Quinzaine du 09/12 au 20/12

1 Contenu du cours

Chapitre 9 - Variables aléatoires à densité (cours et TD)

Chapitre 10 - Applications linéaires (cours et début du TD)

2. Isomorphismes

Définition, automorphismes, propriétés en lien avec la composition et les dimensions.

3. Dimension finie

Image d'une base par une application linéaire, rang, théorème du rang, lien avec l'injectivité, la surjectivité.

4. Matrices d'applications linéaires

Matrice d'un endomorphisme dans une base, application canoniquement associée à une matrice, lien entre calcul matriciel et calcul sur les applications linéaires, polynôme appliqué à une matrice ou à un endomorphisme, polynôme annulateur, rang d'une matrice, techniques de calcul, formule de changement de base, matrices semblables.

2 Maths Appliquées

Chapitre A1 - Équations différentielles (cours et début du TD)

1. Généralités

Notions d'équations différentielles, équations différentielles linéaires, équations homogènes.

2. Équations différentielles linéaires d'ordre 1

Résolution des équations homogènes à coefficients constants, solutions particulières, forme des solutions avec second membre, principe de superposition.

3. Équations différentielles linéaires d'ordre 2

Résolution des équations homogènes à coefficients constants, solutions particulières, forme des solutions avec second membre, principe de superposition.

4. Trajectoires

Généralités, étude qualitative, quelques mots sur la méthode d'Euler, problème de Cauchy, trajectoires d'équilibre, convergence.

3 Maths Approfondies

Chapitre B1 - Produits scalaires, espaces euclidiens (cours et début du TD)

1. Produits scalaires

... norme associée à un produit scalaire, propriétés (homogénéité, définition, inégalité triangulaire), notion de vecteur unitaire.

2. Orthogonalité

Notions de vecteurs orthogonaux, de sous-espaces orthogonaux, de famille orthogonale, orthonormée. Deux sev orthogonaux sont en somme directe, une famille orthogonale sans vecteur nul est libre. Théorème de Pythagore (et sa réciproque) et généralisation à n vecteurs. Procédé d'orthonormalisation de Gram-Schmidt.

3. Espaces euclidiens

Défintion, tout espace euclidien admet une base orthonormée. Calculs dans une base orthonormée : formule pour les coordonnées, pour la norme, formules matricielles. Matrice orthogonale et lien avec les familles orthonormées.

4. Supplémentaire orthogonal

Définition, propriétés élémentaires sur la dimension et sur $(F^{\perp})^{\perp}$.

4 Questions pour commencer

- 1. Déterminer la matrice de $\psi: \mathbb{R}_2[x] \to \mathbb{R}_2[x], P \mapsto P + P'$ dans la base canonique de $\mathbb{R}_2[x]$.
- 2. Vérifier que $x^2 + 1$ est annulateur de $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- 3. Calculer le rang de $\begin{pmatrix} 1 & -2 & 5 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$.
- 4. Appli uniquement : résoudre y' + 3y = 12.
- 5. Appli uniquement : résoudre y'' 2y' + y = 2.
- 6. Appli uniquement : déterminer une solution particulière de $y'' 2y' + y = e^{-t} + 1$.
- 7. Appro uniquement : Montrer que $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 \mid x = y \text{ et } z = 0\}$ sont orthogonaux.
- 8. Appro uniquement: Montrer que $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$ est un produit scalaire sur $\mathbb{R}_n[x]$.
- 9. Appro uniquement : Déterminer le supplémentaire orthogonal de $F = \{(x, y, z) \in \mathbb{R}^3 \mid x y + z = 0\}.$