

pldlal.

En d’autres termes, on vient de trouver que :

N∑
k=1

pkdkak ≥ 2
(

N∑
k=1

pkdk

)(
N∑

l=1
plal

)
−

N∑
l=1

pldlal.

En faisant passer la somme de droite ci-dessus de l’autre côté, il s’ensuit que :

2
N∑

k=1
pkdkak ≥ 2

(
N∑

k=1
pkdk

)(
N∑

l=1
plal

)
.

Par conséquent, on en déduit après division par 2 que :

N∑
k=1

pkdkak ≥

(
N∑

k=1
pkdk

)(
N∑

l=1
plal

)
.

(2) Soit t ∈ EN . On réordonne la liste
(
t(1), t(2), . . . , t(N)

)
selon les valeurs croissantes et on note alors(

t̂(1), t̂(2), . . . , t̂(N)
)

la liste ordonnée obtenue. On a donc t̂(1) ≤ t̂(2) ≤ · · · ≤ t̂(N).

(a) Justifions pour tout n ∈ J1, NK l’inégalité :
∑N

k=n at(k) ≤
∑N

k=n a
t̂(k). Pour ce faire, fixons un

entier n ∈ J1, NK. Comme la suite finie (ai) est croissante et que t̂(1) ≤ t̂(2) ≤ · · · ≤ t̂(N) par
construction, l’expression

∑N
k=n a

t̂(k) correspond à la somme des N − n + 1 plus grands éléments de
la suite

(
at(1), ..., at(N)

)
. En particulier, on voit que l’expression

∑N
k=n a

t̂(k) est supérieure ou égale
à la somme de N − n + 1 éléments quelconques de la liste

(
at(1), ..., at(N)

)
, et donc :

N∑
k=n

at(k) ≤
N∑

k=n

a
t̂(k).
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(b) On pose d0 = 0. Justifions l’égalité :
∑N

n=1 dnat(n) =
∑N

n=1
(
(dn − dn−1)

∑N
k=n at(k)

)
. Par interver-

sion des sommes, on trouve que :
N∑

n=1

(
(dn − dn−1)

N∑
k=n

at(k)

)
=

N∑
n=1

N∑
k=n

(
(dn − dn−1) at(k)

)

=
N∑

k=1

k∑
n=1

(
(dn − dn−1) at(k)

)

=
N∑

k=1

(
at(k)

k∑
n=1

(dn − dn−1)
)

.

Par télescopage, on obtient que :
N∑

n=1

(
(dn − dn−1)

N∑
k=n

at(k)

)
=

N∑
k=1

(
at(k)

k∑
n=1

(dn − dn−1)
)

=
N∑

k=1
at(k)(dk − d0).

Mais comme d0 = 0 par convention, on en déduit que :
N∑

n=1

(
(dn − dn−1)

N∑
k=n

at(k)

)
=

N∑
k=1

at(k)dk.

(c) Etablissons l’inégalité :
∑N

n=1 dnat(n) ≤
∑N

n=1 dna
t̂(n) (2). Pour ce faire, on pose d0 = d1 et ck =

dk − d0 pour tout k ∈ J0, NK. Par construction, la suite finie (ck)0≤k≤N est croissante, et donc on a
cn − cn−1 ≥ 0 pour tout n ∈ J1, NK. Comme

∑N
k=n at(k) ≤

∑N
k=n a

t̂(k) pour tout n ∈ J1, NK d’après
la question (2)(a) de la partie II, on trouve par produit que, pour tout n ∈ J1, NK :

(cn − cn−1)
N∑

k=n

at(k) ≤ (cn − cn−1)
N∑

k=n

a
t̂(k).

Par sommation sur l’entier n, ceci nous donne avec la question précédente que :
N∑

n=1
cnat(n) =

N∑
n=1

(
(cn − cn−1)

N∑
k=n

at(k)

)

≤
N∑

n=1

(
(cn − cn−1)

N∑
k=n

a
t̂(k)

)

≤
N∑

n=1
cna

t̂(n).

En revenant à la définition des ci, ceci entraine que :
N∑

n=1
(dn − d1)at(n) ≤

N∑
n=1

(dn − d1)a
t̂(n).

Par linéarité de la somme, on obtient que :
N∑

n=1
dnat(n) − d1

N∑
n=1

at(n) ≤
N∑

n=1
dna

t̂(n) − d1

N∑
n=1

a
t̂(n). (∗)

Comme
(
t̂(1), t̂(2), . . . , t̂(N)

)
est la liste ordonnée selon les valeurs croissantes et obtenue à partir de

la liste
(
t(1), t(2), . . . , t(N)

)
, ces deux listes comptabilisent les mêmes éléments de J1, NK le même

nombre de fois, et donc :
N∑

n=1
at(n) =

N∑
n=1

a
t̂(n).

Par différence dans l’inégalité (∗), on en déduit que :
N∑

n=1
dnat(n) ≤

N∑
n=1

dna
t̂(n).
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On appelle programme de transport toute bijection T de D sur A et coût d’un programme de transport
T la somme c(T ) définie par c(T ) =

∑N
k=1

(
dk − T (dk)

)2.

(3) Soit T̂ le programme de transport défini pour tout k ∈ J1, NK par T̂ (dk) = ak. Montrons que le
programme T̂ est optimal, c’est-à-dire que, pour tout programme de transport T , on a : c(T ) ≥ c(T̂ ).
Pour ce faire, fixons une bijection T de D sur A. Pour tout k ∈ J1, NK, on désigne par t(k) l’unique
indice de J1, NK tel que T (dk) = at(k). Ce faisant, on définit bien une application t de J1, NK dans
J1, NK, qui est de plus bijective car T l’est. En particulier, on a :(

t̂ (1) , t̂ (2) , ..., t̂ (N)
)

= (1, 2, ..., N) .

Par des calculs simples, on trouve que :

c (T ) =
N∑

k=1
(dk − T (dk))2 =

N∑
k=1

d2
k − 2

N∑
k=1

dkT (dk) +
N∑

k=1
(T (dk))2

. (∗)

Or on voit d’après la question précédente que :
N∑

k=1
dkT (dk) =

N∑
k=1

dkat(k) ≤
N∑

k=1
dka

t̂(k) =
N∑

k=1
dkak =

N∑
k=1

dkT̂ (dk) ,

ce qui entraine que −2
∑N

k=1 dkT (dk) ≥ −2
∑N

k=1 dkT̂ (dk). En reportant cette inégalité dans (∗), ceci
nous donne que :

c (T ) ≥
N∑

k=1
d2

k − 2
N∑

k=1
dkT̂ (dk) +

N∑
k=1

(T (dk))2
. (∗∗)

Par ailleurs, on voit par construction que :
N∑

k=1
(T (dk))2 =

N∑
k=1

(
at(k)

)2
.

En particulier, comme l’application t est une bijection de J1, NK, la somme des carrés des at(k) est égale
à celle des carrés des ak (vu que les listes (at(1), ..., at(N)) et (a1, ..., aN ) sont formées des mêmes réels
comptés le même nombre de fois mais dans des ordres éventuellement différents). En d’autres termes,
on a par définition de T̂ :

N∑
k=1

(T (dk))2 =
N∑

k=1

(
at(k)

)2 =
N∑

k=1
a2

k =
N∑

k=1

(
T̂ (dk)

)2
.

En reportant cette égalité dans (∗∗), il s’ensuit que :

c (T ) ≥
N∑

k=1
d2

k − 2
N∑

k=1
dkT̂ (dk) +

N∑
k=1

(
T̂ (dk)

)2
=

N∑
k=1

(
dk − T̂ (dk)

)2
= c

(
T̂
)

.

Par conséquent, on en déduit que, pour tout programme de transport T :

c (T ) ≥ c
(

T̂
)

.

(4) Interprétation probabiliste des inégalités (1) et (2). Soit h une application croissante de R dans R.
(a) Etablissons pour toute variable aléatoire discrète X ne prenant qu’un nombre fini de valeurs, l’in-

égalité : E(Xh(X)) ≥ E(X)E(h(X)). Pour ce faire, considérons une variable aléatoire discrète X
telle que X(Ω) = {d1, d2, ..., dN }, où les di ont été rangés en ordre strictement croissant. Avec les
notations de la question précédente, on voit que X (Ω) = D. Par la suite, on pose pk = P ([X = dk])
et h(dk) = ak pour tout k ∈ J1, NK. Comme la fonction h est croissante et que les di sont rangés en
ordre croissant, on voit que a1 ≤ ... ≤ aN . De plus, on trouve d’après le théorème de transfert que :

E(Xh(X)) =
N∑

k=1
dkh(dk)P ([X = dk]) =

N∑
k=1

dkh(dk)pk =
N∑

k=1
dkakpk.

Comme la famille ([X = dk])1≤k≤N est un système complet d’événements, on a
∑N

k=1 pk = 1. Comme
de plus tous les pk sont ≥ 0 (vu que ce sont des probabilités), on obtient d’après la question (1)(b)
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de la partie II que :

E(Xh(X)) =
N∑

k=1
dkakpk ≥

(
N∑

k=1
pkdk

)(
N∑

k=1
pkak

)
. (∗)

A noter que, dans la démonstration de la question (1)(b) de la partie II, on s’est juste servi de
la croissance de la suite finie (ak)1≤k≤N et non de la stricte croissance de cette suite pour établir
la relation (1). En d’autres termes, l’inégalité (1) reste valable si l’on suppose seulement la suite
(ak)1≤k≤N croissante. Par ailleurs, on a par définition de l’espérance que :

E(X) =
N∑

k=1
dkP ([X = dk]) =

N∑
k=1

pkdk. (∗∗)

D’après le théorème de transfert, on voit aussi que :

E(h(X)) =
N∑

k=1
h(dk)P ([X = dk]) =

N∑
k=1

pkak. (∗ ∗ ∗)

En reportant les égalités (∗∗) et (∗ ∗ ∗) dans l’inégalité (∗), on en déduit que :

E(Xh(X)) ≥ E(X)E(h(X)).

(b) Montrons que le coefficient de corrélation linéaire de X et h(X) est ≥ 0 lorsque les variances de X
et h(X) sont > 0. D’après la formule de Koenig-Huygens et la question précédente, on trouve que :

cov(X, h(X)) = E(Xh(X)) − E(X)E(h(X)) ≥ 0.

Comme les écart-types de X et h(X) sont > 0 par hypothèse, on en déduit que :

ρ(X, h(X)) = cov(X, h(X))
σXσh(X)

≥ 0.

(c) Montrons que, si X est une variable aléatoire discrète suivant la loi uniforme sur J1, NK et si t est
un élément de EN , alors on a : E(h(X)t(X)) ≤ E(h(X)t̂(X)). Comme X suit la loi uniforme sur
J1, NK, on voit que X(Ω) = J1, NK et P ([X = k]) = 1

N pour tout k ∈ J1, NK. D’après le théorème
de transfert, on trouve que :

E(h(X)t(X)) =
N∑

k=1
h(k)t(k)P ([X = k]) =

N∑
k=1

h(k)t(k) 1
N

= 1
N

N∑
k=1

h(k)t(k).

De la même façon, on obtient que E(h(X)t̂(X)) = 1
N

∑N
k=1 h(k)t̂(k). Posons alors dk = h(k) et

ak = k pour tout k ∈ J1, NK. Comme la fonction h est croissante, on voit que la suite finie (dk)1≤k≤N

est croissante. Comme la suite (ak)1≤k≤N est strictement croissante par construction, on obtient
avec l’inégalité (2) que :

1
N

N∑
k=1

h(k)t(k) = 1
N

N∑
k=1

h(k)at(k) ≤ 1
N

N∑
k=1

h(k)a
t̂(k) = 1

N

N∑
k=1

h(k)t̂(k). (∗)

A noter que, dans la démonstration de l’inégalité (2), on s’est juste servi de la croissance de la suite
finie (dk)1≤k≤N et non de la stricte croissance de cette suite. En d’autres termes, l’inégalité (2) reste
valable si l’on suppose seulement la suite (dk)1≤k≤N croissante. En retraduisant l’inégalité (∗) en
termes d’espérances, il s’ensuit que :

E(h(X)t(X)) = 1
N

N∑
k=1

h(k)t(k) ≤ 1
N

N∑
k=1

h(k)t̂(k) = E(h(X)t̂(X)).

Par conséquent, on en déduit que :

E(h(X)t(X)) ≤ E(h(X)t̂(X)).

Partie III. Transport optimal dans une situation aléatoire
Les définitions de fonction de transport et de coût de transport sont identiques à celles données dans le
préambule de la partie I. Dans toute cette partie, U désigne une variable aléatoire vérifiant U(Ω) = [0, 1] et
suivant la loi uniforme sur le segment [0, 1]. Soit Y une variable aléatoire admettant une densité fY nulle hors
d’un segment [α, β] (α < β) et dont la restriction à ce segment est continue et strictement positive. On note
FY la fonction de répartition de Y . On suppose l’existence d’une fonction g de classe C1 sur [0, 1], à valeurs
dans [α, β], telle que la variable aléatoire Z = g(U) suit la même loi que Y .
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(1) Pour tout entier N ≥ 1, on pose pour tout ω ∈ Ω :

XN (ω) =
{

⌊1 + NU(ω)⌋ si 0 ≤ U(ω) < 1
N si U(ω) = 1 et YN (ω) = g

(
XN (ω)

N

)
.

(a) Trouvons la loi de la variable aléatoire XN . Comme U suit la loi uniforme sur [0, 1], on voit que, pour
tout ω ∈ Ω, on a soit 0 ≤ U(ω) < 1, soit U(ω) = 1. Si 0 ≤ U(ω) < 1, alors on a 0 ≤ NU(ω) < N ,
ce qui entraine que 1 ≤ 1 + NU(ω) < N + 1, et donc XN (ω) = ⌊1 + NU(ω)⌋ appartient à J1, NK.
Si maintenant U(ω) = 1, alors XN (ω) = N par construction. Dans tous les cas, on constate que
XN (ω) appartient à J1, NK pour tout ω ∈ Ω, et donc :

XN (Ω) ⊂ J1, NK.

De plus, pour tout k ∈ J1, N − 1K, on trouve par des calculs simples que :

P ([XN = k]) = P ([⌊1 + NU⌋ = k]) = P ([k ≤ 1 + NU < k + 1]) = P

([
k − 1

N
≤ U <

k

N

])
.

Comme U est une variable à densité, ceci nous donne que, pour tout k ∈ J1, N − 1K :

P ([XN = k]) = P

([
k − 1

N
≤ U <

k

N

])
= FU

(
k

N

)
− FU

(
k − 1

N

)
.

Comme U suit la loi uniforme sur [0, 1] et que k
N , k−1

N appartiennent à [0, 1] pour tout k ∈ J1, N −1K,
il s’ensuit que, pour tout k ∈ J1, N − 1K :

P ([XN = k]) = FU

(
k

N

)
− FU

(
k − 1

N

)
= k

N
− k − 1

N
= 1

N
.

Par ailleurs, comme XN (Ω) ⊂ J1, NK d’après ce qui précède, la famille ([XN = k])1≤k≤N est un
système complet d’événements, et donc :

P ([XN = N ]) = 1 −
n−1∑
k=1

P ([XN = k]) = 1 −
n−1∑
k=1

1
N

= 1 − N − 1
N

= 1
N

.

Comme XN (Ω) ⊂ J1, NK et que P ([XN = k]) = 1
N pour tout k ∈ J1, NK, on en déduit que :

XN ↪→ U (J1, NK) .

(b) Etablissons l’existence d’un réel λ > 0 indépendant de N tel que : ∀ω ∈ Ω, |Z(ω) − YN (ω)| ≤ λ
N .

Comme la fonction g est de classe C1 sur [0, 1], sa dérivée g′ est continue sur le segment [0, 1], et
donc elle est bornée et atteint ses bornes sur [0, 1]. Posons alors λ = maxx∈[0,1] |g′(x)| + 1. Par
construction, on voit que λ > 0 et de plus, on a |g′(x)| ≤ λ pour tout x ∈ [0, 1]. D’après l’inégalité
des accroissements finis, on obtient que, pour tous x, y ∈ [0, 1] :

|g(x) − g(y)| ≤ λ|x − y|.

Comme U(ω) et XN (ω)
N appartiennent à [0, 1] pour tout ω ∈ Ω d’après la question précédente, ceci

entraine que, pour tout ω ∈ Ω :∣∣∣∣g(U(ω)) − g

(
XN (ω)

N

)∣∣∣∣ ≤ λ

∣∣∣∣U(ω) − XN (ω)
N

∣∣∣∣ ,
ce qui, par définition de Z et YN , se réécrit sous la forme suivante pour tout ω ∈ Ω :

|Z(ω) − YN (ω)| ≤ λ

∣∣∣∣U(ω) − XN (ω)
N

∣∣∣∣ . (∗)

Pour tout ω ∈ Ω, on distingue deux cas. Si 0 ≤ U(ω) < 1, alors on sait que XN (ω) = ⌊1 + NU(ω)⌋.
Comme x − 1 < ⌊x⌋ ≤ x pour tout x ∈ R, on obtient que NU(ω) < XN (ω) ≤ 1 + NU(ω), ce qui
entraine que U(ω) < XN (ω)

N ≤ 1
N + U(ω), et donc :∣∣∣∣U(ω) − XN (ω)

N

∣∣∣∣ ≤ 1
N

.

Par application de l’inégalité (∗), il s’ensuit que :

|Z(ω) − YN (ω)| ≤ λ

∣∣∣∣U(ω) − XN (ω)
N

∣∣∣∣ ≤ λ

N
.

Si maintenant U(ω) = 1, alors on voit que :∣∣∣∣U(ω) − XN (ω)
N

∣∣∣∣ =
∣∣∣∣1 − N

N

∣∣∣∣ = 0 ≤ 1
N

.
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Toujours par application de l’inégalité (∗), il s’ensuit que :

|Z(ω) − YN (ω)| ≤ λ

∣∣∣∣U(ω) − XN (ω)
N

∣∣∣∣ ≤ λ

N
.

Dans tous les cas, on vient de montrer que |U(ω) − YN (ω)| ≤ λ
N pour tout ω ∈ Ω, et donc :

∃λ > 0, ∀ω ∈ Ω, |Z(ω) − YN (ω)| ≤ λ

N
.

(c) Montrons que pour tout réel y, on a : FY

(
y − λ

N

)
≤ P ([YN < y]). D’après la question précédente,

on sait que |Z(ω) − YN (ω)| ≤ λ
N pour tout ω ∈ Ω, et donc :

− λ

N
≤ Z(ω) − YN (ω) ≤ λ

N
.

En particulier, on a YN (ω) ≤ Z(ω) + λ
N pour tout ω ∈ Ω. Dès lors, pour tout y ∈ R, on obtient

que, si l’événement [Z + λ
N < y] est réalisé, l’événement [YN < y] l’est aussi, et donc on a l’inclusion[

Z + λ
N < y

]
⊂ [YN < y]. Par croissances des probabilités, on trouve que, pour tout y ∈ R :

P

([
Z + λ

N
< y

])
≤ P ([YN < y]).

De plus, comme Y et Z suivent la même loi et que Y est à densité, la variable aléatoire Z est aussi
à densité, et donc on a pour tout y ∈ R :

FZ

(
y − λ

N

)
= P

([
Z ≤ y − λ

N

])
= P

([
Z + λ

N
≤ y

])
= P

([
Z + λ

N
< y

])
≤ P ([YN < y]).

Comme Y et Z suivent la même loi, il s’ensuit que, pour tout y ∈ R :

FY

(
y − λ

N

)
= FZ

(
y − λ

N

)
≤ P ([YN < y]).

Par conséquent, on en déduit que, pour tout y ∈ R :

FY

(
y − λ

N

)
≤ P ([YN < y]).

(2) Pour tout k ∈ J1, NK, on pose tN (k) = g
(

k
N

)
. On définit alors t̂N à partir de tN , comme t̂ à partir de t

dans la question (2) de la partie II.
(a) Etablissons pour tout k ∈ J1, NK les inégalités : FY

(
t̂N (k) − λ

N

)
≤ P ([YN < t̂N (k)]) < k

N . D’après
la question précédente, on sait que, pour tout y ∈ R :

FY

(
y − λ

N

)
≤ P ([YN < y]).

En particulier, on obtient en remplaçant y par t̂N (k) que, pour tout k ∈ J1, NK :

FY

(
t̂N (k) − λ

N

)
≤ P

([
YN < t̂N (k)

])
.

ce qui nous donne la première inégalité à démontrer. Pour la deuxième, on commence par remarquer
que, pour k = 1 :

P
([

YN < t̂N (1)
])

= P

([
g

(
XN

N

)
< t̂N (1)

])
.

Comme XN suit la loi uniforme sur J1, NK d’après la question (1)(a) de la partie III, XN (ω)
N est

toujours de la forme i
N avec i ∈ J1, NK pour tout ω ∈ Ω, et donc g

(
XN

N

)
est à valeurs dans

l’ensemble {g( 1
N ), ..., g( N

N )} = {tN (1), ..., tN (N)}. Comme les t̂N (i) sont obtenus à partir des tN (i)
en les rangeant en ordre croissant, on voit que {tN (1), ..., tN (N)} = {t̂N (1), ..., t̂N (N)}, et donc
g
(

XN

N

)
est à valeurs dans l’ensemble {t̂N (1), ..., t̂N (N)}. Comme les t̂N (i) sont rangés en ordre

croissant, on constate que t̂N (1) est le plus petit élément de {t̂N (1), ..., t̂N (N)}. En particulier, il
s’ensuit que g

(
XN

N

)
≥ t̂N (1), et donc :

P
([

YN < t̂N (1)
])

= P

([
g

(
XN

N

)
< t̂N (1)

])
= 0 <

1
N

.
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Dès lors, l’inégalité de droite à démontrer est vraie pour k = 1. A présent, fixons un entier k ∈ J2, NK.
Comme précédemment, on trouve que :

P
([

YN < t̂N (k)
])

= P

([
g

(
XN

N

)
< t̂N (k)

])
. (∗)

Comme {tN (1), ..., tN (N)} = {t̂N (1), ..., t̂N (N)}, il existe pour tout r ∈ J1, NK un indice ir ∈ J1, NK
tel que t̂N (r) = tN (ir) = g

(
ir

N

)
. Comme tN (i) = g

(
i

N

)
pour tout i ∈ J1, NK par construction, il

existe donc des indices i1, i2,..., iN tels que t̂N (r) = tN (ir) = g
(

ir

N

)
pour tout r ∈ J1, NK. A noter

que, comme les t̂N (i) sont obtenus à partir des tN (i) en les rangeant en ordre croissant, les listes
tN (1), ..., tN (N) et t̂N (1), ..., t̂N (N) comptabilisent les mêmes réels comptés le même nombre de fois.
En particulier, on peut supposer que les indices i1, ..., iN sont deux à deux distincts, ce que l’on fera
désormais. Par construction, on voit que :

g

(
XN

N

)
(Ω) = {tN (1), ..., tN (N)} = {t̂N (1), ..., t̂N (N)} =

{
g

(
i1

N

)
, ..., g

(
iN

N

)}
.

Fixons alors un élément ω ∈ Ω tel que g
(

XN (ω)
N

)
< t̂N (k), et montrons que XN (ω) appartient à

{i1, i2, ..., ik−1}. Pour ce faire, on raisonne par l’absurde et on suppose que XN (ω) /∈ {i1, i2, ..., ik−1}.
Alors il existe un indice r ∈ Jk, NK tel que g

(
XN (ω)

N

)
= g

(
ir

N

)
= tN (ir) = t̂N (r). Comme les

t̂N (i) sont rangés en ordre croissant, il s’ensuit que g
(

XN (ω)
N

)
≥ t̂N (k), ce qui est impossible car

g
(

XN (ω)
N

)
< t̂N (k) par hypothèse, et donc on a bien XN (ω) ∈ {i1, i2, ..., ik−1}. Partant de là, on a

obtenu l’inclusion suivante :[
g

(
XN

N

)
< t̂N (k)

]
⊂

k−1⋃
r=1

[XN = ir] .

Par croissance des probabilités, ceci nous donne avec la relation (∗) que :

P
([

YN < t̂N (k)
])

= P

([
g

(
XN

N

)
< t̂N (k)

])
≤ P

(
k−1⋃
r=1

[XN = ir]
)

.

Par incompatibilité, ceci entraine que :

P
([

YN < t̂N (k)
])

≤
k−1∑
r=1

P ([XN = ir]) .

Comme XN suit la loi uniforme sur J1, NK d’après la question (1)(a) de la partie III, il vient :

P
([

YN < t̂N (k)
])

≤
k−1∑
r=1

P ([XN = ir]) = k − 1
N

,

et donc P
([

YN < t̂N (k)
])

< k
N pour tout k ∈ J2, NK, ce qui conclut la démonstration de l’inégalité

de droite. Par conséquent, on en déduit que, pour tout k ∈ J1, NK :

FY

(
t̂N (k) − λ

N

)
≤ P

([
YN < t̂N (k)

])
<

k

N
.

(b) On note F −1
Y la fonction réciproque de la restriction à [α, β] de la fonction FY . Montrons que, pour

tout entier N ≥ 1, on a :

1
N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N

(
F −1

Y

(
k

N

)
+ λ

N

)
.

Montrons tout d’abord que F −1
Y est une bijection de [0, 1] sur [α, β]. Pour ce faire, on désigne par G

la restriction de FY à [α, β]. Comme fY est continue et strictement positive sur [α, β] par hypothèse,
la fonction G est de classe C1 sur [α, β] et de plus, on a G′(x) = fY (x) > 0 pour tout x ∈ [α, β].
En particulier, la fonction G est continue et strictement croissante sur [α, β], et donc G réalise
une bijection de [α, β] sur G([α, β]) d’après le théorème de la bijection. Comme G est continue,
l’ensemble G([α, β]) est un intervalle d’après le théorème des valeurs intermédiaires. Comme fY est
nulle en dehors de [α, β], la fonction FY est constante sur les intervalles ]−∞, α] et [β, +∞[. Comme
FY tend vers 0 en −∞ et vers 1 en +∞ en tant que fonction de répartition, on obtient que FY est
égale à 0 sur ] − ∞, α] et égale à 1 sur [β, +∞[. En particulier, on voit que G(α) = FY (α) = 0 et
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G(β) = FY (β) = 1. Comme G est croissante sur [α, β] et que G([α, β]) est un intervalle, il s’ensuit
que G([α, β]) = [0, 1]. En particulier, la fonction G réalise une bijection de [α, β] dans [0, 1], et donc
F −1

Y est bien une bijection de [0, 1] sur [α, β].
Passons maintenant à l’inégalité à démontrer. D’après la question (2)(b) de la partie II, on obtient

en prenant D = A = {1, 2, ..., N} (et donc dk = ak = k pour tout k ∈ J1, NK) que :
N∑

k=1
ktN (k) =

N∑
k=1

dkatN (k) ≤
N∑

k=1
dka

t̂N (k) =
N∑

k=1
kt̂N (k).

Comme tN (k) = g
(

k
N

)
pour tout k ∈ J1, NK par hypothèse, ceci nous donne que :

N∑
k=1

kg

(
k

N

)
≤

N∑
k=1

kt̂N (k) .

En divisant le tout par N2, ceci entraine par linéarité de la somme que :

1
N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N
t̂N (k). (∗)

Pour tout k ∈ J1, NK, on sait d’après la question précédente que 0 ≤ FY (t̂N (k) − λ
N ) < k

N ≤ 1.
Comme g est à valeurs dans [α, β] par hypothèse, on voit que tN (k) = g( k

N ) appartient à [α, β]
pour tout k ∈ J1, NK. Comme les t̂N (k) correspondent aux tN (k) rangés en ordre croissant, on
obtient que t̂N (k) appartient aussi à [α, β] pour tout k ∈ J1, NK. Comme λ > 0, ceci entraine que
t̂N (k) − λ

N ≤ β pour tout k ∈ J1, NK. On distingue deux cas.
Supposons tout d’abord que t̂N (k) − λ

N appartient à [α, β]. Comme FY est strictement croissante
sur [α, β], la fonction F −1

Y est strictement croissante sur [0, 1] d’après le théorème de la bijection.
Mais comme FY (t̂N (k) − λ

N ) < k
N d’après la question précédente, il s’ensuit que :

t̂N (k) − λ

N
< F −1

Y

(
k

N

)
.

Supposons maintenant que t̂N (k) − λ
N < α. Comme F −1

Y est à valeurs dans [α, β], on voit que :

t̂N (k) − λ

N
< α ≤ F −1

Y

(
k

N

)
.

Dans tous les cas, on vient de montrer que, pour tout k ∈ J1, NK :

t̂N (k) < F −1
Y

(
k

N

)
+ λ

N
.

Comme k
N ≥ 0 pour tout k ∈ J1, NK, il s’ensuit par sommation que :

1
N

N∑
k=1

k

N
t̂N (k) ≤ 1

N

N∑
k=1

k

N

(
F −1

Y

(
k

N

)
+ λ

N

)
. (∗∗)

Dès lors, on obtient en associant les inégalités (∗) et (∗∗) que :

1
N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N
t̂N (k) ≤ 1

N

N∑
k=1

k

N

(
F −1

Y

(
k

N

)
+ λ

N

)
.

Par conséquent, on en déduit que :

1
N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N

(
F −1

Y

(
k

N

)
+ λ

N

)
.

(c) Montrons l’inégalité E(Ug(U)) ≤ E(UF −1
Y (U)). D’après la question précédente, on sait que :

1
N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N

(
F −1

Y

(
k

N

)
+ λ

N

)
.

Par linéarité de la somme, ceci nous donne que :

1
N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N
F −1

Y

(
k

N

)
+ λ

N3

N∑
k=1

k,
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ce que l’on peut réécrire sous la forme :

1
N

N∑
k=1

k

N
g

(
k

N

)
≤ 1

N

N∑
k=1

k

N
F −1

Y

(
k

N

)
+ λ

N3
N(N + 1)

2 . (∗)

Comme les fonctions x 7−→ xg(x) et x 7−→ xF −1
Y (x) sont continues sur [0, 1], le théorème sur les

sommes de Riemann entraine que :

lim
N→+∞

1
N

N∑
k=1

k

N
g

(
k

N

)
=
∫ 1

0
xg(x)dx et lim

N→+∞

1
N

N∑
k=1

k

N
F −1

Y

(
k

N

)
=
∫ 1

0
xF −1

Y (x)dx.

Comme λ
N3

N(N+1)
2 tend vers 0 quand N tend vers +∞, il s’ensuit par passage à la limite quand N

tend vers +∞ dans l’inégalité (∗) que :∫ 1

0
xg(x)dx ≤

∫ 1

0
xF −1

Y (x)dx. (∗∗)

Comme U suit la loi uniforme sur [0, 1], on obtient avec le théorème de transfert que :

E(Ug(U)) =
∫ +∞

−∞
xg(x)fU (x)dx =

∫ 1

0
xg(x)fU (x)dx =

∫ 1

0
xg(x)dx.

De la même façon, on voit par transfert que E
(
UF −1

Y (U)
)

=
∫ 1

0 xF −1
Y (x)dx. Par conséquent, on en

déduit en retraduisant l’inégalité (∗∗) en termes d’espérances que :

E(Ug(U)) ≤ E(UF −1
Y (U)).

(3) (a) Parmi les fonctions de transport de classe C1 de U vers la loi de Y , trouvons une fonction de
transport T ∗ de coût minimal. Pour cela, on conserve les notations de la question (2)(b) de la partie
III, et on désigne par G la restriction de FY à l’intervalle [α, β]. D’après la question (2)(b) de la
partie III, on sait que G est une bijection de [α, β] sur [0, 1]. Comme G est de classe C1 sur [α, β] et
que G′(x) = fY (x) > 0 pour tout x ∈ [α, β], sa bijection réciproque G−1 est de classe C1 sur [0, 1].
On pose alors :

V = G−1(U).

Comme G est une bijection de [α, β] sur [0, 1], la fonction G−1 est une bijection de [0, 1] sur [α, β].
En particulier, elle est à valeurs dans [α, β], ce qui entraine que V (Ω) = G−1(U)(Ω) ⊂ [α, β], et donc
FV (x) = 0 si x < α et FV (x) = 1 si x > β. Comme FY est nulle sur ]−∞, α] et égale à 1 sur [β, +∞[
d’après les arguments de la question (2)(b) de la partie III, on obtient que FV (x) = 0 = FY (x) si
x < α et FV (x) = 1 = FY (x) si x > β (∗). De plus, comme G est strictement croissante sur [α, β],
on a pour tout x ∈ [α, β] :

FV (x) = P
(
[G−1(U) ≤ x]

)
= P ([U ≤ G(x)]) .

Comme G est est une bijection de [α, β] sur [0, 1], on voit que G(x) appartient à [0, 1] pour tout
x ∈ [α, β]. Mais comme U suit la loi uniforme sur [0, 1], il s’ensuit que, pour tout x ∈ [α, β] :

FV (x) = P ([U ≤ G(x)]) = FU (G(x)) = G(x) = FY (x). (∗∗)
D’après les égalités (∗) et (∗∗), il s’ensuit que FV (x) = FY (x) pour tout x ∈ R, et donc V = G−1(U)
suit la même loi que Y . Par conséquent, on en déduit que :

G−1 est une fonction de transport de classe C1 de U vers la loi de Y.

Reste à montrer que G−1 est une fonction de transport de coût minimal. Par définition du coût de
transport et par linéarité de l’espérance, on voit que :

C
(
G−1) = E

((
U − G−1(U)

)2
)

= E
(
U2)− 2E

(
UG−1(U)

)
+ E

((
G−1(U)

)2
)

.

Comme G−1(U) et Y suivent la même loi d’après ce qui précède, leurs moments d’ordre 2 sont
égaux, ce qui entraine que :

C
(
G−1) = E

(
U2)− 2E

(
UG−1(U)

)
+ E

(
Y 2) .

Considérons une fonction de transport g de classe C1 de la variable aléatoire U vers la loi de Y .
Comme g(U) et Y suivent la même loi par définition d’une fonction de transport, on trouve comme
précédemment que :

C (g) = E
(
U2)− 2E (Ug (U)) + E

(
Y 2) .
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Par différence, il s’ensuit que :
C (g) − C

(
G−1) = 2

[
E
(
UG−1(U)

)
− E (Ug(U))

]
.

Comme E
(
UG−1(U)

)
= E(UF −1

Y (U)) ≥ E (Ug(U)) d’après la question (2)(c) de la partie III, ceci
entraine que C (g) − C

(
G−1) ≥ 0, et donc C (g) ⩾ C

(
G−1). Par conséquent, on en déduit que :

G−1 est une fonction de transport de coût minimal parmi les fonctions de transport
de classe C1 de U vers la loi de Y.

(b) On suppose que Y = |4U −2|. Déterminons T ∗ et C(T ∗). Pour ce faire, on commence par déterminer
la fonction de répartition FY . Comme U suit la loi uniforme sur [0, 1], on voit que 0 ≤ U ≤ 1, ce
qui entraine que −2 ≤ 4U − 2 ≤ 2, et donc 0 ≤ Y = |4U − 2| ≤ 2. En particulier, on a Y (Ω) ⊂ [0, 2],
et donc FY (x) = 0 si x < 0 et FY (x) = 1 si x > 2. De plus, pour tout x ∈ [0, 2], on trouve par des
calculs simples que :

FY (x) = P ([|4U − 2| ≤ x]) = P ([−x ≤ 4U − 2 ≤ x]) = P

([
1
2 − x

4 ≤ U ≤ 1
2 + x

4

])
.

Comme x appartient à [0, 2], on voit que x
4 appartient à

[
0, 1

2
]
, et donc 1

2 + x
4 et 1

2 − x
4 appartiennent

à [0, 1]. Dès lors, comme U suit la loi uniforme sur [0, 1], il s’ensuit que, pour tout x ∈ [0, 2] :

FY (x) = FU

(
1
2 + x

4

)
− FU

(
1
2 − x

4

)
= 1

2 + x

4 −
(

1
2 − x

4

)
= x

2 .

Par conséquent, on en déduit que :

FY (x) =



0 si x < 0

x

2 si x ∈ [0, 2]

1 si x > 2

.

En particulier, on voit que Y est une variable à densité, de densité fY égale à 1
2 sur [0, 2] et nulle

partout ailleurs, et donc fY est continue et strictement positive sur [0, 2] et nulle en dehors de [0, 2].
De plus, avec les notations des questions précédentes, on a pour tout x ∈ [0, 2] :

G(x) = FY (x) = x

2 .

Dès lors, il s’ensuit que G−1(x) = 2x pour tout x ∈ [0, 1]. Par conséquent, on en déduit avec la
question précédente que, pour tout x ∈ [0, 1] :

T ∗(x) = G−1(x) = 2x.

Reste à calculer C(T ∗). D’après le résultat ci-dessus, on voit que T ∗(U) = 2U , et donc :

C (T ∗) = E
(

(U − T ∗ (U))2
)

= E
(

(U − 2U)2
)

= E
(
U2) .

Comme U suit la loi uniforme sur [0, 1], la formule de Koenig-Huygens nous donne que :

C (T ∗) = E(U2) = V (U) + E(U)2 = 1
12 + 1

4 = 1
3 .

Par conséquent, on en déduit que :

C(T ∗) = 1
3 .


