Quinzaine du 06/01 au 17/01

1 Contenu du cours

Chapitre 10 - Applications linéaires (cours et TD)

Chapitre 11 - Réduction (cours et début du TD)

Attention! Dans le programme commun appli/appro, il n'y a que la réduction de matrices. Pas de réduction d'endomorphismes.

1. Valeurs propres, espaces propres

Valeur propre, vecteur propre, spectre d'une matrice, condition nécessaire avec polynôme annulateur, sous-espaces propres, concaténation de familles libres de sous-espaces propres, méthodes de détermination du spectre d'une matrice et des sous-espaces propres.

2. Réduction des matrices carrées

Diagonalisabilité, critères de diagonalisabilité, méthode, toute matrice d'ordre n admettant n valeurs propres distinctes est diagonalisable, toute matrice symétrique est diagonalisable, quelques applications (calcul de puissances, du commutant, application à l'étude de suites récurrentes imbriquées, à l'étude de suites récurrentes linéaires d'ordre supérieur).

Note: L'étude d'applications devra être guidé dans les exercices.

Chapitre 12 - Fonctions de deux variables (cours uniquement)

1. Généralités

Définition, représentation graphique, applications partielles, lignes de niveau.

2. Continuité

Distance euclidienne sur \mathbb{R}^2 , continuité sur \mathbb{R}^2 , lien avec la définition sur \mathbb{R} , règles de calculs.

3. Calcul différentiel

Dérivées partielles, gradient, interprétation graphique, lien avec les lignes de niveau, fonctions C^1 , formule de Taylor à l'ordre 1, dérivées partielles d'ordre 2, matrice hessienne, fonctions C^2 , théorème de Schwarz.

4. Recherche d'extrema

Définitions d'extrema globaux, extrema locaux. Conditions nécessaires sur le gradient, points critiques.

2 Maths Appliquées

Chapitre A1 - Équations différentielles (cours et TD)

...

Chapitre A2 - Graphes (cours uniquement)

1. Généralités

Définitions et vocabulaire, graphes orientés, formule d'Euler (dite des poignées de mains).

2. Chaînes et types de graphes

Définition d'une chaîne et vocabulaire associé, graphe connexe, chaîne eulérienne, cyclé eulérien, graphe eulérien, théorème d'Euler.

3. Graphes et matrices

Matrice d'adjacence, puissance successive de la matrice d'adjacence, décompte du nombre de chaînes d'une longueur donnée, test de la connexité.

4. Graphes et réseaux sociaux

Représentation de réseaux par des graphes, degré de centralité, degré d'intermédiarité.

5. Graphes pondérés et algorithme de Dijkstra

Définition de graphe pondéré, algorithme de Dijkstra de recherche du plus court chemin.

3 Maths Approfondies

Chapitre 9 - Variables aléatoires à densité (cours et début du TD)

5. Mathématiques approfondies

Loi γ , f(X) est une v.a.r. si f est continue, formule pour les transformations affines, sommes de loi γ indépendantes.

Chapitre 10 - Algèbre linéaire (cours et début du TD)

5. Mathématiques approfondies

Rappels sur les projecteurs. Formes linéaires, hyperplans, lien entre les deux. Sous-espaces stables par un endomorphismes, Ker(f) et Im(f) sont stables par f. Trace d'une matrice carrée, invariance par similutude.

Chapitre 11 - Réduction (cours et début du TD)

3. Mathématiques approfondies

Généralisation des notions de valeurs propres, vecteurs propres, sous-espaces propres, spectre aux endomorphismes, avec quelques formules supplémentaires spécifiques au programme de maths appro. Retour sur les polynômes d'endomorphismes, P(f) et Q(f) commutent, lien avec la stabilité des sous-espaces propres. Les sous-espaces propres sont en somme directe. Diagonalisabilité d'un endomorphisme. Caractérisations spécifiques au programme d'appro. Quelques propriétés reliant A et tA , puis critère de similitude.

4 Questions pour commencer

- 1. Vérifier que $x^2 + 1$ est annulateur de $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Que peut-on en déduire pour le spectre de A?
- 2. Diagonaliser $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$.
- 3. Expliquer comment l'étude des suites définies par :

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 2u_n + v_n \\ v_{n+1} = u_n + 2v_n \end{cases}$$

se ramène au calcul des puissances de $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. On pourra demander de commencer le calcul des puissances de A en donnant le plan de calcul et en déterminant $\operatorname{Sp}(A)$.

- 4. Justifier (proprement!) que $f:(x,y)\mapsto \max(x,y)$ est continue en utilisant $\max(x,y)=\frac{1}{2}(x+y+|x-y|)$.
- 5. Après avoir justifié que $f:(x,y)\mapsto x^2y^2+x^2+y^2+4xy$ est C^2 sur \mathbb{R}^2 , en déterminer la hessienne en tout point.
- 6. Pour les applis : énoncer le théorème d'Euler et l'illustrer sur quelques exemples.
- 7. Pour les appros : Montrer que la somme de n v.a.r suivant $\mathcal{E}(1)$ mutuellement indépendantes suit une loi $\gamma(n)$ (on admet la stabilité de la loi γ pour la somme de 2 v.a.r).
- 8. **Pour les appros :** Montrer que $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ est diagonalisable mais que $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ ne l'est pas.