TD1

Relations de comparaison sur les suites

Exercice 1. Les propositions suivantes sont-elles vraies ou fausses ? Donner un contre-exemple dans le cas d'une propriété fausse.

1. si
$$u_n \sim v_n$$
 alors $\lim_{n \to +\infty} (u_n - v_n) = 0$.

2.
$$\sin \lim_{n \to +\infty} (u_n - v_n) = 0$$
, alors $u_n \sim v_n$.

3. si
$$u_n \sim v_n$$
 alors $u_n^5 \sim v_n^5$

4. si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 alors $(u_n)^n \underset{n \to +\infty}{\sim} (v_n)^n$

5. si
$$u_n \sim v_n$$
 alors $1 + u_n \sim 1 + v_n$

6. si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et $w_n = o(v_n)$, alors $u_n + w_n \underset{n \to +\infty}{\sim} v_n$.

7. si
$$u_n = o(v_n)$$
 alors $\ln(u_n) = o(\ln(v_n))$.

Exercice 2. Pour les suites (u_n) et (v_n) suivantes, dire si on a : $u_n = o(v_n)$? $v_n = o(u_n)$? $u_n \sim v_n$? Rien de tout cela?

1.
$$u_n = n + 1$$
 et $v_n = n + 2$

2.
$$u_n = \sqrt{n} + n \ln n$$
 et $v_n = n$

3.
$$u_n = e^n$$
 et $v_n = e^{2n}$

4.
$$u_n = n^4 + 3n^2 - 1$$
 et $v_n = n^4 + 5$

5.
$$u_n = 1 + \frac{1}{n}$$
 et $v_n = 1 - \frac{1}{n}$

6.
$$u_n = \ln(n^3)$$
 et $v_n = \ln(n)^3$

7.
$$u_n = \frac{e^n + 3n}{n^2 + 1}$$
 et $v_n = e^n$

8.
$$u_n = \ln\left(1 + \frac{1}{n^2}\right)$$
 et $v_n = \frac{n+1}{3n^2+1}$

9.
$$u_n = n^5$$
 et $v_n = 2^n$

10.
$$u_n = 3$$
 et $v_n = e^{-n}$

11.
$$u_n = \frac{2}{n^2}$$
 et $v_n = \frac{1}{n^2 + n + 1}$

Exercice 3. (*) Déterminer des équivalents simples des suites suivantes :

1.
$$ln(n+1)$$

$$5. 7n\sqrt{n}\left(\frac{1}{n^3} + \frac{1}{n^2}\right)$$

9.
$$\sqrt{1+e^{-n}}-1$$

2.
$$\ln(2n^3 + n)$$

6.
$$\frac{1}{n} + e^{-n}$$

10.
$$n(e^{1/\sqrt{n}} - 1)$$

11. $(n^4 + 3 + 3^n)(e^{-2n} + 1)$

$$3. \ \frac{\sqrt{n^2+1}}{e^n+n}$$

$$7. \ \frac{1}{\ln(n+1)} + 2$$

12.
$$\ln(1 + e^{-n^2})$$
.

$$4. \ \frac{e^{n+1}}{\ln(n+1)}$$

8.
$$\ln\left(1 - \frac{1}{n^2}\right)$$

13.
$$e^{\frac{1}{n^2-1}}-1$$

14.
$$\frac{1}{n-1} - \frac{1}{n+1}$$

16.
$$\left(\frac{2^n+1}{2^n}\right)^3-1$$

17. $\ln(n^2 + n + 1)$

19.
$$e^{n+1-\frac{1}{n}}$$

15.
$$\binom{n}{k}$$
 (avec $k \in \mathbb{N}^*$ fixé).

18.
$$\frac{e^{1/2n} - 1}{e^{1/2n} + 1}$$

20.
$$\left(1+\frac{1}{n}\right)^{3/5}(1+n)^{5/3}$$

Exercice 4. (*)

Calculer les limites pour $n \to +\infty$ des suites suivantes en utilisant des relations de comparaison :

1.
$$\frac{n^3 + e^n - \ln(n)}{n^4 - n^2 + \sqrt{n}}$$

$$4. \ \frac{e^{-n}}{\ln\left(\frac{n+1}{n}\right)}$$

$$7. \left(1 + \frac{1}{n}\right)^n$$

8. $(1+e^{-n})^{n^2}$

2.
$$(n^2 - n) \left(\sqrt{1 + \frac{1}{n^2}} - 1 \right)$$
 5. $\frac{\ln(n^3 - 2)}{\sqrt{3n^2 + 1}}$

$$5. \ \frac{\ln(n^3 - 2)}{\sqrt{3n^2 + 1}}$$

9.
$$\binom{n}{k} x^n$$
 (avec $k \in \mathbb{N}^*$ fixé, et $x \in [0,1[)$

3.
$$(2n-2)\ln\left(\frac{n+3}{n+2}\right)$$
 6. $\frac{\ln\left(\frac{2^n+1}{2^n}\right)}{2^{-n+1}}$

6.
$$\frac{\ln\left(\frac{2^n+1}{2^n}\right)}{2^{-n+1}}$$

Exercice 5. Déterminer un équivalent de (u_n) sous les hypothèses suivantes :

1.
$$\lim_{n \to +\infty} u_n = 3$$

$$2. \lim_{n \to +\infty} n u_n = 2$$

3.
$$\forall n \in \mathbb{N}^*, n+1 \le u_n \le n+3$$

4.
$$\forall n \in \mathbb{N}, n-1 \le u_n^2 \le n+3\sqrt{n} \text{ (avec } \forall n \in \mathbb{N}, u_n \ge 0)$$

5.
$$\forall n \in \mathbb{N}, 0 \le u_n - e^n \le n$$

Exercice 6. Soient (u_n) et (v_n) deux suites réelles.

- 1. Donner une condition nécessaire et suffisante sur ces deux suites pour que $e^{u_n} \sim_{n \to +\infty} e^{v_n}$. Donner un exemple où $u_n \sim v_n$, et $e^{u_n} = o(e^{v_n})$.
- 2. On suppose que:
 - (u_n) et (v_n) sont à termes strictement positifs ;
 - $u_n \sim v_n$
 - (u_n) et (v_n) tendent vers une limite ℓ , où $\ell \in \mathbb{R}_+$ ou $\ell = +\infty$.

Montrer que si $\ell \neq 1$, alors $\ln(u_n) \underset{n \to +\infty}{\sim} \ln(v_n)$. Montrer que si $\ell = 1$, on ne peut rien conclure.

2

Exercice 7. Soit k > 0. On cherche à montrer que $k^n = o(n!)$. On note, pour $n \in \mathbb{N}^*$, $u_n = \frac{k^n}{n!}$.

1. Donner
$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$$
. En déduire qu'il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Rightarrow \frac{u_{n+1}}{u_n} \le \frac{1}{2}$.

- 2. Montrer que : $\forall n \ge n_0, u_n \le \frac{u_{n_0}}{2^{n-n_0}}$
- 3. Montrer que $\lim_{n \to +\infty} u_n = 0$. Conclure.

Exercice 8. La série harmonique.

On pose, pour tout $n \in \mathbb{N}^*$:

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que : $\forall x > -1$, $\ln(1+x) \le x$; en déduire que : $\forall k \in \mathbb{N}^*$, $\frac{1}{k} \ge \ln(k+1) \ln k$.
- 2. En déduire que $H_n \to +\infty$.
- 3. Soit la suite $u_n = H_n \ln n$. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \ge 0$. Montrer que pour tout entier $n \ge 2$, $u_n \le u_{n-1}$.
- 4. En déduire que (u_n) converge, puis que $H_n \underset{n \to +\infty}{\sim} \ln n$.

NB: On note traditionnellement $\gamma = \lim_{n \to +\infty} (H_n - \ln(n))$. On a $\gamma \simeq 0.57721566...$; γ est nommée constante d'Euler-Mascheroni.

Exercice 9 (Équivalent d'une somme par comparaison série-intégrale).

Soit $p \in \mathbb{N}$, et $S_N = \sum_{k=1}^N k^p$. On cherche à donner un équivalent de S_N pour $\mathbb{N} \to +\infty$.

- 1. Montrer: $\forall k \in \mathbb{N}^*$, $\int_{k-1}^k t^p dt \le k^p \le \int_k^{k+1} t^p dt$.
- 2. En déduire un encadrement de S_N pour $N \in \mathbb{N}^*$.
- 3. Montrer: $S_N \sim \frac{N^{p+1}}{p+1}$.
- 4. Vérifier à l'aide de formules connues votre résultat pour $p \in \{1,2,3\}$.

Exercice 10. Limite de $(u_n)^n$ lorsque $\lim_{n\to+\infty} u_n = 1$.

1. Déterminer les limites des suites suivantes :

(a)
$$\left(1+\frac{1}{n}\right)^n$$

(c)
$$\left(1 + \frac{1}{\sqrt{n}}\right)^n$$

(e)
$$\left(\frac{n+1}{n-1}\right)^n$$

(b)
$$\left(1+\frac{1}{n^2}\right)^n$$

(d)
$$\left(\frac{n}{n-1}\right)^n$$

- 2. On suppose plus généralement que $\lim_{n \to +\infty} u_n = 1$.
 - (a) Montrer que $\ln(u_n) \sim u_n 1$.
 - (b) En déduire, en fonction de la limite de la suite $n(u_n 1)$, celle de la suite $(u_n)^n$.

3

Indications

- 1. Chercher un contre-exemple avec $u_n, v_n \to +\infty$
 - 2. Chercher un contre-exemple avec $u_n, v_n \rightarrow 0$

3.

- $4. \lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = ?$
- 5. Penser à des suites telles que $1 + u_n$ et $1 + v_n$ tendent vers 0.

6.

- 7. Non car le ln « écrase les différences » . Contre-exemple ?
- 2 Si nécessaire, commencer par chercher des équivalents simples de u_n et de v_n ; comparer ensuite ces équivalents.
- 3 1. On se doute de la réponse, mais le montrer proprement!
 - 2. Ressemble au précédent, mais on peut aller plus loin. Réponse : $3\ln(n)$.

3.

4.

- 5. Même dénominateur
- 6. Intuiter la réponse puis démo par quotient.

7.

8.

- 9. Formule!
- 10. Formule!

11.

12.

13.

14. Mettre au même dénominateur.

15.
$$\binom{n}{k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}$$

16.

- 17. $\ln(n^2 + n + 1) \sim 2\ln(n)$ mais le montrer correctement !! (sans passer les équivalents au logarithme)
- 18. Le dénominateur tend vers 2
- 19. Les équivalents ne passent pas à l'exponentielle...
- 20. ... par contre ils passent à une puissance (fixe).

4 1

- 2. Écrire la racine carrée comme une puissance
- 3. Écrire le contenu du ln comme $1 + x_n$ où $x_n \to 0$.

4.

5.

6.

- 7. Puissance non fixe: on met sous forme exponentielle.
- 8. idem

9.

5 Pour les encadrements : diviser par « ce qu'il faut » pour obtenir, par encadrement, une quantité qui tend vers 1. Conclure par définition de la relation \sim .

6 1.

$$e^{u_n} \sim e^{v_n} \Leftrightarrow \frac{e^{u_n}}{e^{v_n}} \to 1 \Leftrightarrow \dots$$

2. On écrit

$$\frac{\ln(u_n)}{\ln(v_n)} = \frac{\ln(v_n) + \ln\left(\frac{u_n}{v_n}\right)}{\ln(v_n)}$$

On connaît la limite de $\frac{u_n}{v_n}$; on discute alors la limite de $\ln(v_n)$.

Si $\nu_n \to 1$ on ne peut pas conclure avec le calcul précédent : chercher un contre-exemple avec des suites de la forme $1 + \alpha_n, \alpha_n \to 0$.

- 7 1. Définition de la limite!
 - 2. Utiliser la question précédente.

3.

- 8 1. Étude ultra-classique de la fonction $x \mapsto \ln(1+x) x \operatorname{sur}] 1, +\infty[$. $\ln(k+1) \ln(k) = \ln\left(1 + \frac{1}{k}\right)$
- 2. Sommer cette dernière inégalité sur *k*

Par minoration on aura ensuite la limite voulue.

- 3. Montrer que $u_n u_{n-1} = \frac{1}{n} + \ln\left(1 \frac{1}{n}\right)$ et utiliser l'inégalité de la question 1 (est-ce légitime ?)
- 4. Pour obtenir l'équivalent, on revient à la définition : étude du quotient.
- 9 1. Croissance de l'intégrale : encadrer simplement t^p pour $t \in [k, k+1]$ (resp. $t \in [k-1, k]$).
 - 2. Sommer!
 - 3. Calculer les intégrales de l'encadrement précédent.

4.

- 10 1. Pour (d): mettre sous la forme $\left(\frac{n-1}{n}\right)^{-n}$. Pour (e): utiliser $\frac{n+1}{n-1} = \frac{\frac{n+1}{n}}{\frac{n-1}{n}}$.
 - 2. (a) La formule utile ici demande une expression de la forme ln(1 + ...): forcer le passage.

(b)

Solutions

- 1. Non: considérer $u_n = n$ et $v_n = n + 2$.
 - 2. non: considérer $u_n = \frac{1}{n}$ et $v_n = e^{-n}$
 - 3. Oui (voir cours)
 - 4. Non: considérer $u_n = 1$ et $v_n = 1 + \frac{1}{n}$: $u_n^n \to 1$ et $v_n^n \to e$.
 - 5. Non: prendre $u_n = \frac{1}{n} 1$ et $v = \frac{1}{n^2} 1$. (u_n) et (v_n) tendent vers $-1 \neq 0$ donc sont toutes deux équivalentes à -1, donc équivalentes; et $u_n + 1 = \frac{1}{n}$ et $v_n + 1 = \frac{1}{n^2}$ ne sont pas équivalentes.
 - 6. Oui (voir cours)
 - 7. Non: $u_n = \sqrt{n}$ et $v_n = n$; on obtient alors $\ln(u_n) = \frac{1}{2} \ln(v_n)$.
- 2 1. $u_n \sim n$ et $v_n \sim n$; donc $u_n \sim v_n$
 - 2. $u_n \sim n \ln(n)$ et $v_n = n$, donc $v_n = o(u_n)$
 - 3. $\frac{u_n}{v_n} = e^{-n} \rightarrow 0$, donc $u_n = o(v_n)$.
 - 4. $u_n \sim n^4$ et $v_n \sim n^4$, donc $u_n \sim v_n$.
 - 5. $u_n \to 1$ et $v_n \to 1$, donc $u_n \sim v_n \sim 1$.
 - 6. $u_n = 3\ln(n)$, donc $\frac{u_n}{v_n} = \frac{3}{\ln(n)^2} \to 0$: $u_n = o(v_n)$.
 - 7. $u_n \sim \frac{e^n}{n^2} = o(e^n).$
 - 8. $u_n \sim \frac{1}{n^2}$ et $v_n \sim \frac{1}{3n}$; donc $u_n = o(v_n)$.

- 9. $u_n = o(v_n)$ par croissances comparées.
- 10. $\frac{v_n}{u_n} = \frac{e^{-n}}{3} \to 0 \text{ donc } v_n = o(u_n).$
- 11. $v_n \sim \frac{1}{n^2}$, donc aucune des trois relations n'est vérifiée.
- 3 1. $\ln(n+1) = \ln(n)(1+1/n) = \ln(n) + \ln(n) + \ln(n) + \ln(n) = 1 + \frac{\ln(n+1)}{\ln(n)} = 1 + \frac{\ln(n+1)}{\ln(n)} \rightarrow 1$: on obtient $\ln(n+1) \sim \ln(n)$.
 - 2. $\ln(2n^3+n) = \ln(2n^3) + \ln(1+1/2n^2) = 3\ln(n) + \ln(2) + \ln(1+1/2n^2)$; d'où en divisant : $\frac{\ln(2n^3+n)}{3\ln(n)} \to 1$. Donc $\ln(2n^3+n) \sim 3\ln(n)$.
 - $3. \ \frac{\sqrt{n^2+1}}{e^n+n}$
 - $4. \ \frac{e^{n+1}}{\ln(n+1)}$
 - $5. \ 7n\sqrt{n}\left(\frac{1}{n^3} + \frac{1}{n^2}\right)$
 - $6. \quad \frac{1}{n} + e^{-n}$
 - $7. \quad \frac{1}{\ln(n+1)} + 2$
 - 8. $\ln\left(1-\frac{1}{n^2}\right)$
 - 9. $\sqrt{1+e^{-n}}-1$
 - 10. $n(e^{1/\sqrt{n}}-1)$
 - 11. $(n^4 + 3 + 3^n)(e^{-2n} + 1) \sim 3^n \times 1 = 3^n$
 - 12. $\ln(1+e^{-n^2}) \sim e^{-n^2}$ (avec $e^{-n^2} \to 0$).
 - 13. $e^{\frac{1}{\ln(n)}} 1 \sim \frac{1}{n^2 1} \sim \frac{1}{n^2} \text{ (avec } \frac{1}{n^2 1} \to 0\text{)}$
 - 14. $\frac{1}{n-1} \frac{1}{n+1} = \frac{2}{(n-1)(n+1)} \sim \frac{2}{n^2}$.
 - 15. $\binom{n}{k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} \underset{n \to +\infty}{\sim} \frac{n^k}{k!}$
 - 16. = $\left(1 + \frac{1}{2^n}\right)^3 1 \sim \frac{3}{2^n}$ avec $\frac{1}{2^n} \to 0$.
 - 17. $\ln(n^2 + n + 1) = \ln\left(n^2\left(1 + \frac{1}{n} + \frac{1}{n^2}\right)\right) = 2\ln(n) + \ln\left(1 + \frac{1}{n} + \frac{1}{n^2}\right)$. Alors $\frac{\ln(n^2 + n + 1)}{2\ln(n)} \to 1$ assez facilement, et $\ln(n^2 + n + 1) \sim 2\ln(n)$.

Attention, ne pas passer les équivalents au logarithme!!

- 18. $e^{1/2n} 1 \sim \frac{1}{2n} \operatorname{car} \frac{1}{2n} \to 0$; $e^{1/2n} + 1 \to 2$, donc ~ 2 . Par quotient, $\frac{e^{1/2n} 1}{e^{1/2n} + 1} \sim \frac{1}{4n}$
- 19. $e^{n+1-\frac{1}{n}} \sim e^{n+1}$ car le quotient $\frac{e^{n+1-\frac{1}{n}}}{e^{n+1}} = e^{1/n}$ tend vers 1
- 20. $\left(1 + \frac{1}{n}\right)^{3/5} \to 1 \neq 0 \text{ donc } \sim 1 \; ; +1 + n \to n \text{ donc } (1 + n)^{5/3} \sim n^{5/3} \text{ par passage à une puissance fixe.}$ $\operatorname{Donc} \left(1 + \frac{1}{n}\right)^{3/5} \times (1 + n)^{5/3} \sim n^{5/3}.$
- 4 Éléments de réponse :

1.
$$\sim \frac{e^n}{n^4} \to +\infty$$

$$2. \sim n^2 \left(\frac{1}{2n^2}\right) \to \frac{1}{2}$$

$$3. \sim 2n \times \frac{1}{n+2} \to 2$$

$$4 \sim ne^{-n} \rightarrow 0$$

$$5. \sim \frac{3\ln(n)}{\sqrt{3}n} \to 0$$

$$6. \sim \frac{\frac{1}{2^n}}{2^{-n+1}} = \frac{1}{2}$$

$$7. \rightarrow e$$

8.
$$\rightarrow 1$$

9. $\sim \frac{n^k}{k!} x^n = \frac{1}{k!} n^k e^{n \ln(x)}$. $\ln(x) < 0$ sur]0,1[donc on a une croissance comparée puissance / exponentielle décrois-

NB: manip non valable sur x = 0 mais alors la suite est nulle...

5 Éléments de réponse :

1.
$$u_n \rightarrow 3 \neq 0$$
 donc $u_n \sim 3$.

2. De même
$$nu_n \sim 2$$
 d'où en divisant $u_n \sim \frac{2}{n}$.

3. Par théorème des gendarmes
$$\lim_{n \to +\infty} \frac{u_n}{n} = 1$$
: $u_n \sim n$.

4. Comme au dessus on montre que
$$u_n^2 \sim n$$
 d'où par passage à la racine $\sqrt{u_n^2} \sim \sqrt{n}$ et $u_n \sim \sqrt{n}$ car $u_n \ge 0$.

5. L'encadrement s'écrit aussi
$$\forall n \in \mathbb{N}, e^n \le u_n \le n + e^n$$
 et par gendarmes $\lim_{n \to +\infty} \frac{u_n}{e^n} = 1 : u_n \sim e^n$.

$$e^{u_n} \sim e^{v_n} \Leftrightarrow \frac{e^{u_n}}{e^{v_n}} \to 1 \Leftrightarrow e^{u_n - v_n} \to 1 \Leftrightarrow u_n - v_n \to 0$$

Avec $u_n = n^2 - n$ et $v_n = n^2$ on a bien $u_n \underset{n \to +\infty}{\sim} v_n$; mais $\frac{e^{u_n}}{e^{v_n}} = e^{u_n - v_n} = e^{-n} \to 0$ donc

2. On écrit

$$\frac{\ln(u_n)}{\ln(v_n)} = \frac{\ln\left(v_n \times \frac{u_n}{v_n}\right)}{\ln(v_n)} = \frac{\ln(v_n) + \ln\left(\frac{u_n}{v_n}\right)}{\ln(v_n)} = 1 + \frac{\ln\left(\frac{u_n}{v_n}\right)}{\ln(v_n)}$$

$$u_n \sim v_n \text{ donc } \frac{u_n}{v_n} \to 1, \text{ donc } \ln\left(\frac{u_n}{v_n}\right) \to 0.$$

Si
$$v_n \to \ell \neq 1$$
, alors $\ln(v_n) \to \begin{cases} -\infty & \text{si } \ell = 0 \\ \ln(\ell) \neq 0 & \text{si } \ell > 0, \ \ell \neq 1 \end{cases}$; et dans tous ces cas $\frac{\ln\left(\frac{u_n}{v_n}\right)}{\ln(v_n)} \to 0$; d'où on déduit $\frac{\ln(u_n)}{\ln(v_n)} \to 0$; d'où on deduit $\frac{\ln(u_n)}{\ln(v_n)} \to 0$; d'où on deduit $\frac{\ln(u_n)}{\ln(v_n)} \to 0$; d'où on deduit $\frac{\ln(u_n)}{\ln(u_n)} \to 0$; d'où on deduit

1 puis $\ln(u_n) \sim \ln(v_n)$.

Si
$$\ell = 1$$
: considérons par exemple $u_n = 1 + e^{-n}$ et $v_n = 1 + \frac{1}{n}$.

On a bien $u_n \sim 1$ et $v_n \sim 1$ (ces suites tendent vers 1); et $\ln(u_n) \sim e^{-n}$, $\ln(v_n) \sim \frac{1}{n}$ en vertu de l'équivalent classique $\ln(1+u_n) \sim u_n$ pour (u_n) tendant vers 0 en $+\infty$.

 e^{-n} et $\frac{1}{n}$ ne sont pas équivalents ; donc $\ln(u_n)$ et $\ln(v_n)$ ne le sont pas non plus.

7 Solution:

1.
$$\frac{u_{n+1}}{u_n} = \frac{k}{n+1}$$
 après simplifications; donc $\frac{u_{n+1}}{u_n} \to 0$.

Par définition de la limite, on en déduit directement le résultat voulu.

2. Montrer que : $\forall n \ge n_0, u_n \le \frac{u_{n_0}}{2^{n-n_0}}$

On effectue une récurrence.

• Au rang
$$n_0$$
, on a bien $u_{n_0} \le \frac{u_{n_0}}{2^{n_0-n_0}} = u_0$: la propriété est vraie au rang n_0 .

• Soit
$$n \ge n_0$$
 tel que $u_n \le \frac{u_{n_0}}{2^{n-n_0}}$.

 $n \ge n_0$ donc par la question 1, on a $\frac{u_{n+1}}{u_n} \le \frac{1}{2}$, ce qui donne $u_{n+1} \le \frac{1}{2}u_n$ après multiplication par $u_n > 0$. Ainsi:

$$u_{n+1} \le \frac{1}{2} u_n \le \frac{1}{2} \frac{u_{n_0}}{2^{n-n_0}} = \frac{u_{n_0}}{2^{n+1-n_0}}$$

en utilisant la propriété au rang n; ce qui donne l'hérédité.

- On a donc : $\forall n \ge n_0$, $u_n \le \frac{u_{n_0}}{2^{n-n_0}}$
- 3. Comme $u_n > 0$ pour tout n, on a l'encadrement :

$$\forall\; n \geq n_0, 0 \leq u_n \leq \frac{u_{n_0}}{2^{n-n_0}}$$

Comme $\frac{u_{n_0}}{2^{n-n_0}} \to 0$, le théorème des gendarmes donne $u_n \to 0$, donc $\frac{k^n}{n!} \to 0$; ce qui implique que $k^n = o(n!)$.

1. Étude ultra-classique de la fonction $x\mapsto \ln(1+x)-x$ sur $]-1,+\infty[$: un tableau de variation montre que cette 8

 $\ln(k+1) - \ln(k) = \ln\left(\frac{k+1}{k}\right) = \ln\left(1 + \frac{1}{k}\right) \text{ donc il faut montrer } \ln\left(1 + \frac{1}{k}\right) \leqslant \frac{1}{k} \text{ pour tout } k \in \mathbb{N}^* \text{ ; ce qui renvient à appliquer l'inégalité précédente à } x = 1/k \text{ (on a bien } 1/k > -1)$

2. On somme cette dernière inégalité pour k allant de 1 à n:

$$\sum_{k=1}^{n} \frac{1}{k} \ge \sum_{k=1}^{n} \left(\ln(k+1) - \ln(k) \right) = \ln(n+1) - \ln(1) \quad \text{par t\'el\'escopage}$$

donc $H_n \ge \ln(n+1)$. Comme $\ln(n+1) \to +\infty$, par minoration on a aussi $H_n \to +\infty$.

3. Avec la minoration précédente : $H_n - \ln(n) \ge \ln(n+1) - \ln(n) \ge 0$ (croissance de la fonction ln). Calculons

$$u_n - u_{n-1} = H_n - \ln(n) - (H_{n-1} - \ln(n-1))$$

$$= H_n - H_{n-1} + \ln(n-1) - \ln(n)$$

$$= \frac{1}{n} + \ln\left(\frac{n-1}{n}\right)$$

$$= \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$$

mais avec $n \ge 2$, $-\frac{1}{n} \ge -\frac{1}{2} > -1$ donc on peut appliquer la question 1 et écrire $\ln\left(1-\frac{1}{n}\right) \le -\frac{1}{n}$; donc $\ln\left(1-\frac{1}{n}\right) + \frac{1}{n} \le -\frac{1}{n}$

On a bien : $\forall n \ge 2$, $u_n - u_{n-1} \le 0$: la suite (u_n) est décroissante.

4. Décroissante et minorée par $0:(u_n)$ converge.

On étudie le quotient :

$$\frac{\mathbf{H}_n}{\ln(n)} = \frac{\ln(n) + u_n}{\ln(n)} = 1 + \frac{u_n}{\ln(n)}$$

et avec $u_n \to \ell \in \mathbb{R}$ et $\ln(n) \to +\infty$ on trouve

$$\lim_{n \to +\infty} \frac{H_n}{\ln(n)} = 1$$

donc $H_n \sim \ln(n)$.

1. Croissance de l'intégrale : si $f(t) \le g(t)$ sur [a,b], alors $\int_a^b f(t) dt \le \int_a^b g(t) dt$. 9

sur
$$[k-1,k]$$
, $t^p \le k^p$ donc $\int_{k-1}^k t^p dt \le \int_{k-1}^k k^p dt = k^p$

Par croissance de $t\mapsto t^p$: $\sup [k-1,k],\ t^p\leqslant k^p\ \mathrm{donc} \int_{k-1}^k t^p\ \mathrm{d} t\leqslant \int_{k-1}^k k^p\ \mathrm{d} t=k^p$ et sur $[k,k+1],\ t^p\geqslant k^p\ \mathrm{donc} \int_k^{k+1} t^p\ \mathrm{d} t\geqslant \int_k^{k+1} k^p\ \mathrm{d} t=k^p\ \mathrm{donc}$ on a l'encadrement.

$$\sum_{k=1}^{N} \left(\int_{k-1}^{k} t^{p} \, \mathrm{d}t \right) = \int_{0}^{1} t^{p} \, \mathrm{d}t + \int_{1}^{2} t^{p} \, \mathrm{d}t + \ldots + \int_{N-1}^{N} t^{p} \, \mathrm{d}t = \int_{0}^{N} t^{p} \, \mathrm{d}t \text{ par Chasles }; \text{ et de même }$$

$$\sum_{k=1}^{N} \left(\int_{k}^{k+1} t^{p} \, \mathrm{d}t \right) = \int_{1}^{N+1} t^{p} \, \mathrm{d}t.$$

On trouve finalement

$$\int_0^N t^p \, dt \le \sum_{k=1}^N k^p \le \int_1^{N+1} t^p \, dt$$

et en calculant ces intégrales :

$$\frac{N^{p+1}}{p+1} \le \sum_{k=1}^{N} k^p \le \frac{(N+1)^{p+1} - 1}{p+1}$$

8

3. À l'aide de l'encadrement précédent on trouve

$$1 \leq \frac{S_{\mathrm{N}}}{\frac{\mathrm{N}^{p+1}}{p+1}} \leq \left(1 + \frac{1}{\mathrm{N}}\right)^{p+1} - \frac{1}{\mathrm{N}^{p+1}}$$

et par gendarmes $\frac{S_N}{\frac{N^{p+1}}{p+1}} \rightarrow 1$.

4. $\sum_{k=1}^{N} k = \frac{N(N+1)}{2} \sum_{N \to +\infty}^{N-1} \frac{N^2}{2}$ $\sum_{k=1}^{N} k^2 = \frac{N(N+1)(2N+1)}{6} \sum_{N \to +\infty}^{N-1} \frac{2N^3}{6} = \frac{N^3}{3}$ $\sum_{k=1}^{N} k = \left(\frac{N(N+1)}{2}\right)^2 \sum_{N \to +\infty}^{N} \left(\frac{N^2}{2}\right) = \frac{N^4}{4}.$ La formule est bien vérifiée.

10