**

TD A4 - Systèmes différentiels

 \star

Systèmes différentiels linéaires 1

Exercice 1

Traduire sous forme matricielle les systèmes différentiels ou équation différentielle suivants :

1. (S)
$$\begin{cases} x_1'(t) = 2x_1(t) - x_2(t) \\ x_2'(t) = x_1(t) - 6x_2(t) \end{cases}$$

2. (E)
$$x''(t) - 2x'(t) + 3x(t) = 0$$

3. (S)
$$\begin{cases} x'(t) = x(t) - z(t) \\ y'(t) = y(t) - z(t) \\ z'(t) = -x(t) + z(t) \end{cases}$$

Exercice 2

Soit $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$. Vérifier que 2 est une valeur propre de A. Donner un vecteur propre associé V. En déduire une solution au système différentiel X' = AX.

Exercice 3

Résoudre le système différentiel X' = AX avec A = $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Exercice 4 **

Résoudre les systèmes suivants

1.
$$(S_1)$$
 $\begin{cases} x_1'(t) = 2x_1(t) + x_2(t) \\ x_2'(t) = x_1(t) + 2x_2(t) \end{cases}$

2.
$$(S_2)$$

$$\begin{cases} x'(t) = x(t) - z(t) \\ y'(t) = y(t) - z(t) \\ z'(t) = -x(t) + z(t) \end{cases}$$

3.
$$(S_3)$$

$$\begin{cases} x' = 2x - y - z \\ y' = -x + 2y - z \\ z' = -x - y + 2z \end{cases}$$

Exercice 5 - Problème de Cauchy **

Résoudre les systèmes suivants vérifiant les conditions initiales:

1.
$$\begin{cases} x'_1(t) = 2x_1(t) + x_2(t) \\ x'_2(t) = x_1(t) + 2x_2(t) \end{cases} \text{ avec } x_1(0) = 2, x_2(0) = 0.$$
2.
$$\begin{cases} x'(t) = 2x(t) - y(t) \\ y'(t) = -x(t) + 2y(t) \end{cases} \text{ avec } x_1(0) = 0, x_2(0) = 1.$$

2.
$$\begin{cases} x'(t) = 2x(t) - y(t) \\ y'(t) = -x(t) + 2y(t) \end{cases} \text{ avec } x_1(0) = 0, x_2(0) = 1.$$

Exercice 6

Résoudre en utilisant un système différentiel :

1.
$$x''(t) - x'(t) - 2x(t) = 0$$

2.
$$y'' + 5y' + 4y = 0$$
 avec $y(0) = 1$ et $y'(0) = 2$

Exercice 7 - Non diagonalisable

On cherche à résoudre (S) $\begin{cases} x' = 4x - y \\ y' = x + 2y \end{cases}$

- 1. Traduire sous forme matricielle X' = AX, ce système. Montrer que A n'est pas diagonalisable.
- 2. On pose $P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Montrer que P est inversible et donner P^{-1}
- 3. Prouver que $P^{-1}AP$ est une matrice triangulaire que l'on notera T.
- 4. On pose $Y = P^{-1}X$, avec $X = \begin{pmatrix} x \\ y \end{pmatrix}$, alors en notant $Y = \begin{pmatrix} u \\ v \end{pmatrix}$, montrer que $Y' = P^{-1}X'$.
- 5. En déduire que $X' = AX \Leftrightarrow Y' = TY$.
- 6. Résoudre v' = 3v et en déduire la solution de Y' =TY (pour u, on cherchera une solution particulière de la forme $u(t) = ate^{3t}$)
- 7. Résoudre enfin (S)

Exercice 8 - Ordre 3 ***

Résoudre l'équation différentielle suivante : (E) x'''(t) – 6x''(t) + 11x'(t) - 6x(t) = 0.

2 Trajectoires et points d'équilibre

Exercice 9

Considérons le système X' = AX avec $A = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ Résoudre le système sur \mathbb{R} et donner ses trajectoires.

Exercice 10

Soit le système (S) $\begin{cases} x'(t) = y(t) \\ y'(t) = 2x(t) + y(t) \end{cases}$ Résoudre (S) et donner ses trajectoires.

Exercice 11 - Points d'équilibre

On reprend le système $\begin{cases} x_1'(t) = 2x_1(t) - x_2(t) \\ x_2'(t) = -x_1(t) + 2x_2(t) \end{cases}$ Donner ses points d'équilibre.

Exercice 12 - Asymptotique

**

**

On reprend le système (S)
$$\begin{cases} x'(t) = x(t) - z(t) \\ y'(t) = y(t) - z(t) \\ z'(t) = -x(t) + z(t) \end{cases}$$

Existe-t-il des états d'équilibre?

Étudier le comportement asymptotique des trajectoires.

Exercice 13 - Étude complète

**

Soit le système
$$(S)$$
 $\begin{cases} x' = x + 3y \\ y' = x - y \end{cases}$

- 1. Résoudre le système (S)
- 2. Trouver les états d'équilibre associés à (S).
- 3. Existe-t-il des trajectoires de (S) qui sont convergentes? Si oui, en donner une.
- 4. Justifier que toutes les trajectoires ne sont pas convergentes.

Exercice 14 - Étude complète

**

Soit le système (S)
$$\left\{ \begin{array}{l} x'=x+y\\ y'=-2x-2y \end{array} \right.$$

- 1. Montrer que toutes les trajectoires de (S) sont convergentes.
- 2. Montrer qu'il existe une infinité d'états d'équilibre associés à (S) et les donner.
- 3. Résoudre le système (S).
- 4. Trouver une trajectoire qui converge vers l'état d'équilibre (2, -2).

3 Exercices de concours

Exercice 15 - EML Sujet zéro 2023 **

On considère la matrice $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix}$.

- 1. Le but de cette question est de diagonaliser A.
 - (a) Justifier que la matrice est de rang 1.
 - (b) En déduire une valeur propre de A ainsi qu'une base du sous-espace propre associé.

- (c) Justifier que 6 est valeur propre de A et qu'un vecteur propre associé est $X_3 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.
- (d) Déterminer une matrice inversible P et une matrice diagonale D de $M_3(\mathbb{R})$ telles que $A = PDP^{-1}$.
- 2. Résoudre le système différentiel :

$$(SH) \left\{ \begin{array}{lcl} x' & = & x + 2y - z \\ y' & = & 2x + 4y - 2z \\ z' & = & -x - 2y + z \end{array} \right..$$

3. Soient
$$X_1: t \mapsto X_1(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \\ z_1(t) \end{pmatrix}$$
 et $X_2: t \mapsto$

$$X_2(t) = \begin{pmatrix} x_2(t) \\ y_2(t) \\ z_2(t) \end{pmatrix}$$
 deux solutions du système (SH) .

On suppose qu'il existe $t_0 \in \mathbb{R}$ tel que $X_1(t_0) = X_2(t_0)$. Que pouvez-vous dire de X_1 et X_2 ?

- 4. (a) Déterminer la solution X du système (SH) vérifiant $X(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
 - (b) Déterminer la solution X du système (SH) vérifiant $X(0) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.
- 5. Dans cette question on considère trois fonctions continues $a: \mathbb{R} \to \mathbb{R}$, $b: \mathbb{R} \to \mathbb{R}$ et $c: \mathbb{R} \to \mathbb{R}$. On s'intéresse au système différentiel :

$$(S) \begin{cases} x' = x + 2y - z + a(t) \\ y' = 2x + 4y - 2z + b(t) \\ z' = -x - 2y + z + c(t) \end{cases}$$

où x, y et z sont des fonctions de classe C^1 , inconnues, de \mathbb{R} dans \mathbb{R} , de la variable réelle t.

Une solution de (S) sur \mathbb{R} est une application X:

$$t\mapsto X(t)=\begin{pmatrix} x(t)\\y(t)\\z(t)\end{pmatrix}.$$

- (a) Préciser quel vecteur colonne $B(t) \in M_{3,1}(\mathbb{R})$ dépendant de la variable réelle t permet d'écrire le système (S) sous la forme : X' = AX + B(t).
- (b) Soit Y une solution particulière sur \mathbb{R} de (S). Démontrer que X est solution de (S) sur \mathbb{R} si et seulement si $Z: t \mapsto X(t) - Y(t)$ est solution de (SH) sur \mathbb{R} .
- (c) On pose pour tout $t \in \mathbb{R}$, a(t) = 1, $b(t) = 2(1 e^t)$, $c(t) = e^t 1$. Démontrer alors que $Y: t \mapsto \begin{pmatrix} e^t \\ 0 \\ 1 \end{pmatrix}$ est solution de (S) sur \mathbb{R} . En déduire les solutions de (S) sur \mathbb{R} .