DM8 Approfondies - Convergences de V.A.R.

À rendre le mardi 04/02/2025

Rendre une copie pour deux, en mentionnant bien les deux noms.

Exercice 1 - EDHEC ECS 2021 (Exercice 2)

- 1. On considère une variable aléatoire Z suivant la loi normale centrée réduite. On pose $Y = e^Z$ et on admet que Y est une variable aléatoire à densité. On note F_Y la fonction de répartition de Y et Φ celle de Z.
 - (a) Déterminer $F_Y(x)$ pour tout réel x négatif ou nul, puis exprimer $F_Y(x)$ à l'aide de la fonction Φ pour tout réel x strictement positif.
 - (b) En déduire qu'une densité f_Y de Y est donnée par :

$$f_Y(x) = \begin{cases} \frac{1}{x\sqrt{2\pi}} \exp\left(-\frac{(\ln x)^2}{2}\right) & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}.$$

Dans la suite, on considère une suite de variables aléatoires $(X_n)_{n \in \mathbb{N}^*}$, toutes définies sur le même espace probabilisé, mutuellement indépendantes et suivant toutes la loi, dite loi de Rademacher de paramètre p (avec 0), et définie par :

$$P(X_n = 1) = p \text{ et } P(X_n = -1) = 1 - p.$$

On considère de plus, pour $n \in \mathbb{N}^*$, la variable aléatoire $T_n = \prod_{k=1}^n X_k$.

- 2. (a) Donner l'espérance et la variance communes aux variables X_n .
 - (b) Déterminer l'ensemble des valeurs prises par T_n puis calculer $E(T_n)$ et en déduire une relation entre $P(T_n = 1)$ et $P(T_n = -1)$.
 - (c) Écrire une autre relation vérifiée par $P(T_n = 1)$ et $P(T_n = -1)$, puis en déduire la loi de T_n .
 - (d) Montrer que la suite $(T_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable T dont on précisera la loi.

Indication: Si $X_n \xrightarrow{\mathcal{L}} X$ et si f est \mathcal{C}^0 sur \mathbb{R} alors $f(X_n) \xrightarrow{\mathcal{L}} f(X)$.

On pourra ainsi se ramener à des lois discrètes sur \mathbb{N} .

- 3. Soit T' une variable aléatoire définie sur le même espace probabilisé que les variables X_n .
 - (a) Établir l'inclusion suivante :

$$\left[|T_{n+1} - T'| < \frac{1}{2} \right] \cap \left[|T_n - T'| < \frac{1}{2} \right] \subset \left[|T_{n+1} - T_n| < 1 \right].$$

(b) En déduire l'inégalité :

$$P(|T_{n+1} - T_n| \ge 1) \le P(|T_{n+1} - T'| \ge \frac{1}{2}) + P(|T_n - T'| \ge \frac{1}{2}).$$

(c) Montrer, en observant les valeurs que peut prendre la variable $T_{n+1} - T_n$, que :

$$P(|T_{n+1} - T_n| \ge 1) = 1 - p.$$

(d) La suite $(T_n)_{n\in\mathbb{N}^*}$ converge-t-elle en probabilité?

Indication: $X_n \xrightarrow{P} X$ ((X_n) converge en probabilité vers X) si et seulement si $\forall \epsilon > 0, \ P(|X_n - X| \ge \epsilon) = 0.$

4. Dans cette question, on prend $p = \frac{1}{2}$.

On considère, pour tout n de \mathbb{N}^* , les variables aléatoires, $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$ et $U_n = e^{n\overline{X}_n}$.

- (a) On rappelle que \overline{X}_n^{\star} est la variable aléatoire centrée réduite associée à \overline{X}_n . Exprimer \overline{X}_n^{\star} en fonction de \overline{X}_n .
- (b) Utiliser le théorème limite central pour établir que la suite $(U_n^{1/\sqrt{n}})_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire de même loi que Y.