Chapitre A4 - Systèmes différentiels

1 Systèmes différentiels

1.1 Généralités

Définition: Système différentiel linéaire à coefficients constants

Soit $n \in \mathbb{N}^*$ et soit $A \in \mathcal{M}_n(\mathbb{R})$. On note $A = (a_{i,j})$. Soit I un intervalle. $x_1, ..., x_n$ désigne n fonctions dérivables sur I.

On appelle système différentiel linéaire à coefficients constants tout système d'équations de n équations différentielles couplées de la forme :

$$\begin{cases} x'_1 &= a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \\ x'_2 &= a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{1,n}x_n \\ &\vdots \\ x'_n &= a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n \end{cases}$$

Résoudre un tel système, c'est trouver une famille de fonctions $x_1, ..., x_n$ dérivables sur I vérifiant toutes les équations.

Remarque : Dans la plupart des cas, on aura n = 2 ou n = 3.

Exemples: à faire

Proposition: Écriture matricielle

Avec les notations précédentes, on pose $X: I \to \mathrm{M}_{n,1}(\mathbb{R})$ la fonction définie par :

$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}.$$

Alors

$$\begin{cases} x'_1 &= a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \\ x'_2 &= a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{1,n}x_n \\ &\vdots \\ x'_n &= a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n \end{cases} \Leftrightarrow X' = AX.$$

Remarques:

- Ainsi, résoudre le système différentiel revient également à donner une unique fonction X mais à valeurs dans $M_{n,1}(\mathbb{R})$.
- La fonction X' est la fonction définie par :

$$X'(t) = \begin{pmatrix} x'_1(t) \\ x'_2(t) \\ \vdots \\ x'_n(t) \end{pmatrix}.$$

Exemples: à faire

Définition: Problème de Cauchy

L'adjonction à un système différentiel linéaire à coefficients constants d'une condition initiale de la forme $\forall i \in [1, n], \ x_i(t_0) = \alpha_i$ forme un problème de Cauchy.

Remarque : on peut aussi le formule de manière matricielle. Le système $\begin{cases} X' = AX \\ X(t_0) = X_0 \end{cases}$ où $X_0 \in \mathcal{M}_{n,1}(\mathbb{R})$ forme un problème de Cauchy.

Proposition

Un problème de Cauchy pour un système différentiel linéaire d'ordre 1 à coefficients constants admet une unique solution.

1.2 Résolutions de cas particuliers

${\bf M\acute{e}thode: Syst\`{e}me\ diagonal}$

Si A est diagonale de la forme $A=\begin{pmatrix}\lambda_1&&(0)\\&\lambda_2&\\&&\ddots\\&&(0)&&\lambda_n\end{pmatrix}$ alors le système peut s'écrire :

$$\begin{cases} x'_1(t) &= \lambda_1 x_1(t) \\ x'_2(t) &= \lambda_2 x_2(t) \\ &\vdots \\ x'_n(t) &= \lambda_n x_n(t) \end{cases}$$

Dans ce cas, on résout les équations séparément.

Exemples:
$$\begin{cases} x' = 3x \\ y' = -2y \text{ et } \begin{cases} x' = 4x \\ y' = -3y \end{cases}.$$

Méthode: Système triangulaire

Si A est triangulaire de la forme $A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{n,n} \end{pmatrix}$ alors le système

peut s'écrire :

$$\begin{cases} x'_1(t) &= a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \\ x'_2 &= a_{2,2}x_2 + \dots + a_{1,n}x_n \\ &\vdots \\ x'_n &= a_{n,n}x_n \end{cases}$$

Dans ce cas, on commence par résoudre la dernière équation, puis on réinjecte la solution pour résoudre de proche en proche.

Exemples:
$$\begin{cases} x' = 5x \\ y' = y+x \end{cases}$$
 et
$$\begin{cases} x' = 2x \\ y' = -2y+2x \end{cases}$$
.

1.3 Application de la réduction à la résolution

Proposition: Une solution

Soit $A \in \mathrm{M}_n(\mathbb{R})$. Soient $\lambda \in \mathrm{Sp}(A)$ et $V \in \mathrm{M}_{n,1}(\mathbb{R})$ un vecteur propre associé. Alors la fonction $t \mapsto \mathrm{e}^{\lambda t} V$ définie sur I est une solution du système différentiel X' = AX.

Exemple:
$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$
.

- Vérifier que 2 est valeur propre de A. Déterminer un vecteur propre associé. En déduire une solution de X' = AX.
- Déterminer une seconde valeur propre de A et en déduire une autre solution de X' = AX.

Proposition: Résolution générale

Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable. On note $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A (éventuellement répétées) et V_1, \ldots, V_n une base de $\mathcal{M}_{n,1}(\mathbb{R})$ constituée de vecteurs propres associés.

Alors l'ensemble des solutions de X'=AX est l'ensemble des fonctions de la forme :

$$t \mapsto \alpha_1 e^{\lambda_1 t} V_1 + \alpha_2 e^{\lambda_2 t} V_2 + \dots + \alpha_n e^{\lambda_n t} V_n$$

où $\alpha_1, ..., \alpha_n$ sont des réels.

Remarques:

- L'ensemble des solutions de X' = AX est donc un sous-espace vectoriel de l'espace des applications de \mathbb{R} dans $M_{n,1}(\mathbb{R})$. En particulier, cet ensemble est stable par combinaison linéaire.
- Ce sous-espace est de dimension n.

Exemples:

- Résoudre le système différentiel $\begin{cases} x'(t) &= y(t) \\ y'(t) &= -2x(t) + 3y(t) \end{cases}$
- $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$. Résoudre le problème de Cauchy :

$$\begin{cases} X' &= AX \\ X(0) &= \begin{pmatrix} 0 \\ 2 \end{pmatrix} \end{cases}.$$

1.4 Lien avec les équations d'ordre 2

Proposition

Soient $a, b \in \mathbb{R}$. On pose $A = \begin{pmatrix} 0 & 1 \\ -b & -1 \end{pmatrix}$ et $X(t) = \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix}$. Alors:

$$y'' + ay' + by = 0 \Leftrightarrow X' = AX.$$

Exemple : Résoudre de deux manières différentes y'' + y' - 2y = 0.

Remarque : cette technique est entièrement analogue à celle vue sur les suites récurrentes d'ordre n.

2 Trajectoires, états d'équilibre

2.1 Trajectoires

Définition : Trajectoire

On appelle trajectoire d'un système différentiel tout ensemble $\{(x_1(t), \dots, x_n(t)) \in \mathbb{R}^n, t \in \mathbb{R}\}$ où (x_1, \dots, x_n) est une solution du système différentiel.

Remarques:

- Une trajectoire est un sous-ensemble de \mathbb{R}^n . Si n=2, c'est donc une courbe du plan.
- Une trajectoire peut-être réduite à un point si la solution est constante.

Exemples:

- $\bullet \left\{ \begin{array}{rcl} x' & = & 2x \\ y' & = & -3y \end{array} \right.$
- $\bullet \, \left\{ \begin{array}{ll} x' & = & 3x+y \\ y' & = & x+3y \end{array} \right. \mbox{\grave{a} faire avec Python.}$

2.2 États d'équilibre

${\bf D\'efinition: Point\ d'\'equilibre}$

On appelle **point d'équilibre** ou **état d'équilibre** toute solution constituée de fonctions constantes.

Remarque: On parle parfois de points critiques ou points stationnaires.

Proposition

Les points d'équilibres du système X'=AX sont données par les solutions de AX=0.

Remarque: les trajectoires des équilibres sont réduites à un point.

Exemple : Déterminer les équilibres de
$$\begin{cases} x' = 2x + y \\ y' = x + 2y \end{cases}$$
.

2.3 Comportement asymptotique

Définition: Convergence d'une trajectoire

On dit qu'une trajectoire, associée à la solution (x_1, \ldots, x_n) , convergent si chaque fonction x_i tends vers un $\ell_i \in \mathbb{R}$ quand $t \to +\infty$.

Dans ce cas, on dit que la trajectoire converge vers (ℓ_1, \dots, ℓ_n) . Dans le cas contraire, on dit que la trajectoire diverge.

Exemple:
$$\begin{cases} x' = 2x + y \\ y' = x + 2y \end{cases}$$
.

Proposition

Soit A diagonalisable. On considère le système X' = AX.

- Si toutes les valeurs propres de A sont négatives ou nulles, alors toutes les trajectoires convergent vers un point d'équilibre. On dit que ce point d'équilibre est stable.
- Sinon, il existe des trajectoires divergentes.

Exemple : analyser le cas $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.