Chapitre 7 - Intégrales généralisées

1 Intégration sur un segment

1.1 Généralités

Théorème : Théorème fondamental de l'analyse

Soit $f: I \to \mathbb{R}$ continue. Soit $a \in I$. L'application :

$$F: x \mapsto \int_{a}^{x} f(t) dt$$

est l'unique primitive de f s'annulant en a.

Remarque: Cela implique en particulier que:

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

1.2 Primitives usuelles

Fonction $x \mapsto \dots$	Primitive $x \mapsto \dots$	Intervalle
$x^{\alpha}, \ \alpha \in \mathbb{R} \setminus \{-1\}$	$\frac{x^{\alpha+1}}{\alpha+1}$	\mathbb{R}
$\frac{1}{x}$	$\ln(x)$	\mathbb{R}_+^{\star} ou \mathbb{R}^{\star}
$\exp(x)$	$\exp(x)$	\mathbb{R}
$\frac{1}{1+x^2}$	$\arctan(x)$	\mathbb{R}
ln(x)	$x \ln(x) - x$	\mathbb{R}_+^{\star}

Primitives à savoir reconnaître :

- $u'u^n$ si $n \in \mathbb{N}$;
- $u'u^{\alpha}$ si $\alpha \neq -1$ et u > 0;
- $u' \exp(u)$
- si u ne s'annule pas $\frac{u'}{u}$.

Exemple : Calculer $\int_2^e \frac{1}{t \ln t} dt$.

2 Intégrales impropres

2.1 Définition

Définition : Intégrale impropre en $+\infty$

Soit f une fonction continue sur $[a,+\infty[$ avec $a\in\mathbb{R}.$ Si $\lim_{x\to+\infty}\int_a^x f(t)\mathrm{d}t$ existe et est un nombre réel, on dit que l'intégrale $\int_a^{+\infty}f(t)\mathrm{d}t$ converge et on note : $\int_a^{+\infty}f(t)\mathrm{d}t=\lim_{x\to+\infty}\int_a^xf(t)\mathrm{d}t.$

Remarque : on définit de même les intégrales généralisées pour une fonction sur $]-\infty,a]$ **Exemple :** Étudier $\int_0^{+\infty} \mathrm{e}^{-t} \mathrm{d}t$ et $\int_1^{+\infty} \frac{1}{t} \mathrm{d}t$.

Définition: Intégrale doublement généralisée

Soit f une fonction continue sur \mathbb{R} . On dit que l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ est convergente s'il existe un $c \in \mathbb{R}$ tel que les deux intégrales $\int_{-\infty}^{c} f(t) dt$ et $\int_{c}^{+\infty} f(t) dt$ soient convergentes. Donc, ce cas, on pose :

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{c} f(t) dt + \int_{c}^{+\infty} f(t) dt.$$

Remarque : Si l'intégrale est convergente, le choix de c n'a pas d'importance.

Exemple : Convergence et calcul de $\int_{-\infty}^{+\infty} e^{-|t|} dt$ et $\int_{-\infty}^{+\infty} t e^{-\frac{t^2}{2}} dt$.

2.2 Intégrales de référence et règles de calculs

Intégrales de référence :

- Intégrales de Riemann : $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \text{ converge ssi } \alpha > 1. \text{ Dans ce cas, } \int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt = \frac{1}{\alpha 1}.$
- $\int_0^{+\infty} e^{-\lambda x} dx$ converge ssi $\lambda > 0$. Dans ce cas, $\int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$.
- Utile pour plus tard : $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$.

Règles de calculs :

- Linéarité : une combinaison linéaire d'intégrales convergentes est convergente.
- Positivité : Si $f \ge 0$ et a < b, $\int_a^b f(t) dt \ge 0$.
- Théorème de l'intégrale nulle : Si f est continue, positive et a < b, $\int_a^b f(t) dt = 0 \Rightarrow f = 0$.
- Croissance : Si $f \ge g$ et a < b, $\int_a^b f(t) dt \ge \int_a^b g(t) dt$.

3 Intégrales de fonctions positives

Attention! les théorèmes qui suivent ont tous des hypothèses de positivité qu'il faudra rappeler lorsqu'on les utilise.

Théorème

Soient f et g deux fonctions positives au voisinage de $+\infty$.

- Critère d'équivalence : si f(x) $\underset{x\to+\infty}{\sim}$ g(x) alors $\int_a^{+\infty} f(x) dx$ et $\int_a^{+\infty} g(x) dx$ sont de même nature.
- Critère de comparaison : si $0 \le f(x) \le g(x)$ (au voisinage de $+\infty$) alors la convergence $\int_a^{+\infty} g(x) dx$ implique celle de $\int_a^{+\infty} f(x) dx$ et la divergence de $\int_a^{+\infty} f(x) dx$ implique celle de $\int_a^{+\infty} g(x) dx$.
- Critère de négligeabilité : si $f(x) = \underset{x \to +\infty}{\text{o}} (g(x))$ alors la convergence de $\int_a^{+\infty} g(x) dx$ implique celle de $\int_a^{+\infty} f(x) dx$.

Exemples : Convergence de $\int_1^{+\infty} \frac{x^2 + e^{-x}}{x^4 + x} dx$, $\int_0^{+\infty} e^{-t^2} dt$ et $\int_1^{+\infty} \frac{e^{-t}}{t^2} dt$?

4 Convergence absolue

Définition

Soit $f:]a,b[\to \mathbb{R}$ avec $a,b \in \overline{\mathbb{R}}$. Si $\int_a^b |f(t)| \mathrm{d}t$ est convergente, on dit que $\int_a^b f(t) \mathrm{d}t$ est absolument convergente.

Remarque : Si f est une fonction positive, être convergente est équivalent à être absolument convergente. Cela justifie a posteriori l'étude des fonctions positives précédentes.

Proposition

Soit $f:]a,b[\to \mathbb{R}$ continue. Si $\int_a^b f(t) dt$ est absolument convergente alors elle est convergente. De plus, dans ce cas, on a :

$$\left| \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} |f(t)| dt.$$

Exemple : Convergence de $\int_1^{+\infty} \frac{\sin(t)}{t^2} dt$?

5 IPP et changements de variables

5.1 Intégration par parties

Proposition

Soient f et g deux fonctions de classe \mathcal{C}^1 sur [a,b]. Alors :

$$\int_{a}^{b} f'(t)g(t)dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f(t)g'(t)dt.$$

Remarque : Le théorème concerne un segment. Pour les intégrales impropres, on travaillera donc d'abord sur un segment puis on prendra la limite.

Exemple: $\int_0^{+\infty} e^{-t} \sin(t) dt$.

5.2 Changement de variable

Proposition

Soit f une fonction continue sur $[\alpha, \beta]$ et soit φ une fonction \mathcal{C}^1 sur [a, b] et telle que $\varphi(a) = \alpha$ et $\varphi(b) = \beta$.

Alors les intégrales $\int_{\alpha}^{\beta} f(x) dx$ et $\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt$ sont égales.

Remarque : Le théorème concerne un segment. Pour les intégrales impropres, on travaillera donc d'abord sur un segment puis on prendra la limite.

Exemple: $\int_0^{+\infty} \frac{1}{e^t + e^{-t}} dt$ avec $x = e^t$.

5.3 Parité et imparité

En appliquant le changement de variable u = -t, on peut montrer le résultat suivant :

Proposition

Soit f une fonction continue sur \mathbb{R} .

- Si f est paire, alors $\int_{-\infty}^{+\infty} f(x) dx$ converge ssi $\int_{0}^{+\infty} f(x) dx$ converge. Dans ce cas, $\int_{-\infty}^{+\infty} f(x) dx = 2 \int_{0}^{+\infty} f(x) dx$
- Si f est impaire, alors $\int_{-\infty}^{+\infty} f(x) dx$ converge ssi $\int_{0}^{+\infty} f(x) dx$ converge. Dans ce cas $\int_{-\infty}^{+\infty} f(x) dx = 0$.

6 Compléments : maths approfondies

6.1 Intégrales généralisées sur un intervalle quelconque

Définition

Soit f une fonction continue sur [a, b[avec $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

Si $\lim_{x\to b^-}\int_a^x f(t)\mathrm{d}t$ existe et est un nombre réel, on dit que l'intégrale $\int_a^b f(t)\mathrm{d}t$ converge et on note :

$$\int_{a}^{b} f(t)dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t)dt.$$

Exemples:

- avec $f(t) = \frac{1}{t^2} \text{ de } 1 \text{ à } +\infty.$
- avec $g(t) = \frac{1}{\sqrt{x}} de 0 à 1$.

Remarques:

- Attention danger! Contrairement aux séries, la notation des intégrales généralisées, à part pour une borne à l'infini, ne montre pas explicitement que l'on travaille avec une limite.
- Cette notation ambiguë reflète aussi le fait que parfois une intégrale impropre est une intégrale sur un segment déguisé. Si f se prolonge sur [a,b] par continuité en \tilde{f} alors on a :

$$\int_{a}^{x} f(t)dt = \int_{a}^{x} \tilde{f}(t)dt \xrightarrow[x \to b]{} \int_{a}^{b} \tilde{f}(t)dt.$$

Donc $\int_a^b f(t) dt$ existe et vaut $\int_a^b \tilde{f}(t) dt$.

On parle parfois d'intégrale faussement impropre.

Exemple: $\int_0^1 \frac{\sin(x)}{x} dx$.

Théorème : Intégrales de Riemann

Soit $\alpha \in \mathbb{R}$. Alors :

• $\int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge si et seulement si $\alpha>1$ et dans ce cas :

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{\alpha - 1};$$

• $\int_0^1 \frac{\mathrm{d}t}{t^{\alpha}}$ converge si et seulement si $\alpha < 1$ et dans ce cas :

$$\int_0^1 \frac{\mathrm{d}t}{t^\alpha} = \frac{1}{1-\alpha}.$$

6.2 Changement de variable

Proposition

Soit f une fonction continue sur $]\alpha, \beta[$ avec $\alpha, \beta \in \mathbb{R}$ et soit φ une fonction \mathcal{C}^1 sur]a, b[, **strictement monotone** et telle que $\varphi(t) \xrightarrow[t \to a^+]{} \alpha$ et $\varphi(t) \xrightarrow[t \to b^-]{} \beta$.

Alors les intégrales $\int_{\alpha}^{\beta} f(x) dx$ et $\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt$ sont de même nature et, en cas de convergence, sont égales.

Remarque : Le théorème affirme que les deux intégrales sont de même nature. Il suffit donc d'étudier la convergence de l'une des deux uniquement.

6.3 Fonction Γ

Proposition

Soit $x \in \mathbb{R}_+^*$. L'intégrale $\int_0^{+\infty} t^{x-1} e^{-t} dt$ est convergente.

Définition

Pour $x \in \mathbb{R}_+^*$, on pose :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Proposition

Pour tout $x \in \mathbb{R}_{+}^{\star}$, on a:

$$\Gamma(x+1) = x\Gamma(x).$$

Corollaire

On a donc pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$.

 $\bf Remarque$: La fonction Γ est donc le prolongement de la factorielle aux réels.