Chapitre 6 - Couples de Variables Aléatoires

1 Lois d'un couple

1.1 Loi conjointe

Définition: Loi conjointe

Pour tout couple de v.a.r. discrètes (X,Y), on appelle loi du couple (X,Y) ou loi conjointe la donnée :

- des supports $X(\Omega) = \{x_1, x_2, ...\}$ et $Y(\Omega) = \{y_1, y_2, ...\}$;
- des probabilités $p_{ij} = \mathbb{P}([X = x_i] \cap [Y = y_j])$ pour $(x_i, y_j) \in X(\Omega) \times Y(\Omega)$.

Exemple : loi conjointe pour un lancer de deux dés équilibrés indépendants.

Proposition

Pour toute loi conjointe, on a : $\forall i, j, \ p_{i,j} \ge 0$ et $\sum_{i,j} p_{i,j} = 1$. La réciproque est vraie : cela caractérise les lois conjointes.

Exemple : une urne contient 2 boules blanches et 2 boules noires. On tire 3 boules simultanément. Loi conjointe de (X,Y) où X est le nombre de boules blanches tirées et Y le nombre de boules noires?

1.2 Lois marginales

Définition : Lois marginales

Si (X,Y) est un couple de v.a.r.d., les lois de X et Y séparément sont appelées les lois marginales.

Proposition

On a :
$$\mathbb{P}(X = x_i) = \sum_{y_j \in Y(\Omega)} \mathbb{P}([X = x_i] \cap [Y = y_j]).$$

Exemple : déterminer la loi marginale de X dans l'exemple précédent.

1.3 Lois conditionnelles

Définition: Loi conditionnelle

Pour un événement $[X = x_i]$ fixé de probabilité non nulle, on appelle **loi conditionnelle de** Y **sachant** $[X = x_i]$ la loi donnée par :

$$\forall y_j \in Y(\Omega), \ \mathbb{P}(Y = y_j | X = x_i) = \mathbb{P}_{[X = x_i]}(Y = y_j).$$

Exemple: déterminer la loi conditionnelle de Y sachant X=2 dans l'exemple précédent.

Proposition

On a:
$$\forall y_j \in Y(\Omega), \ \mathbb{P}(Y = y_j) = \sum_{x_i \in X(\Omega)} \mathbb{P}(X = x_i) \mathbb{P}_{[X = x_i]}(Y = y_j).$$

1.4 Indépendance

Définition

On dit que deux v.a.r.d. X et Y sont indépendantes si :

$$\forall (x,y) \in X(\Omega) \times Y(\Omega), \ \mathbb{P}([X=x] \cap [Y=y]) = \mathbb{P}(X=x)\mathbb{P}(Y=y).$$

Exemple: exemple précédent pas indépendant!

Propriétés:

- ullet Tout événement concernant X est indépendant de tout événement concernant Y.
- Si f et g sont des fonctions définies sur $X(\Omega)$ et $Y(\Omega)$ alors f(X) et g(Y) sont indépendantes (lemme des coalitions).

Exemple: X^2 et Y+1 sont indépendantes.

Corollaire

Si X et Y sont indépendantes, alors $[X \leqslant x]$ et $[Y \leqslant y]$ le sont également. Donc :

$$\mathbb{P}([X\leqslant x]\cap [Y\leqslant y])=\mathbb{P}(X\leqslant x)\mathbb{P}(Y\leqslant y).$$

2 Fonctions d'un couple de v.a.r.d.

2.1 Généralités

Proposition

Soient (X,Y) un couple de v.a.r.d. Soit $g:X(\Omega)\times Y(\Omega)\to\mathbb{R}$. Alors Z=g(X,Y) définie par :

$$\forall \omega \in \Omega, \ Z(\omega) = g(X(\omega), Y(\omega))$$

est une varibale aléatoire réelle discrète.

Propriété : la loi de Z est donnée par :

$$\forall z \in Z(\Omega), \ \mathbb{P}(Z=z) = \sum_{\substack{(x,y) \in X(\Omega) \times Y(\Omega) \\ g(x,y) = z}} \mathbb{P}([X=x] \cap [Y=y]).$$

Théorème : Théorème de transfert

Avec les notations précédentes, sous réserve de convergence absolue, on a :

$$E(g(X,Y)) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} g(x,y) \mathbb{P}([X=x] \cap [Y=y]).$$

Cas particulier du produit :

- $E(XY) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy \mathbb{P}([X=x] \cap [Y=y]).$
- Si X et Y sont indépendantes : $E(XY) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy \mathbb{P}(X=x) \mathbb{P}(Y=y) = E(X)E(Y).$

Propriétés de l'espérance :

- Linéarité : si E(X) et E(Y) existent, alors E(aX + bY) = aE(X) + bE(Y) existe.
- Positivité : si E(X) existe et si $0 \le X$ presque sûrement alors $0 \le E(X)$.
- Croissance : si E(X) et E(Y) existent et si $X \leq Y$ presque sûrement alors $E(X) \leq E(Y)$.

2.2 Somme de deux variables aléatoires

Proposition

Soient X et Y deux v.a.r.d. X+Y est une variable aléatoire dont la loi est donnée par :

$$\forall s \in (X+Y)(\Omega), \ \mathbb{P}(X+Y=s) = \sum_{\substack{x \in X(\Omega) \\ s-x \in Y(\Omega)}} \mathbb{P}\left([X=x] \cap [Y=s-x]\right).$$

Remarque: à savoir démontrer!

Cas d'indépendance :

$$\mathbb{P}(X+Y=s) = \sum_{\substack{x \in X(\Omega) \\ s-x \in Y(\Omega)}} \mathbb{P}(X=x)\mathbb{P}(Y=s-x).$$

Proposition : Stabilité de la loi binomiale

Si $X \hookrightarrow \mathcal{B}(n_1, p)$ et $Y \hookrightarrow \mathcal{B}(n_2, p)$ sont indépendantes alors $X_1 + X_2 \hookrightarrow \mathcal{B}(n_1 + n_2, p)$.

Proposition : Stabilité de la loi de Poisson

Si $X \hookrightarrow \mathcal{P}(\lambda)$ et $Y \hookrightarrow \mathcal{P}(\mu)$ sont indépendantes alors $X_1 + X_2 \hookrightarrow \mathcal{P}(\lambda + \mu)$.

2.3 Loi du minimum et du maximum

Méthode : Loi du max

On pose $Z = \max(X, Y)$. Si X et Y deux v.a.r.d **indépendantes**, on a :

$$\begin{split} \mathbb{P}(Z\leqslant x) &= \mathbb{P}([X\leqslant x]\cap [Y\leqslant y])\\ &\quad \text{(car le maximum est inférieur à x si et seulement si X et Y sont inférieurs à x)}\\ &= \mathbb{P}(X\leqslant x)\mathbb{P}(Y\leqslant y)\\ &\quad \text{(par indépendance)} \end{split}$$

Méthode: Loi du min

On procède de même en passant par l'événement contraire [Z > x]

Exemple: Maximum de deux lois $\mathcal{B}(p)$ puis $\mathcal{U}(\llbracket 1, n \rrbracket)$.

3 Covariance et coefficient de corrélation linéaire

3.1 Covariance

Définition

Soit (X, Y) un couple de v.a.r.d. On appelle **covariance de** X **et** Y, le réel :

$$Cov(X,Y) = E\left((X - E(X))(Y - E(Y))\right)$$

lorsqu'il existe.

Propriétés:

- Si X et Y admettent toutes deux un moment d'ordre 2, elles admettent une variance. (à savoir démontrer pour Maths II)
- Formule de Kœnig-Huygens : si X et Y admettent des moments d'ordres 2, alors Cov(X,Y) = E(XY) E(X)E(Y).
- En conséquence, si X et Y sont indépendantes, alors Cov(X,Y)=0. La réciproque est fausse!
- Symétrie : Cov(X, Y) = Cov(Y, X).
- Cov(X, X) = V(X).
- Linéarité à gauche : $Cov(a_1X_1 + a_2X_2, Y) = a_1Cov(X_1, Y) + a_2Cov(X_2, Y)$.
- Linéarité à droite : $Cov(X, a_1Y_1 + a_2Y_2) = a_1Cov(X, Y_1) + a_2Cov(X, Y_2)$.
- Si A est presque-certaine, alors Cov(X, A) = 0.

Proposition

Si X et Y admettent une variance, alors X + Y aussi et :

$$V(X + Y) = V(X) + V(Y) + 2\operatorname{Cov}(X, Y).$$

Remarque : Si X et Y sont indépendantes, alors V(X + Y) = V(X) + V(Y).

Corollaire

$$|Cov(X, Y)| \le \sigma(X)\sigma(Y).$$

3.2 Coefficient de corrélation linéaire

Définition

On appelle coefficient de corrélation linéaire de X et Y le réel :

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}.$$

Propriétés:

- $-1 \leqslant \rho(X, Y) \leqslant 1$.
- $|\rho(X,Y)| = 1$ ssi il existe $a \neq 0$ et b tels que Y = aX + b.
- a est du même signe que $\rho(X,Y)$.
- $\rho(X,Y)=0 \Leftrightarrow \operatorname{Cov}(X,Y)=0$. On dit que X et Y sont non-corrélées.