DS4 APPLI - RÉDUCTION, ÉQUATIONS DIFFÉRENTIELLES

Samedi 11/01/2025 - 4h

Calculatrice interdite

- 1. La notation des copies tiendra compte de la qualité de la rédaction.
- 2. Si vous repérez ce qui vous pensez être une erreur d'énoncé, signalez le sur votre copie et poursuivez votre composition en expliquant vos initiatives.
- 3. Encadrez ou soulignez vos résultats.
- 4. Changez de copie à chaque nouvel exercice.

Dans tout le sujet, on suppose que les bibliothèques Python sont importées comme suit :

```
import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt
```

Exercice 1 - EDHEC ECE 2020 (Exercice 1 - adapté)

On note tB la transposée d'une matrice B et on rappelle que la transposition est application linéaire. On dit qu'une matrice M de $M_n(\mathbb{R})$ est antisymétrique lorsqu'elle vérifie ${}^tM = -M$ et on note $A_n(\mathbb{R})$ l'ensemble des matrices antisymétriques.

1. Montrer que $A_n(\mathbb{R})$ est un sous-espace vectoriel de $M_n(\mathbb{R})$.

On considère une matrice A fixée de $M_n(\mathbb{R})$ et l'application f, qui à toute matrice M de $A_n(\mathbb{R})$ associe :

$$f(M) = (^t A)M + MA.$$

- 2. (a) Soit M une matrice de $A_n(\mathbb{R})$. Établir que f(M) est antisymétrique.
 - (b) En déduire que f est un endomorphisme de $A_n(\mathbb{R})$.

Dans toute la suite, on étudie la cas
$$n=3$$
 et on choisit $A=\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- $\text{3. On considère les trois matrices } J = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \text{ et } L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$
 - (a) Montrer que la famille $\mathcal{B} = (J, K, L)$ est une famille génératrice de $A_3(\mathbb{R})$.
 - (b) Montrer que \mathcal{B} est une famille libre et en déduire la dimension de $A_3(\mathbb{R})$.
- 4. (a) Calculer f(J), f(K) et f(L), puis les exprimer comme combinaisons linéaires de J et L seulement. Les calculs devront figurer sur la copie.
 - (b) En déduire une base de Im(f) ne contenant que des matrices de \mathcal{B} .
 - (c) En déduire la dimension de Ker(f) puis en donner une base.
- 5. (a) Écrire la matrice F de f dans la base \mathcal{B} . On vérifiera que ses coefficients sont tous dans $\{-1,0\}$.
 - (b) En déduire les valeurs propres de F.
 - (c) Déterminer les sous-espaces propres propres de F, une base de chacun et leurs dimensions.
 - (d) F est-elle diagonalisable?

Exercice 2 - Exercice original

Partie I - Une équation différentielle

Le but de cette partie est de résoudre, sur \mathbb{R} , l'équation (E) suivante :

$$y'' - 4y' + 4y = t^2 e^{2t}.$$

- 1. Donner toutes les solutions de l'équation homogène associée.
- 2. Recherche d'une solution particulière de (E).

Soit P une fonction polynomiale.

- (a) Justifier que la fonction $Y_0: t \mapsto P(t)e^{2t}$ est solution de (E) sur \mathbb{R} si et seulement si on a, pour tout réel $t: P''(t) = t^2$.
- (b) En déduire une solution particulière de (E).
- 3. Conclure en donnant l'ensemble des solutions de (E).

Partie II - Une équation fonctionnelle

L'objectif de cette partie est de déterminer l'ensemble des fonctions f définies et dérivables sur $\mathbb R$ vérifiant :

$$\forall x, y \in \mathbb{R}, \ f(x+y) = f(x)f(y). \quad (\star)$$

- 4. On commence par montrer que si f vérifie la relation (\star) alors soit f = 0, soit f est de la forme $f(x) = a^x$ avec a > 0. Pour cela, dans toute cette question, on considère une fonction f définie et dérivable sur \mathbb{R} vérifiant (\star) .
 - (a) Que dire si f(0) = 0?

Dans toute la suite, on supposera que f n'est pas la fonction nulle.

- (b) Déterminer f(0).
- (c) Établir:

$$\forall x \in \mathbb{R}, \ \forall h \in \mathbb{R}^*, \ \frac{f(x+h) - f(x)}{h} = f(x) \frac{f(h) - f(0)}{h}.$$

(d) En déduire qu'il existe $\lambda \in \mathbb{R}$ tel que f vérifie :

$$y' = \lambda y$$
.

- (e) Résoudre l'équation différentielle précédente.
- (f) Conclure quand à la forme possible des fonctions vérifiant (\star) .
- 5. Soit a > 0. La fonction $f: x \mapsto a^x$ vérifie-t-elle (\star) ?
- 6. Conclure.

Exercice 3 - ECRICOME ECE 2021 (Exercice 1 - adapté)

Soit $E = M_3(\mathbb{R})$ l'ensemble des matrices d'ordre 3 à coefficients réels.

On note I_3 la matrice identité de E et 0_3 la matrice nulle de E.

Soit $\mathcal A$ l'ensemble des matrices M de E vérifiant :

$$M(M+I_3)(M+2I_3)=0_3.$$

Partie I - Exemples de matrices appartenant à A.

- 1. Déterminer l'ensemble des réels α tels que $\alpha I_3 \in \mathcal{A}$.
- 2. L'ensemble \mathcal{A} est-il un sous-espace vectoriel de E?

3. On note
$$B = \begin{pmatrix} -1 & -1 & 1\\ 1 & -3 & 1\\ 1 & -1 & -1 \end{pmatrix}$$
.

(a) On pose
$$X_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 et $X_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Calculer BX_1 et BX_2 .

- (b) En déduire deux valeurs propres de B.
 - Déterminer une base de chacun des sous-espaces propres associés.
- (c) Démontrer que B est diagonalisable, et expliciter une matrice D diagonale et une matrice P inversible telle que : $B = PDP^{-1}$.
- (d) Démontrer que $D \in \mathcal{A}$, puis que $B \in \mathcal{A}$.
- 4. Plus généralement, on suppose que M est une matrice de E diagonalisable, telle que le spectre de M soit inclus dans $\{0, -1, -2\}$.

Montrer que $M \in \mathcal{A}$.

Partie II - Diagonalisabilité des matrices de A.

Soit M une matrice appartenant à A. On note Sp(M) le spectre de M.

- 5. Déterminer un polynôme annulateur de M, et démontrer que le spectre de M est inclus dans $\{0, -1, -2\}$.
- 6. On suppose dans cette question que M admet 0, -1 et -2 comme valeurs propres. Justifier que M est diagonalisable.
- 7. (a) On suppose dans cette question que -1 est l'unique valeur propre de M. Justifier que M et $M + 2I_3$ sont inversibles, puis démontrer que $M = -I_3$.
 - (b) Que peut-on dire si $Sp(M) = \{-2\}$? Si $Sp(M) = \{0\}$?
- 8. On suppose dans cette question que M n'admet aucune valeur propre. Justifier que les matrices M, $M + I_3$ et $M + 2I_3$ sont inversibles. Aboutir à une contradiction.
- 9. Dans cette question, on suppose que M admet exactement deux valeurs propres distinctes.

On traite ici le cas où $Sp(M) = \{-1, -2\}$ (et on admet que dans les autres situations, le résultat serait similaire).

On veut démontrer par l'absurde que la matrice M est diagonalisable, et on suppose donc que M ne l'est pas.

On note \mathcal{B} la base canonique de \mathbb{R}^3 . Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans \mathcal{B} est M. On note enfin Id l'endomorphisme identité de \mathbb{R}^3 .

(a) Montrer que:

$$(f + \operatorname{Id}) \circ (f + 2\operatorname{Id}) = 0$$
 et $(f + 2\operatorname{Id}) \circ (f + \operatorname{Id}) = 0$.

- (b) Démontrer que $\dim(\text{Ker}(f+\text{Id})) \ge 1$ et que $\dim(\text{Ker}(f+2\text{Id})) \ge 1$.
- (c) On souhaite montrer que $\dim(\operatorname{Ker}(f+\operatorname{Id}))=1$. On le montre dans cette question par l'absurde en supposant que $\dim(\operatorname{Ker}(f+\operatorname{Id}))\geqslant 2$.
 - i. Soit (u, v) une famille libre de Ker(f + Id) (c'est possible puisque $\dim(Ker(f + Id)) \ge 2$). Soit w un vecteur non nul de Ker(f + 2Id). Montrer que (u, v, w) est libre.
 - ii. En déduire une contradiction en montrant que M est diagonalisable. Conclure quant à la dimension de $\mathrm{Ker}(f+\mathrm{Id})$.

On admet que l'on peut montrer de même que :

$$\dim(\mathrm{Ker}(f+2\mathrm{Id}))=1.$$

- (d) Soit $u \neq 0$ tel que f(u) = -u. Soit $v \neq 0$ tel que f(v) = -2v.
 - i. Montrer que la famille (u, v) est libre.
 - ii. Soit w un vecteur de \mathbb{R}^3 n'appartenant pas à $\mathrm{Vect}(u,v)$. Montrer que la famille (u,v,w) est une base de \mathbb{R}^3 .
 - iii. En utilisant le fait que $(f + \mathrm{Id}) \circ (f + 2\mathrm{Id})(w) = 0$ et $(f + 2\mathrm{Id}) \circ (f + \mathrm{Id})(w) = 0$, montrer qu'il existe deux réels α et β tels que :

$$f(w) + 2w = \alpha u$$
 et $f(w) + w = \beta v$.

En déduire que w est une combinaison linéaire de u et v, et aboutir à une contradiction.

10. Montrer alors que pour toute matrice M de E:

$$M \in \mathcal{A} \Leftrightarrow M$$
 est diagonalisable et $Sp(M) \subset \{0, -1, -2\}$.

Problème 4 - ECRICOME ECE 2020 (Exercice 3)

Soit a un réel strictement positif.

1. Pour tout entier n supérieur ou égal à 2, on pose :

$$I_n(a) = \int_a^{+\infty} \frac{1}{t^n} \mathrm{d}t.$$

Montrer que l'intégrale $I_n(a)$ converge et vaut $\frac{1}{(n-1)a^{n-1}}$.

2. Soit f la fonction définie sur $\mathbb R$ par :

$$f: t \mapsto \left\{ \begin{array}{ll} 0 & \text{si } t < a \\ \frac{3a^3}{t^4} & \text{si } t \geqslant a \end{array} \right..$$

- (a) Démontrer que f est bien une densité de probabilité.
- Soit X une variable aléatoire admettant f pour densité.
- (b) Donner la fonction de répartition de X.
- (c) Démontrer que X admet une espérance et calculer cette espérance.
- (d) Démontrer que X admet une variance et que celle-ci vaut $\frac{3a^2}{4}$.
- 3. Soit U une variable aléatoire suivant la loi uniforme sur]0,1]. On pose $Y=\frac{a}{U^{\frac{1}{3}}}$
 - (a) Déterminer $Y(\Omega)$.
 - (b) Déterminer la fonction de répartition de Y et vérifier que Y et X suivent la même loi.
 - (c) Écrire une fonction Python d'en-tête **def simulX(a, n):** prenant en argument un réel a strictement positif et un entier naturel non nul n, qui renvoie un tableau numpy de n coefficients, chacun des coefficients étant un réel choisi de façon aléatoire selon la loi de X. Ces réels sont choisis de façon indépendante.

À cet effet, on rappelle que rd.random(n) renvoie un tableau numpy de n coefficients choisis indépendamment de manière aléatoire et suivant la loi uniforme sur]0,1].

- 4. (a) Calculer P(X > 2a).
 - (b) Calculer $P_{[X>2a]}(X>6a)$.
 - (c) On suppose que la fonction Python de la question 3c a été programmée correctement. Compléter le script ci-dessous afin qu'il renvoie une valeur permettant de vérifier le résultat de la question précédente.

Soit n un entier naturel non nul, et $X_1, ..., X_n$ n variables aléatoires indépendantes et suivant toutes la même loi que X.

- 5. On pose $V_n = \frac{2}{3n} \sum_{k=1}^n X_k$.
 - (a) Montrer que V_n admet une espérance et qu'elle vaut a.
 - (b) Calculer la variance de V_n . Vérifier qu'elle vaut $\frac{a^2}{3n}$.
- 6. On pose $W_n = \min(X_1, ..., X_n)$.
 - (a) Déterminer la fonction de répartition de W_n et vérifier que W_n est bien une variable aléatoire à densité.
 - (b) Montrer que W_n admet pour densité la fonction f_n définie sur $\mathbb R$ par :

$$f_n: t \mapsto \left\{ \begin{array}{ll} 0 & \text{si } t < a \\ \frac{3na^{3n}}{t^{3n+1}} & \text{si } t \geqslant a \end{array} \right.$$

- (c) Démontrer que W_n admet une espérance et calculer cette espérance. Déterminer alors l'unique réel λ_n dépendant de n tel que $E(\lambda_n W_n) = a$.
- (d) Calculer alors la variance de $\lambda_n W_n$ et vérifier qu'elle vaut $\frac{a^2}{3n(3n-2)}$.
- 7. On rappelle que:
 - Si A est un tableau numpy alors l'instruction np.sum(A) renvoie la somme des coefficients de A.
 - Si X est un tableau numpy, l'instruction plt.plot(X, '+') représente graphiquement les coefficients de X à l'aide de croix droites.
 - Si X est un tableau numpy, l'instruction plt.plot(X, 'x') représente graphiquement les coefficients de X à l'aide de croix obliques.
 - (a) Compléter la fonction ci-dessous afin qu'elle réalise m simulations de la variable aléatoire V_n et renvoie les résultats obtenus sous forme d'un tableau numpy à m éléments :

```
def simulV(a, m, n):
    V = np.zeros(m)
    for k in ...:
        X = simulX(a, n)
        V[k] = ...
    return V
```

Pour la suite, on prendra n=100 et on suppose que l'on dispose d'une fonction similaire **simulW** permettant d'obtenir m simulations de la variable $\lambda_n W_n$.

(b) Compléter les lignes ci-dessous pour écrire le script qui a permis d'obtenir le graphe présenté:

```
1 W = simulW(..., ..., ...)
V = simulV(..., ..., ...)
plt.plot(..., '+')
plt.plot(..., 'x')
plt.show()
```

On justifiera la réponse pour les deux dernières lignes.

