Sujets de révisions Variables aléatoires à densité

EDHEC 2020 - loi normale, loi de la valeur absolue, estimation de la variance

On considère une variable aléatoire X suivant la loi normale $\mathcal{N}(0,\sigma^2)$, où σ est strictement positif.

On rappelle que la fonction $f_X: x \mapsto \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$ est une densité de X et on note F_X la fonction de répartition de X, définie sur $\mathbb R$ par :

$$F_X: x \mapsto \int_{-\infty}^x f_X(t) dt$$

- 1. Démontrer : $\forall x \in \mathbb{R}, F_X(-x) = 1 F_X(x)$.
- 2. On pose Y = |X| et on admet que Y est une variable aléatoire.
 - a) Montrer que la fonction de répartition de Y est la fonction, notée F_Y , définie par :

$$F_Y: x \mapsto \begin{cases} 2F_X(x) - 1 & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0 \end{cases}$$

- b) En déduire que Y est une variable à densité et donner une densité f_Y de Y.
- c) Montrer que Y possède une espérance et que l'on a : $\mathbb{E}(Y) = \sigma \sqrt{\frac{2}{\pi}}$.
- 3. On suppose, dans cette question seulement, que σ est inconnu et on se propose de l'estimer. Soit n un entier naturel supérieur ou égal à 1. On considère un échantillon (Y_1, Y_2, \ldots, Y_n) composé de variables aléatoires, mutuellement indépendantes, et ayant toutes la même loi que Y.

On note S_n la variable aléatoire définie par : $S_n = \frac{1}{n} \sum_{k=1}^{n} Y_i$.

- a) Montrer que S_n est un estimateur de σ , donner la valeur de son biais, puis proposer un estimateur sans biais de σ , que l'on notera T_n , construit de façon affine à partir de S_n .
- **b)** Rappeler la valeur du moment d'ordre 2 de X, puis déterminer $\mathbb{E}(Y^2)$, $\mathbb{V}(Y)$ et $\mathbb{V}(S_n)$.
- c) Déterminer le risque quadratique de T_n en tant qu'estimateur de σ . En déduire que T_n est un estimateur convergent de σ .
- 4. On rappelle qu'en **Python**, si *i* désigne un entier naturel non nul, la commande rd.normal(m,s,i) simule, dans un tableau à i colonnes, i variables aléatoires mutuellement indépendantes et suivant toutes la loi normale d'espérance m et de variance s².

Compléter le script **Python** suivant afin qu'il permette de simuler les variables aléatoires S_n et T_n pour des valeurs de n et σ entrées par l'utilisateur.

```
n = int(input('entrez la valeur de n :'))
sigma = float(input('entrez la valeur de sigma :'))
X = ----- # simulations de X1, ..., Xn
Y = ----- # simulations de Y1, ..., Yn
S = -----
T = -----
```

EML 2019 - loi exponentielle, loi du min, couple de v.a.r. à densité

Dans ce problème, toutes les variables aléatoires sont supposées définies sur un même espace probabilisé noté $(\Omega, \mathscr{A}, \mathbb{P})$.

PARTIE A : Des résultats préliminaires

Soient U et V deux variables aléatoires à densité indépendantes, de densités respectives f_U et f_V et de fonctions de répartition respectives F_U et F_V .

On suppose que les fonctions f_U et f_V sont nulles sur $]-\infty,0[$ et continues sur $[0,+\infty[$.

- 1. a) Justifier: $\forall t \in [0, +\infty[, 0 \leqslant F_U(t) f_V(t) \leqslant f_V(t).$
 - ${\it b}$) En déduire que l'intégrale $\int_0^{+\infty} \, F_U(t) \, f_V(t) \, \, dt$ converge.

On admet le résultat suivant :

$$\int_0^{+\infty} F_U(t) f_V(t) dt = \mathbb{P}([U \leqslant V])$$

- **2.** En déduire : $\mathbb{P}([U > V]) = \int_{0}^{+\infty} (1 F_{U}(t)) f_{V}(t) dt$.
- 3. Exemple : Soient $\lambda, \mu \in \mathbb{R}^2$. On suppose dans cette question que U suit la loi exponentielle de paramètre λ et que V suit la loi exponentielle de paramètre μ .
 - a) Rappeler, pour tout t de \mathbb{R}_+ , une expression de $F_U(t)$ et de $f_V(t)$.
 - **b**) En déduire : $\mathbb{P}([U > V]) = \frac{\mu}{\lambda + \mu}$.

PARTIE B: Une application

Soit $\lambda \in \mathbb{R}_+^*$. On considère une suite $(T_n)_{n \in \mathbb{N}}$ de variables aléatoires indépendantes, suivant toutes la loi exponentielle de paramètre λ .

On définit ensuite la variable aléatoire N égale au plus petit entier k de \mathbb{N}^* tel que $T_k \leqslant T_0$ si un tel entier existe et égale à 0 sinon.

- **4.** Soit $n \in \mathbb{N}^*$. On définit la variable aléatoire M_n par : $M_n = \min(T_1, \dots, T_n)$.
 - a) Calculer, pour tout t de \mathbb{R}_+ , $\mathbb{P}([M_n > t])$.
 - b) En déduire la fonction de répartition de M_n sur \mathbb{R} . Reconnaître la loi de M_n et préciser son (ses) paramètre(s).
- **5.** a) Montrer: $\mathbb{P}([N=1]) = \mathbb{P}([T_1 \leqslant T_0]) = \frac{1}{2}$.
 - b) Justifier: $\forall n \in \mathbb{N}^*$, $[N > n] \cup [N = 0] = [M_n > T_0]$. En déduire, pour tout n de \mathbb{N}^* , une expression de $\mathbb{P}([N > n] \cup [N = 0])$ en fonction de n.
 - c) Montrer alors : $\forall n \in \mathbb{N} \setminus \{0,1\}, \mathbb{P}([N=n]) = \frac{1}{n(n+1)}$.
 - d) En déduire la valeur de $\mathbb{P}([N=0])$.
- $\boldsymbol{6}$. La variable aléatoire N admet-elle une espérance?

EDHEC 2018 - loi exponentielle, loi normale, loi du carré, estimation, intervalle de confiance

On admet que toutes les variables aléatoires considérés dans cet exercice sont définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ que l'on ne cherchera pas à déterminer.

Soit a un réel strictement positif et f la fonction définie par : $f(x) = \begin{cases} \frac{x}{a} e^{-\frac{x^2}{2a}} & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0 \end{cases}$.

1. Montrer que la fonction f est une densité.

Dans la suite de l'exercice, on considère une variable aléatoire X de densité f.

- 2. Déterminer la fonction de répartition F_X de X.
- 3. On considère la variable aléatoire Y définie par : $Y = \frac{X^2}{2a}$.
 - a) Montrer que Y suit la loi exponentielle de paramètre 1.
 - b) On rappelle qu'en **Python** la commande rd.exponential(c) simule une variable aléatoire suivant la loi exponentielle de paramètre $\frac{1}{c}$. Écrire un script **Python** demandant la valeur de a à l'utilisateur et permettant de simuler la variable aléatoire X.
- 4. a) Vérifier que la fonction g qui à tout réel associe $x^2 e^{-\frac{x^2}{2a}}$, est paire.
 - b) Rappeler l'expression intégrale ainsi que la valeur du moment d'ordre 2 d'une variable aléatoire Z suivant la loi normale de paramètre 0 et a.
 - c) En déduire que X possède une espérance et la déterminer.
- 5. a) Rappeler l'espérance de Y puis montrer que X possède un moment d'ordre 2 et le calculer.
 - b) En déduire que la variance de X est donnée par :

$$\mathbb{V}(X) = \frac{(4-\pi)\ a}{2}$$

On suppose désormais que le paramètre a est inconnu et on souhaite l'estimer.

6. Soit n un entier naturel supérieur ou égal à 1. On considère un échantillon (X_1, \ldots, X_n) composé de variables aléatoires indépendantes ayant toutes la même loi que X.

On note S_n la variable aléatoire définie par $S_n = \frac{1}{2n} \sum_{k=1}^n X_k^2$.

- a) Montrer que S_n est un estimateur sans biais de a (i.e. que $\mathbb{E}_a(S_n) = a$).
- **b**) Montrer que X^2 possède une variance et que $\mathbb{V}(X^2) = 4a^2$.
- c) Déterminer le risque quadratique $r_a(S_n)$ de S_n (i.e. $V_a(S_n)$ car S_n est sans biais) en tant qu'estimateur de a.

En déduire que S_n est un estimateur convergent de a (on montrera que $r_a(S_n) \underset{n \to +\infty}{\longrightarrow} 0$).

- 7. On suppose que a est inférieur ou égal à 1.
 - a) Écrire l'inégalité de Bienaymé-Tchebychev pour la variable aléatoire S_n et en déduire :

$$\forall \varepsilon > 0, \ \mathbb{P}\Big(\left[|S_n - a| \leqslant \varepsilon\right]\Big) \geqslant 1 - \frac{1}{n \ \varepsilon^2}$$

b) Déterminer une valeur de n pour laquelle $\left[S_n - \frac{1}{10}, S_n + \frac{1}{10}\right]$ est un intervalle de confiance pour a avec un niveau de confiance au moins égal à 95%.

EML 2020 - loi de Pareto, loi exponentielle, loi uniforme, loi normale centrée réduite, estimation, intervalle de confiance asymptotique

Dans cet exercice, toutes les variables aléatoires sont supposées définies sur un même espace probabilisé noté $(\Omega, \mathscr{A}, \mathbb{P})$.

Partie A: Loi de Pareto

Soient a et b deux réels strictement positifs. On définit la fonction f sur $\mathbb R$ par :

$$f: x \mapsto \begin{cases} 0 & \text{si } x > b \\ a \frac{b^a}{x^{a+1}} & \text{si } x \geqslant b \end{cases}$$

1. Montrer que f est une densité de probabilité.

On dit qu'une variable aléatoire suit la loi de Pareto de paramètres a et b lorsqu'elle admet pour densité la fonction f.

Dans toute la suite de l'exercice, on considère une variable aléatoire X suivant la loi de Pareto de paramètres a et b.

- 2. Déterminer la fonction de répartition de X.
- 3. a) Soit U une variable aléatoire suivant la loi uniforme sur [0,1[. Montrer que la variable aléatoire $bU^{-\frac{1}{a}}$ suit la loi de Pareto de paramètres a et b.
 - b) En déduire une fonction Python d'en-tête function X = pareto(a,b) qui prend en arguments deux réels a et b strictement positifs et qui renvoie une simulation de la variable aléatoire X.
 - c) On considère la fonction **Python** ci-dessous. Que contient la liste L renvoyée par la fonction mystere?

```
def mystere(a,b):
    L = []
    for p in range(2,7):
        S = 0
    for k in range(10**p):
        S = S + pareto(a,b)
    L.append(S/10**p)
    return L
```

d) On exécute la fonction précédente avec différentes valeurs de a et de b. Comment interpréter les résultats obtenus?

```
--> mystere(2,1)
        1.9306917
                    1.9411352
                                 1.9840089
                                              1.9977684
                                                          2.0012415
 -> mystere(3,2)
   ans =
        3.1050951
                    3.0142956
                                 2.9849407
                                              2.9931656
                                                           2.9991517
--> mystere(1,4)
    ans =
        21.053151
                    249.58609
                                 51.230522
                                              137.64549
                                                          40.243918
```

4. a) Montrer que X admet une espérance si et seulement si a > 1 et que, dans ce cas :

$$\mathbb{E}(X) = \frac{ab}{a-1}$$

b) Montrer que X admet une variance si et seulement si a > 2 et que, dans ce cas :

$$\mathbb{V}(X) = \frac{a b^2}{(a-1)^2 (a-2)}$$

Partie B : Estimation du paramètre b

On suppose dans cette partie uniquement que a=3 et on chercher à déterminer un estimateur performant de b.

Ainsi, la variable aléatoire X admet pour densité la fonction f définie par :

$$f: x \mapsto \begin{cases} 0 & \text{si } x < b \\ \frac{3b^3}{x^4} & \text{si } x \geqslant b \end{cases}$$

Soient $n \in \mathbb{N}^*$ et X_1, \ldots, X_n des variables aléatoires indépendantes, toutes de même loi que X. On définit :

$$Y_n = \min(X_1, \dots, X_n)$$
 et $Z_n = \frac{X_1 + \dots + X_n}{n}$

On admet que Y_n et Z_n sont encore des variables aléatoires définies sur $(\Omega, \mathscr{A}, \mathbb{P})$.

- **5.** a) Calculer, pour tout $x de [b, +\infty[, \mathbb{P}([Y_n > x])]$.
 - b) En déduire que Y_n suit une loi de Pareto dont on précisera les paramètres.
 - c) Montrer que $Y'_n = \frac{3n-1}{3n} Y_n$ est un estimateur sans biais de b (i.e. que $\mathbb{E}_b(Y'_n) = b$).

Calculer le risque quadratique (i.e. $\mathbb{V}_b(Y'_n)$ car Y'_n est sans biais) de cet estimateur.

- 6. a) Déterminer l'espérance et la variance de Z_n .
 - b) En déduire un estimateur noté Z'_n sans biais de b de la forme αZ_n où α est un réel à préciser. Calculer le risque quadratique (i.e. $\mathbb{V}_b(Z'_n)$ car Z'_n est sans biais) de cet estimateur.
- 7. Entre Y'_n et Z'_n , quel estimateur choisir? Justifier.

Partie C: Estimation du paramètre a

On suppose dans cette partie uniquement que b=1 et on cherche à construire un intervalle de confiance pour a.

Ainsi, la variable aléatoire X admet pour densité la fonction f définie par :

$$f: x \mapsto \left\{ \begin{array}{cc} 0 & \text{si } x < 1 \\ \frac{a}{x^{a+1}} & \text{si } x \geqslant 1 \end{array} \right.$$

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes, toutes de même loi que X.

- 8. Soit $n \in \mathbb{N}^*$. On pose : $W_n = \ln(X_n)$. Montrer que la variable aléatoire W_n suit une loi exponentielle dont on précisera le paramètre. En déduire l'espérance et la variance de W_n .
- 9. On définit, pour tout n de \mathbb{N}^* :

$$M_n = \frac{\ln(X_1) + \dots + \ln(X_n)}{n}$$
 et $T_n = \sqrt{n} (a M_n - 1)$

- a) Justifier que la suite de variables aléatoires $(T_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire suivant la loi normale centrée réduite.
- b) En déduire que l'intervalle $\left[\frac{\sqrt{n}-2}{\sqrt{n}\,M_n}; \frac{\sqrt{n}+2}{\sqrt{n}\,M_n}\right]$ est un intervalle de confiance asymptotique pour a au niveau de confiance 95%.

On admettra que $\Phi(2) \geqslant 0,975$, où Φ désigne la fonction de répartition d'une variable aléatoire suivant la loi normale centrée réduite.

ECRICOME 2019 - loi de la valeur absolue, loi uniforme, loi de Rademacher, loi de Bernoulli, produit de v.a.r.

On suppose que toutes les variables aléatoires présentées dans cet exercice sont définies sur le même espace probabilisé.

Partie A

Soit f la fonction définie sur \mathbb{R} par :

$$\forall t \in \mathbb{R}, \ f(t) = \begin{cases} \frac{1}{t^3} & \text{si } t \geqslant 1\\ 0 & \text{si } -1 < t < 1\\ -\frac{1}{t^3} & \text{si } t \leqslant -1 \end{cases}$$

- 1. Démontrer que la fonction f est paire.
- 2. Justifier que l'intégrale $\int_1^{+\infty} f(t) dt$ converge et calculer sa valeur.
- 3. a) À l'aide d'un changement de variable, montrer que pour tout réel A strictement supérieur à 1, on a :

$$\int_{-A}^{-1} f(t) dt = \int_{1}^{A} f(u) du$$

En déduire que l'intégrale $\int_{-\infty}^{-1} f(t) dt$ converge et donner sa valeur.

- b) Montrer que la fonction f est une densité de probabilité.
- 4. On considère une variable aléatoire X admettant f pour densité. On note F_X la fonction de répartition de X.
 - a) Montrer que, pour tout réel x, on a :

$$F_X(x) = \begin{cases} \frac{1}{2x^2} & \text{si } x \le -1\\ \frac{1}{2} & \text{si } -1 < x < 1\\ 1 - \frac{1}{2x^2} & \text{si } x \ge 1 \end{cases}$$

- b) Démontrer que X admet une espérance, puis que cette espérance est nulle.
- c) La variable aléatoire X admet-elle une variance?
- 5. Soit Y la variable aléatoire définie par Y = |X|.
 - a) Donner la fonction de répartition de Y, et montrer que Y est une variable aléatoire à densité.
 - b) Montrer que Y admet pour densité la fonction f_Y définie par :

$$f_Y: x \mapsto \begin{cases} \frac{2}{x^3} & \text{si } x \geqslant 1\\ 0 & \text{sinon} \end{cases}$$

c) Montrer que Y admet une espérance et la calculer.

Partie B

- 6. Soit D une variable aléatoire prenant les valeurs -1 et 1 avec équiprobabilité, indépendante de la variable aléatoire Y.
 - Soit T la variable aléatoire définie par T=DY.
 - a) Déterminer la loi de la variable $Z = \frac{D+1}{2}$. En déduire l'espérance et la variance de D.
 - b) Justifier que T admet une espérance et préciser sa valeur.
 - c) Montrer que pour tout réel x, on a :

$$\mathbb{P}([T\leqslant x]) \ = \ \frac{1}{2} \ \mathbb{P}([Y\leqslant x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x])$$

- d) En déduire la fonction de répartition de T.
- 7. Soit U une variable aléatoire suivant la loi uniforme sur]0,1[et V la variable aléatoire définie par : $V=\frac{1}{\sqrt{1-U}}.$
 - a) Rappeler la fonction de répartition de U.
 - b) Déterminer la fonction de répartition de V et vérifier que les variable V et Y suivent la même loi
- 8. a) Écrire une fonction en langage Python, d'en-tête function a = D(n), qui prend un entier $n \ge 1$ en entrée, et renvoie une matrice ligne contenant n réalisations de la variable aléatoire D.
 - b) On considère le script suivant :

```
1  n = int(input('entrer n'))
2  a = D(n)
3  b = rd.random(n)
4  c = a / np.sqrt(1-b)
5  print(sum(c)/n)
```

De quelle variable aléatoire les coefficients du vecteur ${\tt c}$ sont- ils une simulation? Pour ${\tt n}$ assez grand, quelle sera la valeur affichée? Justifier votre réponse.

EDHEC 2017 - loi exponentielle, loi de Gumbel, loi du log, loi du \max , convergence en loi

Soit V une variable aléatoire suivant la loi exponentielle de paramètre 1, dont la fonction de répartition est la fonction F_V définie par : $F_V(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ 1 - \mathrm{e}^{-x} & \text{si } x > 0 \end{cases}$.

On pose $W = -\ln(V)$ et on admet que W est aussi une variable aléatoire dont le fonction de répartition est notée F_W . On dit que W suit une loi de Gumbel.

- 1. a) Montrer que : $\forall x \in \mathbb{R}, F_W(x) = e^{-e^{-x}}$.
 - b) En déduire que W est une variable à densité.
- On désigne par n un entier naturel non nul et par X_1, \ldots, X_n des variables aléatoires définies sur le même espace probabilisé, indépendantes et suivant la même loi que V, c'est à dire la loi $\mathcal{E}(1)$.
- On considère la variable aléatoire Y_n définie par $Y_n = \max(X_1, X_2, \dots, X_n)$, c'est à dire que pour tout ω de Ω , on a : $Y_n(\omega) = \max(X_1(\omega), X_2(\omega), \dots, X_n(\omega))$. On admet que Y_n est une variable aléatoire à densité.
- 2. a) Montrer que la fonction de répartition F_{Y_n} de Y_n est définie par :

$$F_{Y_n}(x) = \begin{cases} 0 & \text{si } x < 0\\ (1 - e^{-x})^n & \text{si } x \ge 0 \end{cases}$$

- b) En déduire une densité f_{Y_n} de Y_n .
- 3. a) Donner un équivalent de $1 F_{Y_n}(t)$ lorsque t est au voisinage de $+\infty$, puis montrer que l'intégrale $\int_0^{+\infty} (1 F_{Y_n}(t)) dt$ est convergente.
 - b) Établir l'égalité suivante :

$$\forall x \in \mathbb{R}^+, \int_0^x (1 - F_{Y_n}(t)) dt = x (1 - F_{Y_n}(x)) + \int_0^x t f_{Y_n}(t) dt$$

- c) Montrer que : $\lim_{x \to +\infty} x (1 F_{Y_n}(x)) = 0.$
- d) En déduire que Y_n possède une espérance et prouver l'égalité :

$$\mathbb{E}(Y_n) = \int_0^{+\infty} (1 - F_{Y_n}(t)) dt$$

4. a) Montrer, grâce au changement de variable $u = 1 - e^{-t}$, que l'on a :

$$\forall x \in \mathbb{R}^+, \int_0^x (1 - F_{Y_n}(t)) dt = \int_0^{1 - e^{-x}} \frac{1 - u^n}{1 - u} du$$

- **b**) En déduire que : $\int_0^x (1 F_{Y_n}(t)) dt = \sum_{k=1}^n \frac{(1 e^{-x})^k}{k}$ puis donner $\mathbb{E}(Y_n)$ sous forme de somme.
- **5.** On pose $Z_n = Y_n \ln(n)$.
 - a) On rappelle que rd.exponential(1,n) simule n variables aléatoires indépendantes et suivant toutes la loi exponentielle de paramètre 1. Compléter la déclaration de fonction Scilab suivante afin qu'elle simule la variable aléatoire Z_n .
 - def simulZ(n):
 x = rd.exponential(1,n)
 - $\underline{3}$ return $\underline{}$

b) Voici deux scripts :

```
1  V = rd.exponential(1,10000)
2  W =-np.log(V)
3  s = np.linspace(0,10,11)
4  plt.hist(W,s,density=True)
5  plt.show()

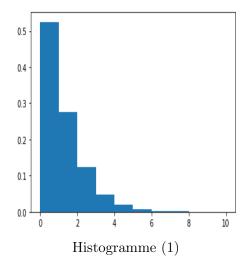
Script (1)

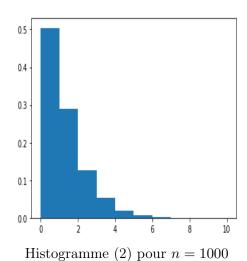
n=int(input('entrez la valeur de n :'))
2  Z = [] # La liste Z est vide
3  for k in range(10000):
4  Z.append(simulZ(n))
5  s = np.linspace(0,10,11)
6  plt.hist(Z,s,density = True)
7  plt.show()
```

Script (2)

Chacun des scripts simule 10000 variables indépendantes, regroupe les valeurs renvoyées en 10 classes qui sont les intervalles $[0,1], [1,2], [2,3], \ldots, [9,10]$ et trace l'histogramme correspondant (la largeur de chaque rectangle est égale à 1 et leur hauteur est proportionnelle à l'effectif de chaque classe).

Le script (1) dans lequel les variables aléatoires suivent la loi de Gumbel (loi suivie par W), renvoie l'histogramme (1) ci-dessous, alors que le script (2) dans lequel les variables aléatoires suivent la même loi que Z_n , renvoie l'histogramme (2) ci-dessous, pour lequel on a choisi n = 1000.





Quelle conjecture peut-on émettre quant au comportement de la suite des v.a.r. (Z_n) ?

- 6. On note F_{Z_n} la fonction de répartition de Z_n .
 - a) Justifier que, pour tout réel x, on a : $F_{Z_n}(x) = F_{Y_n}(x + \ln(n))$.
 - b) Déterminer explicitement $F_{Z_n}(x)$.
 - c) Montrer que, pour tout réel x, on a : $\lim_{n \to +\infty} n \ln \left(1 \frac{e^{-x}}{n}\right) = -e^{-x}$.
 - d) Démontrer le résultat conjecturé à la question 5.b).

ECRICOME 2016 - suite de fonctions, suite d'intégrales, relation de récurrence et formule sommatoire, convergence en loi, loi du log

1. Pour tout $n \in \mathbb{N}$, on définit la fonction $g_n : [0, +\infty[\to \mathbb{R} \text{ par } :$

$$g_n(x) = \frac{(\ln(1+x))^n}{(1+x)^2}$$

- a) Étudier les variations de la fonction g_0 , définie sur $[0, +\infty[$ par : $g_0(x) = \frac{1}{(1+x)^2}$. Préciser la limite de g_0 en $+\infty$, donner l'équation de la tangente en 0, et donner l'allure de la courbe représentative de g_0 .
- b) Pour $n \ge 1$, justifier que g_n est dérivable sur $[0, +\infty[$ et montrer que :

$$\forall x \in [0, +\infty[, g'_n(x) \geqslant 0 \Leftrightarrow n \geqslant 2\ln(1+x)]$$

En déduire les variations de la fonction g_n lorsque $n \ge 1$. Calculer soigneusement $\lim_{x \to +\infty} g_n(x)$.

c) Montrer que, pour $n \ge 1$, g_n admet un maximum sur $[0, +\infty[$ qui vaut :

$$M_n = \left(\frac{n}{2e}\right)^n$$

et déterminer $\lim_{n\to+\infty} M_n$.

d) Montrer enfin que pour tout $n \ge 1$:

$$g_n(x) = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^{\frac{3}{2}}} \right)$$

2. On pose pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^{+\infty} g_n(t)dt$$

- a) Montrer que l'intégrale I_0 est convergente et la calculer.
- **b)** Montrer que pour tout entier $n \ge 1$, l'intégrale I_n est convergente.
- c) À l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, \ I_{n+1} = (n+1)I_n$$

d) En déduire que :

$$\forall n \in \mathbb{N}, I_n = n!$$

3. Pour tout $n \in \mathbb{N}$, on définit la fonction f_n par :

$$\forall x \in \mathbb{R}, \ f_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{n!} \ g_n(x) & \text{si } x \geqslant 0 \end{cases}$$

a) Montrer que pour tout $n \in \mathbb{N}$, f_n est une densité de probabilité.

On considère à présent, pour tout $n \in \mathbb{N}$, X_n une variable aléatoire réelle admettant f_n pour densité. On notera F_n la fonction de répartition de X_n .

- b) La variable aléatoire X_n admet-elle une espérance?
- c) Que vaut $F_n(x)$ pour x < 0 et $n \in \mathbb{N}$?

- d) Calculer $F_0(x)$ pour $x \ge 0$.
- e) Soit $x \ge 0$ et $k \in \mathbb{N}^*$. Montrer que :

$$F_k(x) - F_{k-1}(x) = -\frac{1}{k!} \frac{(\ln(1+x))^k}{1+x}$$

- f) En déduire une expression de $F_n(x)$ pour $x \ge 0$ et $n \in \mathbb{N}^*$ faisant intervenir une somme (on ne cherchera pas à calculer cette somme).
- g) Pour $x \in \mathbb{R}$ fixé, déterminer la limite de $F_n(x)$ lorsque n tend vers $+\infty$.
- h) La suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ converge-t-elle en loi?
- 4. Pour tout $n \in \mathbb{N}$, on note $Y_n = \ln(1 + X_n)$.
 - a) Justifier que Y_n est bien définie. Quelles sont les valeurs prises par Y_n ?
 - b) Justifier que Y_n admet une espérance et la calculer.
 - c) Justifier que Y_n admet une variance et la calculer.
 - d) On note H_n la fonction de répartition de Y_n . Montrer que :

$$\forall x \in \mathbb{R}, \ H_n(x) = F_n(e^x - 1)$$

- e) Montrer que Y_n est une variable aléatoire à densité et donner une densité de Y_n .
- f) Reconnaître la loi de Y_0 . À l'aide de ce qui précède, déterminer le moment d'ordre k de Y_0 pour tout $k \in \mathbb{N}^*$.

EDHEC 2016 - loi de Rademacher, loi uniforme à densité, loi de Bernoulli, v.a.r. définie par cas, produit et somme de v.a.r.

- Dans cet exercice, toutes les variables aléatoires sont supposées définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On désigne par p un réel de [0, 1[.
- On considère deux variables aléatoires indépendantes U et V, telles que U suit la loi uniforme sur [-3,1], et V suit la loi uniforme sur [-1,3].
- On considère également une variable aléatoire Z, indépendante de U et V, dont la loi est donnée par :

$$\mathbb{P}([Z=1]) = p$$
 et $\mathbb{P}([Z=-1]) = 1 - p$

• Enfin, on note X la variable aléatoire, définie par :

$$\forall \omega \in \Omega, \ X(\omega) = \begin{cases} U(\omega) & \text{si } Z(\omega) = 1 \\ V(\omega) & \text{si } Z(\omega) = -1 \end{cases}$$

- On note F_X , F_U et F_V les fonctions de répartition respectives des variables X, U et V.
- 1. Donner les expressions de $F_U(x)$ et $F_V(x)$ selon les valeurs de x.
- 2. a) Établir, grâce au système complet d'évènements ([Z=1], [Z=-1]), que :

$$\forall x \in \mathbb{R}, \ F_X(x) = p \ F_U(x) + (1-p) \ F_V(x)$$

b) Vérifier que $X(\Omega) = [-3, 3]$ puis expliciter $F_X(x)$ dans les cas :

$$x < -3$$
, $-3 \leqslant x \leqslant -1$, $-1 \leqslant x \leqslant 1$, $1 \leqslant x \leqslant 3$ et $x > 3$

- c) On admet que X est une variable à densité. Donner une densité f_X de la variable aléatoire X.
- d) Établir que X admet une espérance $\mathbb{E}(X)$ et une variance $\mathbb{V}(X)$, puis les déterminer.
- 3. On se propose de montrer d'une autre façon que X possède une espérance et un moment d'ordre 2 puis de les déterminer.
 - a) Vérifier que l'on a :

$$X = U \, \frac{1+Z}{2} + V \, \frac{1-Z}{2}$$

- b) Déduire de l'égalité précédente que X possède une espérance et retrouver la valeur de $\mathbb{E}(X)$.
- c) En déduire également que X possède un moment d'ordre 2 et retrouver la valeur de $\mathbb{E}(X^2)$.
- 4. a) Soit T une variable aléatoire suivant la loi de Bernoulli de paramètre p. Déterminer la loi de 2T 1.
 - b) On rappelle que rd.uniform(a,b) et rd.binomial(1,p) sont des commandes Python permettant de simuler respectivement une variable aléatoire à densité suivant la loi uniforme sur [a,b] et une variable aléatoire suivant la loi de Bernoulli de paramètre p. Écrire des commandes Python permettant de simuler U, V, Z, puis X.