Devoir surveillé n°4 Corrigé

Exercice 1

Partie I. Étude d'une fonction f.

On considère la fonction définie sur l'ensemble des réels positifs par :

$$\begin{cases} f(x) = \frac{1 - e^{-x}}{x} & \text{si } x > 0 \\ f(0) = 1 \end{cases}$$

1. Écrire le développement limité de f(x) à l'ordre 1, au voisinage de 0. En déduire que f est continue sur $[0, +\infty[$.

Pour $x \to 0$ on a aussi $-x \to 0$, et donc

$$e^{-x} = 1 + (-x) + \frac{(-x)^2}{2} + o((-x)^2) = 1 - x + \frac{x^2}{2} + o(x^2)$$

ce qui donne $f(x) = 1 - \frac{x}{2} + o(x)$ au voisinage de 0.

f est continue sur $]0,+\infty[$ comme composée de fonctions continues ; et de plus avec le DL précédent $\lim_{x\to 0} f(x) = 1 = f(0)$ ce qui donne la continuité en 0.

Finalement f est bien continue sur $[0, +\infty[$.

2. Déduire du même développement limité que f est dérivable en 0, et donner la valeur de f'(0).

Le taux de variation en 0 s'écrit

$$\frac{f(x) - f(0)}{x - 0} = \frac{1 - \frac{x}{2} + o(x) - 1}{x} = -\frac{1}{2} + o(1)$$

et donc
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2}$$
.

3. Justifier la dérivabilité de f sur l'intervalle $]0,+\infty[$ puis déterminer la fonction ϕ telle que :

$$\forall x > 0, \ f'(x) = \frac{\varphi(x)}{x^2}$$

Sur $]0, +\infty[$, f est dérivable comme composée de fonctions dérivables sur leurs ensembles de définition.

Le calcul de la dérivée donne :

$$\forall x > 0, \ f'(x) = \frac{e^{-x} \times x - (1 - e^{-x}) \times 1}{x^2} = \frac{(1 + x)e^{-x} - 1}{x^2}$$

ce qui donne $\varphi(x) = (1+x)e^{-x} - 1$.

4. Étudier les variations de φ . En déduire le tableau de variation de f qui sera complété par la limite de f en $+\infty$.

Cette fonction φ est à son tour dérivable sur \mathbb{R}_+ ; et

$$\forall x \ge 0, \ \phi'(x) = e^{-x} + (1+x)(-e^{-x}) = -xe^{-x} \le 0$$

donc φ est décroissante sur \mathbb{R}_+ .

Comme $\varphi(0)=0$, on en déduit que φ est négative sur \mathbb{R}_+ ; ainsi $f'(x)=\frac{\varphi(x)}{x^2}$ est négative pour tout x>0 (car le dénominateur x^2 est >0). De plus $f'(0)=-\frac{1}{2}\leq 0$; de sorte que finalement :

En $+\infty$, $e^{-x} \to 0$ et $x \to +\infty$ donc $f(x) \to 0$ par quotient.

х	0	+∞
f(x)	1	0

Partie II. Étude d'une suite.

On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ u_n = \int_0^n \frac{e^{-\frac{u}{n}}}{1+u} \, \mathrm{d}u$$

5. Démontrer que pour tout entier naturel n non nul :

$$u_n \ge \frac{1}{e} \ln(n+1)$$

Donner la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

Il s'agit de minorer la fonction à intégrer.

Soit n > 0. On a:

$$\forall u \in [0, n], \ 0 \le u \le n$$

$$\Rightarrow -1 \le -\frac{u}{n} \le 0$$

$$\Rightarrow e^{-1} \le e^{-u/n} \le 1$$

$$\Rightarrow \frac{e^{-1}}{1+u} \le \frac{e^{-u/n}}{1+u} \le \frac{1}{1+u} \quad \text{en divisant par } 1+u > 0$$

et on obtient en particulier:

$$\forall u \in [0, n], \ \frac{e^{-u/n}}{1+u} \ge \frac{e^{-1}}{1+u}$$

d'où en intégrant sur [0, n]:

$$\int_0^n \frac{e^{-u/n}}{1+u} \, \mathrm{d}u \ge \int_0^n \frac{e^{-1}}{1+u} \, \mathrm{d}u = e^{-1} \int_0^n \frac{1}{1+u} \, \mathrm{d}u = e^{-1} \Big[\ln(1+u) \Big]_0^n = e^{-1} \ln(n+1)$$

ce qui donne le résultat voulu.

6. Prouver l'existence de l'intégrale $\int_0^1 f(x) dx$.

D'après la question 1, f est continue sur [0,1] (**crochets fermés !**) donc $\int_0^1 f(x) dx$ est bien définie.

7. **Montrer:** $\forall x \in [0,1], \ n \frac{1 - e^{-x}}{1 + nx} \le f(x).$

Pour $x \in]0,1]$ on utilise l'expression de f(x): $f(x) = \frac{1 - e^{-x}}{x}$.

Avec $1 + nx \ge nx$ on a:

$$\forall x \in]0,1], \ n \frac{1 - e^{-x}}{1 + nx} \le n \frac{1 - e^{-x}}{nx} = \frac{1 - e^{-x}}{x} = f(x)$$

2

Pour x = 0: $n \frac{1 - e^{-0}}{1 + n \times 0} = 0$ et f(0) = 1; $0 \le 1$ donc l'inégalité est encore vraie.

8. Montrer que, pour tout entier naturel n non nul :

$$0 \le \int_0^n \frac{1}{1+u} \, \mathrm{d}u - u_n \le \int_0^1 f(x) \, \mathrm{d}x$$

Examinons le terme central de cet encadrement :

$$\int_0^n \frac{1}{1+u} \, \mathrm{d} u - u_n = \int_0^n \frac{1}{1+u} \, \mathrm{d} u - \int_0^n \frac{e^{-u/n}}{1+u} \, \mathrm{d} u = \int_0^n \frac{1-e^{-u/n}}{1+u} \, \mathrm{d} u$$

Comme $u \ge 0$ sur le domaine d'intégration, on a $e^{-u/n} \le 1$; et donc $\forall u \in [0, n], \frac{1 - e^{-u/n}}{1 + u} \ge 0$. D'où par positivité de l'intégrale (les bornes sont bien dans l'ordre croissant) :

$$\int_0^n \frac{1}{1+u} \, \mathrm{d}u - u_n = \int_0^n \frac{1 - e^{-u/n}}{1+u} \, \mathrm{d}u \ge 0$$

On pose maintenant $x = \frac{u}{n}$ dans l'intégrale. Alors u = nx et du = ndx.

$$\int_0^n \frac{1}{1+u} du - u_n = \int_0^n \frac{1 - e^{-x/n}}{1+x} dx = \int_0^1 \frac{1 - e^{-x}}{1+nx} n dx = \int_0^1 n \frac{1 - e^{-x}}{1+nx} dx$$

On reconnaît dans cette dernière quantité le majorant de la question précédente. Comme :

$$\forall x \in [0,1], \ n \frac{1 - e^{-x}}{1 + nx} \le f(x)$$

on a en intégrant sur [0,1]:

$$\int_0^1 n \frac{1 - e^{-x}}{1 + nx} dx \le \int_0^1 f(x) dx$$

On a donc finalement montré :

$$\int_0^n \frac{1}{1+u} \, \mathrm{d}u - u_n = n \int_0^1 \frac{1-e^{-x}}{1+nx} \, \mathrm{d}x \le \int_0^1 f(x) \, \mathrm{d}x$$

ce qui donne l'autre inégalité de l'encadrement

9. Donner alors un équivalent de u_n lorsque n tend vers $+\infty$.

En calculant l'intégrale, l'encadrement montré dans la question précédente s'écrit :

$$0 \le \ln(1+n) - u_n \le \int_0^1 f(x) \, \mathrm{d}x = I$$

On note I = $\int_0^1 f(x) dx$: I est un nombre constant!

On divise alors cet encadrement par $\ln(n+1)$ (> 0 dès que $n \ge 1$):

$$\forall n \ge 1, \ 0 \le 1 - \frac{u_n}{\ln(1+n)} \le \frac{I}{\ln(1+n)}$$

et on voit par le théorème des gendarmes que

$$\lim_{n\to +\infty} 1 - \frac{u_n}{\ln(1+n)} = 0 \; ; \; \text{ce qui s'écrit aussi} \\ \lim_{n\to +\infty} \frac{u_n}{\ln(1+n)} = 1 \; ; \; \text{et donc finalement}$$

$$u_n \sim \ln(n+1) \sim \ln(n)$$

(dernier équivalent à démontrer par vos soins...)

Exercice 2

Dans ce problème, toutes les variables aléatoires sont supposées définies sur un même espace probabilisé noté $(\Omega, \mathcal{A}, \mathbb{P})$.

PARTIE A: Des résultats préliminaires

Soient U et V deux variables aléatoires à densité indépendantes, de densités respectives f_U et f_V et de fonctions de répartition respectives F_U et F_V . On suppose que les fonctions f_U et f_V sont nulles sur $]-\infty,0$ [et continues sur $]0,+\infty[$.

1. (a) **Justifier:** $\forall t \in [0, +\infty[, 0 \le F_U(t)f_V(t) \le f_V(t)]$.

Une fonction de répartition étant à valeurs dans [0,1] on a :

$$\forall t \in \mathbb{R}_+, 0 \leq F_{IJ}(t) \leq 1$$

d'où le résultat en multipliant par $f_{\nu}(t) \ge 0$.

(b) En déduire que l'intégrale $\int_0^{+\infty} F_U(t) f_V(t) dt$ converge.

 f_V est continue sur \mathbb{R}_+ d'après l'énoncé ; et F_U l'est comme fonction de répartition d'une variable à densité.

Ainsi $t \mapsto F_{\mathrm{U}}(t) f_{\mathrm{V}}(t)$ est continue sur \mathbb{R}_+ .

De plus $\int_0^{+\infty} f_V(t) dt$ converge donc d'après la question précédente et par comparaison de fonctions positives, l'intégrale $\int_0^{+\infty} F_U(t) f_V(t) dt$ converge.

On admet le résultat suivant :

$$\mathbb{P}([\mathbf{U} \leq \mathbf{V}]) = \int_0^{+\infty} \mathbf{F}_{\mathbf{U}}(t) f_{\mathbf{V}}(t) dt$$

2. **En déduire:** $\mathbb{P}([U > V]) = \int_{0}^{+\infty} (1 - F_{U}(t)) f_{V}(t) dt$.

On commence par passer au complémentaire :

$$\mathbb{P}([U > V]) = 1 - \mathbb{P}([U \le V]) = 1 - \int_{0}^{+\infty} F_{U}(t) f_{V}(t) dt$$

On observe ensuite que

$$1 = \int_{-\infty}^{+\infty} f_{V}(t) dt = \int_{0}^{+\infty} f_{V}(t) dt$$

car f_V est une densité, nulle sur \mathbb{R}_- .

Finalement

$$\mathbb{P}([\mathsf{U} > \mathsf{V}]) = 1 - \mathbb{P}([\mathsf{U} \leq \mathsf{V}]) = \int_0^{+\infty} f_\mathsf{V}(t) \, \mathrm{d}t - \int_0^{+\infty} \mathsf{F}_\mathsf{U}(t) f_\mathsf{V}(t) \, \mathrm{d}t = \int_0^{+\infty} (1 - \mathsf{F}_\mathsf{U}(t)) \, f_\mathsf{V}(t) \, \mathrm{d}t$$

- 3. Exemple: Soient $\lambda, \mu \in \mathbb{R}^{+*}$. On suppose dans cette question que U suit la loi exponentielle de paramètre λ et que V suit la loi exponentielle de paramètre μ .
 - (a) Rappeler, pour tout t de \mathbb{R}^+ , une expression de $F_U(t)$ et de $f_V(t)$.

Cours (on demande les expressions sur \mathbb{R}_+):

$$\forall t \ge 0, F_{U}(t) = 1 - e^{-\lambda t} \text{ et } f_{V}(t) = \mu e^{-\mu t}$$

(b) En déduire: $\mathbb{P}([U > V]) = \frac{\mu}{\lambda + \mu}$.

Pour les lois exponentielles, f_U et f_V sont bien nulles sur] $-\infty$,0 [et continues sur $[0,+\infty[$. On peut alors appliquer la question 2, et on calcule l'intégrale déterminée précédemment :

$$\mathbb{P}([\mathbf{U} > \mathbf{V}]) = \int_0^{+\infty} (1 - \mathbf{F}_{\mathbf{U}}(t)) f_{\mathbf{V}}(t) dt$$
$$= \int_0^{+\infty} e^{-\lambda t} \mu e^{-\mu t} dt$$
$$= \mu \int_0^{+\infty} e^{-(\lambda + \mu)t} dt$$

et on peut utiliser une intégrale usuelle : l'intégrale de la densité de $\mathscr{E}(\lambda + \mu)$ valant 1, on a

$$\int_0^{+\infty} (\lambda + \mu) e^{-(\lambda + \mu)t} dt = 1$$

ce qui donne

$$\int_0^{+\infty} e^{-(\lambda+\mu)t} \, \mathrm{d}t = \frac{1}{\lambda+\mu}$$

et enfin

$$\mathbb{P}([U > V]) = \mu \int_0^{+\infty} e^{-(\lambda + \mu)t} dt = \frac{\mu}{\lambda + \mu}$$

PARTIE B: Une application

Soit $\lambda \in \mathbb{R}^{+*}$. On considère une suite $(T_n)_{n \in \mathbb{N}}$ de variables aléatoires indépendantes, suivant toutes la loi exponentielle de paramètre λ .

On définit ensuite la variable aléatoire N égale au plus petit entier k de \mathbb{N}^* tel que $T_k \leq T_0$ si un tel entier existe, et égale à 0 sinon.

- 4. Soit $n \in \mathbb{N}^*$. On définit la variable aléatoire M_n par : $M_n = \min(T_1, ..., T_n)$.
 - (a) Calculer, pour tout $t de \mathbb{R}^+$, $\mathbb{P}([M_n > t])$.

Vu en TD, loi de l'inf de n variables exponentielles :

$$\forall t \ge 0, \ \mathbb{P}(M_n > t) = e^{-n\lambda t}$$

(b) En déduire la fonction de répartition de $M_n \operatorname{sur} \mathbb{R}$.

Reconnaître la loi de M_n et préciser son (ses) paramètre(s).

 M_n est le min de n valeurs positives (tirages de $X \hookrightarrow \mathcal{E}(\lambda)$) doc M_n est à valeurs positives. On en déduit $\forall t < 0$, $\mathbb{P}(M_n \le t) = 0$.

De plus, $\forall t \ge 0$, $\mathbb{P}(M_n \le t) = 1 - \mathbb{P}(M_n > t) = 1 - e^{-n\lambda t}$ Finalement la fonction de répartition de M_n est

$$F_n: t \mapsto \begin{cases} 0 \text{ si } t < 0 \\ 1 - e^{-n\lambda t} \text{ si } t \ge 0 \end{cases}$$

et on reconnaît bien sûr $M_n \hookrightarrow \mathcal{E}(n\lambda)$.

5. (a) **Montrer**: $\mathbb{P}([N=1]) = \mathbb{P}([T_1 \le T_0]) = \frac{1}{2}$.

D'après les définitions, on a N = 1 ssi le plus petit entier k > 0 tel que $T_k \le T_0$ est k = 1; donc ssi $T_1 \le T_0$.

On a bien $\mathbb{P}([N=1]) = \mathbb{P}([T_1 \leq T_0])$.

 T_0 et T_1 sont indépendantes et suivent des lois exponentielles ; la dernière question de la partie I s'applique donc avec $\lambda = \mu$ et on trouve

$$\mathbb{P}([N=1]) = \mathbb{P}([T_1 \leqslant T_0]) = \frac{\lambda}{\lambda + \lambda} = \frac{1}{2}$$

(b) **Justifier:** $\forall n \in \mathbb{N}^*$, $[N > n] = [M_n > T_0]$.

En déduire, pour tout n de \mathbb{N}^* , une expression de $\mathbb{P}([\mathbb{N} > n])$ en fonction de n.

Pour tout $n \in \mathbb{N}^*$, on a $[\mathbb{N} > n]$ ssi le premier entier k > 0 tel que $T_k \le T_0$ est > n; donc ssi $T_1 > T_0$, $T_2 > T_0$,..., $T_n > T_0$; donc ssi le plus petit des nombres T_1 ,..., T_n est $> T_0$ (observation usuelle quand on calcule la loi du min).

Autrement dit:

$$(N > n) = \bigcap_{k=1}^{n} (T_k > T_0) = (\min(T_1, ..., T_n) > T_0) = (M_n > T_0)$$

(c) Montrer alors: $\forall n \in \mathbb{N} \setminus \{0,1\}, \mathbb{P}([\mathbb{N}=n]) = \frac{1}{n(n+1)}$.

Les variables $T_1, ..., T_n$ sont indépendantes, suivent $\mathcal{E}(\lambda)$, donc on a vu que $M_n \hookrightarrow \mathcal{E}(n\lambda)$.

De plus, les variables $T_0, T_1, ..., T_n$ sont indépendantes, donc par lemme des coalitions $M_n = \min(T_1, ..., T_n)$ et T_0 sont indépendantes.

D'après la partie 1, avec $M_n \hookrightarrow \mathcal{E}(n\lambda)$ et $T_0 \hookrightarrow \mathcal{E}(\lambda)$:

$$\mathbb{P}(N > n) = \mathbb{P}(M_n > T_0) = \frac{\lambda}{n\lambda + \lambda} = \frac{1}{n+1}$$

puis classiquement, pour tout $n \ge 2$, et comme alors n et n-1 sont dans \mathbb{N}^* :

$$\mathbb{P}(N = n) = \mathbb{P}(N > n - 1) - \mathbb{P}(N > n) = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$$

(d) En déduire la valeur de $\mathbb{P}([N=0])$.

On observe que cette dernière formule s'étend à n=1 d'après la question 5a. Par définition de N, N(Ω) = \mathbb{N} donc

$$\mathbb{P}(N=0) = 1 - \sum_{n=1}^{+\infty} \mathbb{P}(N=n) = 1 - \sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$

Or, si $M \in \mathbb{N}^*$, un téléscopage donne :

$$\sum_{n=1}^{M} \frac{1}{n(n+1)} = \sum_{n=1}^{M} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{M+1}$$

et pour $M \to +\infty$ on a

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$$

et donc P(N = 0) = 0.

6. La variable aléatoire N admet-elle une espérance ? Si oui, la calculer.

 $\forall \ n \in \mathbb{N}^*, \ |n\mathbb{P}(\mathbb{N}=n)| = \frac{1}{n+1} \ \text{donc} \ |n\mathbb{P}(\mathbb{N}=n)| \underset{n \to +\infty}{\sim} \frac{1}{n} \ \text{donc par comparaison de SATP} \ \underline{\sum} \ n\mathbb{P}(\mathbb{N}=n) \ \text{ne converge pas absolument} : \mathbb{N} \ \text{n'admet pas d'espérance}.$

7. Informatique.

En Python, après l'import

```
import numpy.random as rd
```

la commande rd. exponential (a) renvoie un tirage d'une variable aléatoire suivant la loi exponentielle $\mathcal{E}\left(\frac{1}{a}\right)$.

(a) Compléter la fonction suivante, qui simule la variable aléatoire N décrite ci-dessus :

On peut écrire :

```
def tirage_N(la): # ici "la" est le paramètre lambda de la loi exp.
  T0 = rd.exponential(1/la)
  N = 1
  while rd.exponential(1/la)>T0:
      N = N+1
  return N
```

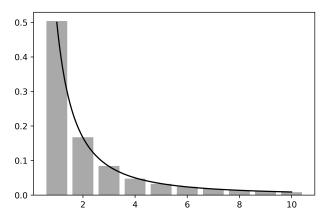
On effectue des tirages d'une variable de La loi exponentielle λ par rd. exponential (1/la). Ensuite, on commence par tirer une valeur de T_0 , puis on effectue des tirages successifs de variables suivant cette même loi jusqu'à obtenir une valeur inférieure à T_0 (et donc on continue tant que la valeur tirée est $> T_0$).

N compte le nombre de tirages nécessaires.

(b) On exécute alors les instructions suivantes :

```
1 L1 = np.zeros(10)
2 for k in range(10000):
3    n = tirage_N(1)
4    if n<=10:
5         L1[n-1] = L1[n-1] + 1
6 freq = L1/10000
7
8 plt.bar(range(1,11), freq, color="darkgrey")
9 X = np.linspace(1,10,1000)
10 plt.plot(X,1/(X*(X+1)), color='black')
11 plt.show()</pre>
```

et on obtient la figure:



Expliquer ce que fait ce code, et en quoi il illustre un résultat obtenu dans les questions précédentes.

Ce code initialise une liste L_1 dont les composantes comptent le nombre d'apparitions de N=1, N=2, ..., N=10 sur 10000 tirages de N. En divisant par 10000 on obtient alors une approximation des $\mathbb{P}(N=i)$ pour $i \in [1,10]$. Ces probas sont représentées par les barres.

Ensuite on y superpose la courbe représentative de $x \mapsto \frac{1}{x(x+1)}$ (lignes 9 et 10) et on observe que les barres s'alignent bien sur la courbe.

Ceci illustre donc que pour $n \in [1, 10]$, $\mathbb{P}(N = n) = \frac{1}{n(n+1)}$.

Exercice 3

Pour tout $n \in \mathbb{N}$, on définit la fonction $g_n : [1, +\infty[\to \mathbb{R} \text{ par : }$

$$g_n(x) = \frac{(\ln(x))^n}{x^2}.$$

et on pose $I_n = \int_1^{+\infty} g_n(x) dx$.

1. (a) Montrer que pour tout $n \ge 1$:

$$g_n(x) = o\left(\frac{1}{x^{3/2}}\right)$$

Calculons $\lim_{x \to +\infty} x^{3/2} g_n(x)$: $x^{3/2} g_n(x) = \frac{\ln(x)^n}{\sqrt{x}} \text{ et cette dernière expression tend vers 0 en } +\infty \text{ par croissances comparées ; ce }$ qui donne $\lim_{x \to +\infty} x^{3/2} g_n(x) = 0$ et donc $g_n(x) = 0$ et $\lim_{x \to +\infty} o\left(\frac{1}{x^{3/2}}\right)$.

(b) Montrer que l'intégrale I₀ est convergente et la calculer.

$$I_0 = \int_1^{+\infty} \frac{1}{t^2} dt.$$
Soit $A \ge 1$: on a
$$\int_1^A \frac{1}{t^2} dt = \left[-\frac{1}{t} \right]_1^A = 1 - \frac{1}{A} \xrightarrow{A \to +\infty} 1$$

donc I_0 converge, et $I_0 = 1$.

(c) Montrer que pour tout entier $n \ge 1$, l'intégrale I_n est convergente.

$$I_n = \int_1^{+\infty} g_n(x) dx$$
. La fonction g_n est continue sur $[1, +\infty[$; de plus on a vu que $g_n(x) = \int_1^{+\infty} g_n(x) dx$. La fonction g_n est continue sur $[1, +\infty[$; de plus on a vu que $g_n(x) = \int_1^{+\infty} g_n(x) dx$.

Par critère de Riemann $\int_{1}^{+\infty} \frac{1}{x^{3/2}} dx$ converge, donc par comparaison de fonctions positives, $I_n = \int_{1}^{+\infty} g_n(x) dx$ converge.

(d) À l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, I_{n+1} = (n+1)I_n$$

On se place sur [1, A] avec $A \ge 1$.

$$\int_{1}^{A} g_{n+1}(t) dt = \int_{1}^{A} \frac{(\ln(t)^{n+1})}{t^{2}} dt$$

On peut dériver $t\mapsto \ln(t)^{n+1}$ en $t\mapsto (n+1)\frac{1}{t}(\ln(t))^n$; et intégrer $t\mapsto \frac{1}{t^2}$ en $t\mapsto -\frac{1}{t}$. Toutes ces fonctions sont \mathscr{C}^1 donc l'IPP est légitime; et on a

$$\int_{1}^{A} \frac{(\ln(t)^{n+1})}{t^{2}} dt = \left[-\frac{1}{t} \ln(t)^{n+1} \right]_{1}^{A} + \int_{1}^{A} \frac{1}{t} n \frac{1}{t} (\ln(t))^{n} dt$$
$$= -\frac{\ln(A)^{n+1}}{A} + (n+1) \int_{1}^{A} \frac{(\ln(t))^{n}}{t^{2}} dt$$

En faisant tendre A $\rightarrow +\infty$, $\frac{\ln(A)^{n+1}}{A} \rightarrow 0$ et on obtient bien

$$\int_{1}^{+\infty} \frac{(\ln(t)^{n+1}}{t^2} dt = (n+1) \int_{1}^{+\infty} \frac{(\ln(t))^n}{t^2} dt$$

(on a vu que ces intégrales convergeaient) ce qui est l'égalité demandée.

(e) En déduire que :

$$\forall n \in \mathbb{N}, I_n = n!$$

C'est évidemment une récurrence.

- $I_0 = 1 = 0!$ (vu en question 1b)
- Si $I_n = n!$, alors $I_{n+1} = (n+1)I_n = (n+1)n! = (n+1)!$; d'où l'hérédité.

La propriété est bien établie pour tout $n \in \mathbb{N}$.

2. Pour tout $n \in \mathbb{N}$, on définit la fonction f_n par :

$$\forall x \in \mathbb{R}, \ f_n(x) = \begin{cases} 0 & \text{si } x < 1 \\ \frac{1}{n!} g_n(x) & \text{si } x \ge 1 \end{cases}$$

(a) Montrer que pour tout $n \in \mathbb{N}$, f_n est une densité de probabilité.

3 propriétés :

- $0 \ge 0$, g_n est positive sur $[1, +\infty[$ donc $\frac{1}{n!}g_n(x) \ge 0$ sur $[1, +\infty[$; ainsi f_n est positive sur \mathbb{R} .
- g_n étant continue sur \mathbb{R}_+ , f_n est continue sur \mathbb{R} sauf éventuellement en 0.

8

•
$$\int_{-\infty}^{+\infty} f_n(x) dx = \frac{1}{n!} \int_{1}^{+\infty} g_n(x) dx = \frac{I_n}{n!} = 1$$

 f_n est donc bien une densité de probabilité.

On considère à présent, pour tout $n \in \mathbb{N}$, X_n une variable aléatoire réelle admettant f_n pour densité. On notera F_n la fonction de répartition de X_n .

(b) La variable aléatoire X_n admet-elle une espérance ?

On examine la convergence absolue de l'intégrale $\int_{-\infty}^{+\infty} x f_n(x) \, \mathrm{d}x$ donc la convergence de $\int_{1}^{+\infty} x g_n(x) \, \mathrm{d}x$ (la quantité à intégrer étant positive sur $[1,+\infty[$ on peut omettre la valeur absolue). On a l'équivalent:

$$xg_n(x) = \frac{x}{x^2} \ln(x)^n = \frac{\ln(x)^n}{x}$$

et pour $x \ge 3$, $\frac{\ln(x)^n}{x} \ge \frac{1}{x} \ge 0$. Ainsi, l'intégrale $\int_3^{+\infty} \frac{\ln(x)^n}{x} \, \mathrm{d}x$ diverge par comparaison à une intégrale de Riemann divergente ; et par équivalence de fonctions positives $\int_{3}^{+\infty} x g_n(x) dx$ diverge, et donc $\int_{1}^{+\infty} x g_n(x) dx$ aussi. Ainsi, X_n n'admet pas d'espérance.

(c) Que vaut $F_n(x)$ pour x < 1 et $n \in \mathbb{N}$?

On sait que $F_n(x) = \int_{-\infty}^{x} f_n(t) dt$. Si x < 1, f_n est nulle sur $]-\infty, x]$ et donc $F_n(x) = \int_{-\infty}^{x} 0 dt = 0$.

(d) Calculer $F_0(x)$ pour $x \ge 1$.

$$F_0(x) = \int_{-\infty}^x f_0(t) dt = \int_1^x g_0(t) dt = \left[-\frac{1}{t} \right]_0^x = 1 - \frac{1}{x}.$$

(e) Soit $x \ge 1$ et $k \in \mathbb{N}^*$. Montrer que:

$$F_k(x) = -\frac{1}{k!} \frac{(\ln(x))^k}{x} + F_{k-1}(x)$$

C'est une IPP similaire à celle de la guestion 1d.

$$\begin{aligned} \mathbf{F}_k(x) &= \int_{-\infty}^x f_k(t) \, \mathrm{d}t = \frac{1}{k!} \int_1^x \frac{\ln(t)^k}{t^2} \, \mathrm{d}t \\ &= \frac{1}{k!} \left(\left[-\frac{1}{t} \ln(t)^k \right]_1^x + \int_1^x \frac{1}{t} k \frac{1}{t} (\ln(t))^{k-1} \, \mathrm{d}t \right) \\ &= -\frac{1}{k!} \frac{\ln(x)^k}{x} + \frac{k}{k!} \int_1^x \frac{(\ln(t))^{k-1}}{t^2} \, \mathrm{d}t \\ &= -\frac{1}{k!} \frac{\ln(x)^k}{x} + \frac{1}{(k-1)!} \int_1^x \frac{(\ln(t))^{k-1}}{t^2} \, \mathrm{d}t \end{aligned}$$

et on reconnaît bien

$$F_k(x) = -\frac{1}{k!} \frac{(\ln(1+x))^k}{1+x} + F_{k-1}(x)$$

(f) **En déduire**: $\forall x \ge 1$, $\forall n \in \mathbb{N}$, $F_n(x) = 1 - \sum_{k=0}^n \frac{1}{k!} \frac{\ln(x)^k}{x}$.

On peut procéder par récurrence avec $\mathscr{P}(n)$: « $\forall x \ge 1$, $F_n(x) = 1 - \sum_{k=0}^n \frac{1}{k!} \frac{\ln(x)^k}{x}$ » ; ou faire un téléscopage : la question précédente montre que

$$\forall, k \in \mathbb{N}^*, F_k(x) - F_{k-1}(x) = -\frac{1}{k!} \frac{(\ln(x))^k}{x}$$

et on peut sommer cela de k = 1 à n (avec $n \ge 1$):

$$\sum_{k=1}^{n} \left(F_k(x) - F_{k-1}(x) \right) = -\sum_{k=1}^{n} \frac{1}{k!} \frac{(\ln(x))^k}{1+x}$$

$$F_n(x) - F_0(x) = -\sum_{k=1}^{n} \frac{1}{k!} \frac{(\ln(x))^k}{x}$$

$$F_n(x) = F_0(x) - \sum_{k=1}^{n} \frac{1}{k!} \frac{(\ln(x))^k}{x}$$

Or $F_0(x) = 1 - \frac{1}{x}$ et on reconnaît dans cette seconde partie le terme k = 0 de la somme : donc

$$F_n(x) = 1 - \sum_{k=0}^{n} \frac{1}{k!} \frac{(\ln(x))^k}{x}$$

Enfin pour n = 0 on cherche à montrer $F_0(x) = 1 - \sum_{k=0}^{0} \frac{1}{k!} \frac{(\ln(x))^k}{x} = 1 - \frac{1}{x}$ ce qui est bel et bien vérifié.

(g) Pour $x \in \mathbb{R}$ fixé, déterminer la limite de $F_n(x)$ lorsque n tend vers $+\infty$.

Pour x < 1, $F_n(x) = 0 \xrightarrow{n \to +\infty} 0$. Pour $x \ge 1$, on reconnaît une série exponentielle!

$$F_n(x) = 1 - \sum_{k=0}^n \frac{1}{k!} \frac{(\ln(x))^k}{x} \xrightarrow{n \to +\infty} 1 - \frac{1}{x} \sum_{k=0}^{+\infty} \frac{(\ln(x))^k}{k!} = 1 - \frac{1}{x} \exp(\ln(x)) = 1 - \frac{x}{x} = 0$$

Ainsi:

$$\forall x \in \mathbb{R}, \lim_{n \to +\infty} F_n(x) = 0$$

- 3. **Pour tout** $n \in \mathbb{N}$, on note $Y_n = \ln(X_n)$.
 - (a) Justifier que Y_n est bien définie. Quelles sont les valeurs prises par Y_n ?

 X_n admet pour densité f_n nulle sur] $-\infty$, 1[, ce qui montre que X_n est à valeurs dans [1, $+\infty$ [; dès lors la quantité $ln(X_n)$ est bien définie.

De plus si X_n est à valeurs dans $[1, +\infty[$, alors $Y_n = \ln(X_n)$ est à valeurs dans $[0, +\infty[$.

(b) Justifier que Y_n admet une espérance et la calculer.

On passe par le théorème de transfert ; on s'intéresse donc à l'intégrale

$$\int_{1}^{+\infty} \ln(x) f_n(x) \, \mathrm{d}x$$

dont on examine la convergence (absolue, mais la quantité intégrée est positive).

$$\int_{1}^{+\infty} \ln(x) f_n(x) \, \mathrm{d}x = \frac{1}{n!} \int_{1}^{+\infty} \ln(x) g_n(x) \, \mathrm{d}x = \frac{1}{n!} \int_{1}^{+\infty} \frac{\ln(x)^{n+1}}{x^2} \, \mathrm{d}x$$

et on reconnaît dans cette dernière intégrale I_{n+1} qui converge bien

On a alors:

$$\mathbb{E}(Y_n) = \int_1^{+\infty} \ln(x) f_n(x) dx = \frac{1}{n!} I_{n+1} = \frac{(n+1)!}{n!} = n+1$$

(c) Justifier que Y_n admet une variance et la calculer.

C'est assez similaire : le moment d'ordre 2 de Y_n est donné par l'intégrale (dont on a aussi vu la convergence):

$$\mathbb{E}(Y_n^2) = \int_1^{+\infty} (\ln(x))^2 f_n(x) \, \mathrm{d}x = \frac{1}{n!} I_{n+2} = \frac{(n+2)!}{n!} = n(n+1)$$

Et on en déduit avec KH

$$V(\mathbf{Y}_n) = \mathbb{E}(\mathbf{Y}_n^2) - \mathbb{E}(\mathbf{Y}_n)^2 = n^2(n+1)^2 - (n+1)^2 = (n+1)^2(n^2-1)$$

(d) On note H_n la fonction de répartition de Y_n . Montrer que :

$$\forall x \in \mathbb{R}, \ H_n(x) = F_n(e^x).$$

On passe par la fonction de répartition :

$$\forall x \in \mathbb{R}, \ H_n(x) = \mathbb{P}(Y_n \le x) = \mathbb{P}(\ln(X_n) \le x)$$

= $\mathbb{P}(X_n \le e^x)$ stricte croissance d'exp sur \mathbb{R}
= $F_n(e^x)$

(e) Montrer que Y_n est une variable aléatoire à densité et donner une densité de Y_n . Quelle loi suit Y_0 ?

 X_n étant à densité, F_n est continue et \mathscr{C}^1 sauf éventuellement en 0. Dès lors $H_n: x \mapsto F_n(e^x)$ l'est également par composition : Y_n est à densité.

On peut avoir H_n explicitement avec la question 2f:

- si x < 0, $e^x < 1$ et alors $H_n(x) = F_n(e^x) = 0$;
- si $x \ge 0$, $e^x \ge 1$ et alors $H_n(x) = F_n(e^x) = 1 \sum_{k=0}^n \frac{1}{k!} \frac{\ln(e^x)^k}{e^x} = 1 \sum_{k=0}^n \frac{1}{k!} x^k e^{-x}$

En dérivant cette expression sur $\mathbb{R} \setminus \{1\}$ et en posant $h_n(1) = 0$ on obtient une densité de Y_n :

$$h_n(x) = \begin{cases} 0 & \text{si } x \le 1 \\ -\sum_{k=0}^n \frac{1}{k!} \left(kx^{k-1} - x^k \right) e^{-x} & \text{si } x > 1 \end{cases}$$
 (*)

C'est en fait assez malhabile ; et il vaut mieux dériver la relation entre H_n et F_n pour faire apparaître la fonction g_n :

$$\forall x \in \mathbb{R}, \ H_n(x) = F_n(e^x).$$

donc en dérivant sur \mathbb{R}^* (le point problématique est celui où $e^x = 1$, donc x = 0):

$$\forall x \in \mathbb{R}^*, \ \mathbf{H}_n'(x) = e^x \mathbf{F}_n'(e^x) = e^x f_n(e^x) = \begin{cases} 0 \ \text{si} \ e^x < 1 \\ \frac{1}{n!} \ g_n(e^x) \ \text{si} \ e^x > 1 \end{cases} = \begin{cases} 0 \ \text{si} \ x < 0 \\ \frac{1}{n!} x^n e^{-x} \ \text{si} \ x > 0 \end{cases}$$

et on pose $h_n(0) = 0$.

(c'est ce que vous retrouverez avec la 1ère méthode en téléscopant dans (*)).

Pour n = 0 on trouve notamment une densité de Y_0 :

$$h_0(x) = \begin{cases} 0 & \text{si } x \le 0 \\ e^{-x} & \text{si } x > 0 \end{cases}$$

et on reconnaît $Y_0 \hookrightarrow \mathcal{E}(1)$.

(f) Montrer que pour tout $k \in \mathbb{N}^*$, Y_0 admet un moment d'ordre k, et que $E(Y_0^k) = k!$.

C'est une formule connue mais pas utilisable directement. Le trick ici est de repasser par les X_n et une formule de transfert.

En procédant comme en 3b et 3c, $Y_0^k = \ln(X_0)^k$ admet une espérance ssi l'intégrale

$$\int_{1}^{+\infty} (\ln(x))^{k} f_{0}(x) dx = \int_{1}^{+\infty} (\ln(x))^{k} \frac{1}{x^{2}} dx = I_{k}$$

converge (absolument mais etc...) ce qui est acquis ; dès lors

$$\mathbb{E}\left(\mathbf{Y}_{0}^{k}\right) = \int_{1}^{+\infty} (\ln(x))^{k} f_{0}(x) \, \mathrm{d}x = \mathbf{I}_{k} = k!$$

11

Exercice 4

Le but de cet exercice est de calculer $\lim_{n\to+\infty}\int_0^{+\infty}\frac{1}{1+t+t^n}\,\mathrm{d}t$.

Pour tout n de \mathbb{N} , on pose $u_n = \int_0^1 \frac{1}{1+t+t^n} dt$ et on a, en particulier, $u_0 = \int_0^1 \frac{1}{2+t} dt$.

1. Pour tout n de \mathbb{N} , justifier l'existence de u_n .

La fonction $t\mapsto \frac{1}{1+t+t^n}$ est définie et continue sur [0,1], donc l'intégrale $\int_0^1 \frac{1}{1+t+t^n} \, \mathrm{d}t$ existe (pas de borne impropre ici !)

2. Calculer u_0 et u_1 .

$$u_0 = \int_0^1 \frac{1}{2+t} \, \mathrm{d}t = \left[\ln(|2+t|) \right]_0^1 = \ln(3) - \ln(2)$$

$$u_1 = \int_0^1 \frac{1}{1+2t} dt = \left[\frac{1}{2} \ln(|1+2t|)\right]_0^1 = \frac{1}{2} \ln(3)$$

3. (a) Montrer que la suite (u_n) est croissante.

Soit $n \in \mathbb{N}$.

On compare les fonctions à intégrer sur l'intervalle d'intégration :

$$\begin{split} \forall \ t \in [0,1], \, t^n \geqslant t^{n+1} \Rightarrow 1 + t + t^n \geqslant 1 + t + t^{n+1} \\ \Rightarrow \frac{1}{1 + t + t^n} \leqslant \frac{1}{1 + t + t^{n+1}} \end{split}$$

donc en intégrant sur [0,1] :

$$\int_0^1 \frac{1}{1+t+t^n} \, \mathrm{d}t \le \int_0^1 \frac{1}{1+t+t^{n+1}} \, \mathrm{d}t$$

et on conclut bien : $\forall n \in \mathbb{N}, u_n \le u_{n+1}$: la suite (u_n) est croissante.

(b) **Montrer que**: $\forall n \in \mathbb{N}, u_n \leq \ln(2)$.

C'est assez similaire : il faut majorer la quantité à intégrer.

On remarque : $\forall t \in [0,1], 1+t+t^n \ge 1+t$ ce qui avec les mêmes étapes que la question précédente, donne

$$\int_0^1 \frac{1}{1+t+t^n} \, \mathrm{d}t \le \int_0^1 \frac{1}{1+t} \, \mathrm{d}t$$

Or $\int_0^1 \frac{1}{1+t} dt = \left[\ln(|1+t|) \right]_0^1 = \ln(2)$; et on a donc bien $\forall n \in \mathbb{N}, u_n \le \ln(2)$.

(c) En déduire que la suite (u_n) est convergente.

D'après les deux questions précédentes, (u_n) est croissante et majorée ; et donc convergente.

4. (a) Pour tout n de \mathbb{N} , écrire $\ln(2) - u_n$ sous la forme d'une intégrale.

On s'inspire de l'apparition précédente de $\ln(2)$: $\ln(2) = \int_0^1 \frac{1}{1+t} dt$. On a alors par linéarité de l'intégrale :

$$\ln(2) - u_n = \int_0^1 \frac{1}{1+t} \, \mathrm{d}t - \int_0^1 \frac{1}{1+t+t^n} \, \mathrm{d}t = \int_0^1 \left(\frac{1}{1+t} - \frac{1}{1+t+t^n}\right) \, \mathrm{d}t = \int_0^1 \frac{t^n}{(1+t)(1+t+t^n)} \, \mathrm{d}t$$

12

(b) En déduire que : $\forall n \in \mathbb{N}$, $\ln(2) - u_n \le \frac{1}{n+1}$.

Avec la majoration : $\forall t \in [0, 1], (1 + t)(1 + t + t^n) \ge 1$, on a :

$$\forall \ t \in [0,1]: \frac{1}{(1+t)(1+t+t^n)} \leq 1 \quad \text{(décroissance de la fonction inverse)}$$

$$\Rightarrow \frac{t^n}{(1+t)(1+t+t^n)} \leq t^n \quad \text{multiplication par } t^n \geq 0$$

d'où en intégrant sur [0,1]:

$$\ln(2) - u_n = \int_0^1 \frac{t^n}{(1+t)(1+t+t^n)} \, \mathrm{d}t \le \int_0^1 t^n \, \mathrm{d}t = \frac{1}{n+1}$$

(c) **Donner la limite de la suite** (u_n)

La question précédente donc $u_n \ge \ln(2) - \frac{1}{n+1}$; et on vu précédemment que $u_n \le \ln(2)$. On obtient donc l'encadrement:

$$\forall n \in \mathbb{N}, \ln(2) - \frac{1}{n+1} \le u_n \le \ln(2)$$

et avec $\frac{1}{n+1} \to 0$, le théorème des gendarmes donne $\lim_{n \to +\infty} u_n = \ln(2)$.

5. Pour tout entier naturel *n* supérieur ou égal à 2, on pose $v_n = \int_1^{+\infty} \frac{1}{1 + t + t^n} dt$.

(a) Justifier la convergence de l'intégrale définissant v_n

 $t\mapsto \frac{1}{1+t+t^n}$ est continue sur $[1,+\infty[$; en $+\infty$ on a l'équivalent $\frac{1}{1+t+t^n} \underset{n\to +\infty}{\sim} \frac{1}{t^n}$ (le polynôme au dénominateur équivaut à son terme de plus haut degré, qui est t^n car $n\geqslant 2$). $n \ge 2$ donc $\int_1^{+\infty} \frac{1}{t^n} dt$ converge (intégrale de Riemann); donc par équivalence de fonctions posi-

tives, $\int_{1}^{+\infty} \frac{1}{1+t+t^n} dt$ est bien une intégrale convergente.

(b) Montrer que: $\forall n \ge 2, \ 0 \le v_n \le \frac{1}{n-1}$.

 $\forall t \ge 1, \ \frac{1}{1+t+t^n} \ge 0$ donc par positivité de l'intégrale on a $v_n \ge 0$.

On procède encore à une majoration : $\forall t \ge 1$, $1+t+t^n \ge t^n$ donc $\frac{1}{1+t+t^n} \le \frac{1}{t^n}$; d'où en intégrant sur $[1, +\infty[$:

$$\int_{1}^{+\infty} \frac{1}{1+t+t^{n}} \, \mathrm{d}t \le \int_{1}^{+\infty} \frac{1}{t^{n}} \, \mathrm{d}t$$

et le calcul de cette dernière intégrale s'effectue en passant par une borne A ≥ 1 :

$$\int_{1}^{A} \frac{1}{t^{n}} dt = \int_{1}^{A} t^{-n} dt = \left[\frac{t^{-n+1}}{-n+1} \right]_{1}^{A} = \frac{A-n+1}{-n+1} - \frac{1}{-n+1} \rightarrow -\frac{1}{-n+1} = \frac{1}{n-1} \quad \text{pour } A \rightarrow +\infty$$

donc

$$\int_{1}^{+\infty} \frac{1}{t^n} \, \mathrm{d}t = \frac{1}{n-1}$$

et on a bien $v_n \leq \frac{1}{n-1}$.

(c) En déduire $\lim_{n\to+\infty} v_n$, puis donner la valeur de $\lim_{n\to+\infty} \int_0^{+\infty} \frac{1}{1+t+t^n} dt$.

L'encadrement précédent donne, avec $\frac{1}{n-1}$ et un théorème des gendarmes : $\lim_{n\to+\infty} \nu_n = 0$.

On a: $\int_0^{+\infty} \frac{1}{1+t+t^n} dt = \int_0^1 \frac{1}{1+t+t^n} dt + \int_1^{+\infty} \frac{1}{1+t+t^n} dt = u_n + v_n$; et avec $u_n \to \ln(2)$ et $v_n \to 0$ on peut conclure:

$$\lim_{n \to +\infty} \left(\int_0^{+\infty} \frac{1}{1+t+t^n} \, \mathrm{d}t \right) = \ln(2)$$