TD1

Relations de comparaison sur les suites

Exercice 1. Les propositions suivantes sont-elles vraies ou fausses ?

1. si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $\lim_{n \to +\infty} (u_n - v_n) = 0$.

2. si
$$\lim_{n \to +\infty} (u_n - v_n) = 0$$
, alors $u_n \sim v_n$.

3. si
$$u_n \sim v_n$$
 alors $u_n^5 \sim v_n^5$

4. si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $(u_n)^n \underset{n \to +\infty}{\sim} (v_n)^n$

5. si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $1 + u_n \underset{n \to +\infty}{\sim} 1 + v_n$

6. si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et $w_n = o(v_n)$, alors $u_n + w_n \underset{n \to +\infty}{\sim} v_n$.

7. si
$$u_n = o(v_n)$$
 alors $\ln(u_n) = o(\ln(v_n))$.

Exercice 2. Pour les suites (u_n) et (v_n) suivantes, dire si on a : $u_n = o(v_n)$? $v_n = o(u_n)$? $u_n \sim v_n$? Rien de tout cela?

1.
$$u_n = n + 1$$
 et $v_n = n + 2$

2.
$$u_n = \sqrt{n} + n \ln n$$
 et $v_n = n$

3.
$$u_n = e^n$$
 et $v_n = e^{2n}$

4.
$$u_n = n^4 + 3n^2 - 1$$
 et $v_n = n^4 + 5$

5.
$$u_n = 1 + \frac{1}{n}$$
 et $v_n = 1 - \frac{1}{n}$

6.
$$u_n = \ln(n^3)$$
 et $v_n = \ln(n)^3$

7.
$$u_n = \frac{e^n + 3n}{n^2 + 1}$$
 et $v_n = e^n$

8.
$$u_n = \ln\left(1 + \frac{1}{n^2}\right)$$
 et $v_n = \frac{n+1}{3n^2 + 1}$

9.
$$u_n = n^5$$
 et $v_n = 2^n$

10.
$$u_n = 3$$
 et $v_n = e^{-n}$

11.
$$u_n = \frac{2}{n^2}$$
 et $v_n = \frac{1}{n^2 + n + 1}$

Exercice 3. (*) Déterminer des équivalents simples des suites suivantes :

1.
$$(n^4 + 3 + 3^n)(e^{-2n} + 1)$$

5.
$$\binom{n}{k}$$
 (avec $k \in \mathbb{N}^*$ fixé). 8. $\frac{e^{1/2n} - 1}{e^{1/2n} + 1}$

$$8. \ \frac{e^{1/2n} - 1}{e^{1/2n} + 1}$$

2.
$$e^{\frac{1}{\ln(n)}} - 1$$

6.
$$\left(\frac{2^n+1}{2^n}\right)^3-1$$

9.
$$e^{n+1-\frac{1}{n}}$$

4.
$$\frac{1}{n-1} - \frac{1}{n+1}$$

3. $\ln(1+e^{-n^2})$.

7.
$$\ln(n^2 + n + 1)$$

10.
$$\left(1+\frac{1}{n}\right)^{3/5} (1+n)^{5/3}$$

Exercice 4. (*)

Calculer les limites pour $n \to +\infty$ des suites suivantes en utilisant des relations de comparaison :

1.
$$\frac{n^3 + e^n - \ln(n)}{n^4 - n^2 + \sqrt{n}}$$

$$4. \frac{e^{-n}}{\ln\left(\frac{n+1}{n}\right)}$$

$$7. \left(1 + \frac{1}{n}\right)^n$$

8. $(1+e^{-n})^{n^2}$

2.
$$(n^2 - n) \left(\sqrt{1 + \frac{1}{n^2}} - 1 \right)$$
 5. $\frac{\ln(n^3 - 2)}{\sqrt{3n^2 + 1}}$

5.
$$\frac{\ln(n^3 - 2)}{\sqrt{3n^2 + 1}}$$

9.
$$\binom{n}{k} x^n$$
 (avec $k \in \mathbb{N}^*$ fixé, et $x \in [0,1[)$

3.
$$(2n-2)\ln\left(\frac{n+3}{n+2}\right)$$
 6. $\frac{\ln\left(\frac{2^n+1}{2^n}\right)}{2^{-n+1}}$

$$6. \frac{\ln\left(\frac{2^n+1}{2^n}\right)}{2^{-n+1}}$$

(on écrira x^n sous forme d'une exponentielle)

Exercice 5. Déterminer un équivalent de (u_n) sous les hypothèses suivantes :

$$1. \lim_{n \to +\infty} u_n = 3$$

$$2. \lim_{n \to +\infty} n u_n = 2$$

3.
$$\forall n \in \mathbb{N}^*, n+1 \le u_n \le n+3$$

4.
$$\forall n \in \mathbb{N}, n-1 \le u_n^2 \le n+3\sqrt{n} \text{ (avec } \forall n \in \mathbb{N}, u_n \ge 0)$$

5.
$$\forall n \in \mathbb{N}, 0 \le u_n - e^n \le n$$

Exercice 6. Soient (u_n) et (v_n) deux suites réelles.

- 1. Donner une condition nécessaire et suffisante sur ces deux suites pour que $e^{u_n} \underset{n \to +\infty}{\sim} e^{v_n}$. Donner un exemple où $u_n \underset{n \to +\infty}{\sim} v_n$, et $e^{u_n} = o(e^{v_n})$.
- 2. On suppose que:
 - (u_n) et (v_n) sont à termes strictement positifs ;
 - $u_n \sim v_n$
 - (u_n) et (v_n) tendent vers une limite ℓ , où $\ell \in \mathbb{R}_+$ ou $\ell = +\infty$.

Montrer que si $\ell \neq 1$, alors $\ln(u_n) \sim \lim_{n \to +\infty} \ln(v_n)$. Montrer que si $\ell = 1$, on ne peut rien conclure.

2

Exercice 7. Soit k > 0. On cherche à montrer que $k^n = o(n!)$. On note, pour $n \in \mathbb{N}^*$, $u_n = \frac{k^n}{n!}$.

- 1. Donner $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$. En déduire qu'il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Rightarrow \frac{u_{n+1}}{u_n} \le \frac{1}{2}$.
- 2. Montrer que : $\forall n \ge n_0, u_n \le \frac{u_{n_0}}{2^{n-n_0}}$.
- 3. Montrer que $\lim_{n \to +\infty} u_n = 0$. Conclure.

Exercice 8. La série harmonique.

On pose, pour tout $n \in \mathbb{N}^*$:

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que : $\forall x > -1$, $\ln(1+x) \le x$; en déduire que : $\forall k \in \mathbb{N}^*$, $\frac{1}{k} \ge \ln(k+1) \ln k$.
- 2. En déduire que $H_n \to +\infty$. On va maintenant montrer que $H_n \underset{n \to +\infty}{\sim} \ln n$.
- 3. Soit la suite $u_n = H_n \ln n$. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \ge 0$. Montrer que pour tout entier $n \ge 2$, $u_n \le u_{n-1}$.
- 4. En déduire que (u_n) converge, puis que $H_n \underset{n \to +\infty}{\sim} \ln n$.

NB: On note traditionnellement $\gamma = \lim_{n \to +\infty} (H_n - \ln(n))$. On a $\gamma \simeq 0.57721566...$; γ est nommée constante d'Euler-Mascheroni.

3

Exercice 9 (Équivalent d'une somme par comparaison série-intégrale).

Soit $p \in \mathbb{N}$, et $S_N = \sum_{k=1}^N k^p$. On cherche à donner un équivalent de S_N pour $N \to +\infty$.

- 1. Montrer: $\forall k \in \mathbb{N}^*$, $\int_{k-1}^k t^p dt \le k^p \le \int_k^{k+1} t^p dt$.
- 2. En déduire un encadrement de S_N pour $N \in \mathbb{N}^*$.
- 3. Montrer: $S_N \sim \frac{N^{p+1}}{p+1}$.
- 4. Vérifier à l'aide de formules connues votre résultat pour $p \in \{1,2,3\}$.

Indications

- 1. Chercher un contre-exemple avec $u_n, v_n \to +\infty$
 - 2. Chercher un contre-exemple avec $u_n, v_n \rightarrow 0$

3.

- 4. $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = ?$
- 5. Penser à des suites telles que $1 + u_n$ et $1 + v_n$ tendent vers 0.

6.

- 7. Non car le ln « écrase les différences » . Contre-exemple ?
- 2 Si nécessaire, commencer par chercher des équivalents simples de u_n et de v_n ; comparer ensuite ces équivalents.
- **3** 1.
 - 2.
 - 3.
 - 4. Mettre au même dénominateur.

5.
$$\binom{n}{k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}$$

6

- 7. $\ln(n^2 + n + 1) \sim 2\ln(n)$ mais le montrer correctement!! (sans passer les équivalents au logarithme)
- 8. Le dénominateur tend vers 2
- 9. Les équivalents ne passent pas à l'exponentielle...
- 10. ... par contre ils passent à une puissance (fixe).
- **4** 1.
 - 2. Écrire la racine carrée comme une puissance
 - 3. Écrire le contenu du ln comme $1 + x_n$ où $x_n \to 0$.
 - 1
 - 5.
 - 6.
 - 7. Puissance non fixe: on met sous forme exponentielle.
 - 8. idem
 - 9.
- ${f 5}$ Pour les encadrements : diviser par ce qu'il faut pour obtenir, par encadrement, une quantité qui tend vers 1. Conclure par définition de la relation \sim .
- **6** 1.

$$e^{u_n} \sim e^{v_n} \Leftrightarrow \frac{e^{u_n}}{e^{v_n}} \to 1 \Leftrightarrow \dots$$

2. On écrit

$$\frac{\ln(u_n)}{\ln(v_n)} = \frac{\ln(v_n) + \ln\left(\frac{u_n}{v_n}\right)}{\ln(v_n)}$$

On connaît la limite de $\frac{u_n}{v_n}$; on discute alors la limite de $\ln(v_n)$.

Si $v_n \to 1$ on ne peut pas conclure avec le calcul précédent : chercher un contre-exemple avec des suites de la forme $1 + \alpha_n$, $\alpha_n \to 0$.

- 7 1. Définition de la limite!
 - 2. Utiliser la question précédente ; qui permet de « passer de u_n à u_{n+1} » .

3.

8 1. Étude ultra-classique de la fonction $x \mapsto \ln(1+x) - x \operatorname{sur}] - 1, +\infty[$. $\ln(k+1) - \ln(k) = \ln\left(1 + \frac{1}{k}\right)$

- 2. Sommer cette dernière inégalité sur k Par minoration on aura ensuite la limite voulue.
- 3. Montrer que $u_n u_{n-1} = \frac{1}{n} + \ln\left(1 \frac{1}{n}\right)$ et utiliser l'inégalité de la question 1 (est-ce légitime ?)
- $4. \ \ Pour \ obtenir \ l'équivalent, \ on \ revient \ \grave{a} \ la \ définition: \'etude \ du \ quotient.$
- 9 1. Croissance de l'intégrale : encadrer simplement t^p pour $t \in [k, k+1]$ (resp. $t \in [k-1, k]$).
 - 2. Sommer!
 - 3. Calculer les intégrales de l'encadrement précédent.
 - 4.