TD8 - Suites de variables aléatoires

**

Exercice 1 - Loi du min, loi du max **

On désigne par n un entier naturel supérieur ou égal à 2 et on considère n variables aléatoires X_1, X_2, \ldots, X_n , indépendantes, et suivant toutes la loi géométrique de paramètre $p \in]0;1[$.

On pose:

 $I_n = \min(X_1, X_2, \dots, X_n)$ et $S_n = \max(X_1, X_2, \dots, X_n)$.

- 1. Montrer que, pour tout i de [1, n], et pour tout k de \mathbb{N}^* , on a $P(X_i > k) = (1 p)^k$.
- 2. (a) Déterminer, pour tout k de \mathbb{N}^* , la probabilité $P(I_n > k)$.
 - (b) En déduire la loi de I_n .
 - (c) En déduire l'espérance de I_n .
- 3. (a) Déterminer, pour tout k de \mathbb{N}^* , la probabilité $P(S_n \leq k)$, puis en déduire la loi de S_n .
 - (b) **Très calculatoire :** En déduire, en utilisant la formule du binôme de Newton, que $E(S_n) = \sum_{i=1}^{n} \binom{n}{i} \frac{(-1)^{i-1}}{1-q^i}$

Exercice 2 - Nombre d'échecs

On désigne par p un réel de]0;1[. On considère une suite infinie d'épreuves indépendantes donnant un succès avec la probabilité p et un échec avec la probabilité 1-p. On note Y_1 le nombre d'échecs obtenus avant le premier succès et, pour tout entier k supérieur ou égal à 2, on note Y_k le nombre d'échecs obtenus entre le $(k-1)^e$ et le k^e succès.

Pour tout n, on pose $T_n = \sum_{k=1}^n Y_k$.

- 1. Donner la loi de Y_1 et vérifier que les variables Y_k suivent toutes la même loi.
- 2. (a) Pour tout entier naturel k non nul, on pose $Z_k = Y_k + 1$. Reconnaître la loi de Z_k .
 - (b) Montrer pour $m_1 \leqslant m_2$ que : $\sum_{k=m_1}^{m_2} \binom{k}{m_1} = \binom{m_1}{m_2}.$
 - (c) En déduire la loi de T_n .

Exercice 3 **

Soient X, Y et $Z \hookrightarrow \mathcal{P}(\lambda)$ indépendantes. Montrer que $\frac{X+Y}{1+Z}$ admet une espérance et la déterminer.

Exercice 4 - Lemme des coalitions $\star\star$

On considère une suite de variables aléatoires réelles $(X_n)_{n\in\mathbb{N}^*}$, suivant toutes la loi de Bernoulli de paramètre $p\in]0;1[$ et indépendantes.

On pose, pour tout n de \mathbb{N}^* : $Y_n = X_n X_{n+1} X_{n+2}$.

- 1. Déterminer la loi, l'espérance et la variance de Y_n .
- 2. En choisissant i et j dans $(\mathbb{N}^*)^2$, tels que |i-j| > 2, calculer $E(Y_iY_j)$.

Exercice 5 $\star \star \star$

Une urne contient n boules numérotées de 1 à n avec $n \ge 3$. On tire simultanément 3 boules de l'urne et note X_1 le plus petit numéro, X_3 le plus grand et X_2 le dernier.

- 1. Déterminer la loi de (X_1, X_2, X_3) .
- 2. En déduire la loi de X_2 puis son espérance.

Exercice 6
$$\star \star \star$$

Soient (X_1, \ldots, X_n) des variables aléatoires indépendantes suivant la loi $\mathcal{B}(p)$ avec $p \in]0,1[$. On pose pour tout $i \in [1, n-1]$, $Y_i = X_i X_{i+1}$. Montrer que Y_i et Y_j sont indépendantes si et seulement si |i-j| > 1.

Exercice 7 - QSP ESCP 2014 $$ $\star\star\star\star\star$

Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires sur un espace probabilisé (Ω, \mathcal{A}, P) mutuellement indépendantes et suivant toutes la loi géométrique de paramètre p. Pour $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n X_k$.

- 1. Soit $n \in \mathbb{N}^*$. Montrer que la variable aléatoire $\frac{1}{S_n}$ admet une espérance, que l'on notera par la suite m_n .
- 2. Soient $(k, n) \in \mathbb{N} \times \mathbb{N}^*$. Exprimer l'espérance de $\frac{S_k}{S_n}$ en fonction de m_n .