Devoir surveillé n°1 Corrigé

Exercice 1

Dans ce problème, la lettre n désigne un entier naturel non nul. On note f_n la fonction définie sur $\mathbb R$ par : $f_n(x) = x \, e^{-n/x}$ si $x \neq 0$ et $f_n(0) = 0$. On note $\mathscr C_n$ la courbe représentative de f_n dans un repère orthonormé $\left(O, \vec{i}, \vec{j} \right)$.

1. (a) Montrer que f_n est continue à droite en 0.

Il s'agit de calculer $\lim_{x\to 0^+} f_n(x)$. On a $\lim_{x\to 0^+} \left(-\frac{n}{x}\right) = -\infty$; donc $\lim_{x\to 0^+} xe^{-n/x} = 0 = f_n(0)$. f_n est donc bien continue à droite en 0.

(b) Montrer que f_n est dérivable à droite en 0 et donner la valeur du nombre dérivé à droite en 0 de f_n .

On étudie maintenant le taux de variation pour $x \rightarrow 0^+$:

$$\lim_{x \to 0^+} \frac{f_n(x) - f_n(0)}{x - 0} = \lim_{x \to 0^+} e^{-n/x} = 0$$

 f_n est donc dérivable à droite en 0, et le nombre dérivé en 0 à droite vaut 0.

2. (a) Montrer que f_n est dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$.

Pour tout réel x non nul, calculer $f'_n(x)$ puis étudier son signe.

Elle l'est comme composée de fonctions dérivables (dénominateur non nul sur \mathbb{R}^*).

$$\forall x \neq 0, \ f'_n(x) = e^{-n/x} + x \left(\frac{n}{x^2}\right) e^{-n/x} = \left(1 + \frac{n}{x}\right) e^{-nx}$$

(b) Calculer les limites de f_n en $+\infty$, $-\infty$ et 0^- , puis donner le tableau de variations de f_n . Indication: pour la limite en 0^- on pourra poser $X=-\frac{1}{r}$.

On a facilement (les exponentielles tendent vers 1) $\lim_{x \to +\infty} f_n(x) = +\infty$, $\lim_{x \to -\infty} f_n(x) = -\infty$. Pour la limite en 0, en posant X = -1/x il vient $\lim_{x \to 0^-} xe^{-n/x} = \lim_{X \to +\infty} -\frac{e^{nX}}{X} = -\infty$ par croissances comparées (n > 0).

Pour $x \neq 0$, on a $f'_n(x) > 0 \Leftrightarrow \frac{n+x}{x} > 0$. On peut effectuer le tableau de signes suivant :

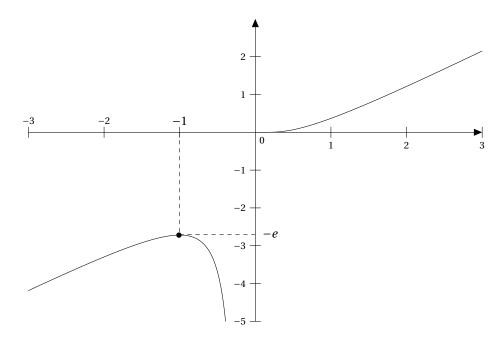
x	$-\infty$	-	n	0	+∞
x		-	_	0	+
n+x		- 0	+	·	+
$f'_n(x)$	-	+ 0) –		+
	$-ne$ $+\infty$				
$f_n(x)$	$-\infty$			$-\infty$	

(c) Donner l'allure de la courbe \mathscr{C}_1 .

On fait bien apparaître le max local en x = -n = -1 ici ; $f(x) = -e \simeq -2.7$.

Le nombre dérivé à droite en 0 est égale à 0 ; donc la courbe admet une demi-tangente horizontale à droite en 0.

Ensuite on trace quelque chose de raisonnable...



3. (a) Montrer qu'il existe un unique réel, que l'on notera u_n , tel que $f_n(u_n) = 1$.

D'après le tableau, f est négative sur \mathbb{R}_- , donc on se limite à une recherche sur \mathbb{R}_+^* . f_n est continue et strictement croissante sur \mathbb{R}_+^* , donc réalise une bijection de \mathbb{R}_+^* sur \mathbb{R}_+^* . Comme $1 \in \mathbb{R}_+^*$, il admet un unique antécédent $u_n \in \mathbb{R}_+^*$. On a donc l'existence et l'unicité de u_n , et aussi $u_n > 0$.

(b) Vérifier que, pour tout $n \ge 3$, on a $1 < u_n < n$.

On calcule: $f_n(1) = e^{-n} < 1$ et $f_n(n) = ne^{-1} = \frac{n}{e}$. Avec $n \ge 3$, on a $n > e \simeq 2.71$ et donc $f_n(n) > 1$. Donc $f_n(1) < 1 < f_n(n)$, ce qui donne aussi $f_n(1) < f_n(u_n) < f_n(n)$; par stricte croissance de f_n sur \mathbb{R}_+^* on en déduit $1 < u_n < n$.

(c) En déduire une fonction Python def dicho(n) calculant, pour un entier $n \ge 3$ passé en argument, une valeur approchée de u_n à 10^{-3} près.

Dichotomie usuelle ; l'intervalle de recherche initial est [1,n] d'après la question précédente. On propose :

4. (a) Montrer que u_n est solution de l'équation $x \ln(x) = n$.

Soit $n \in \mathbb{N}^*$. Par définition de u_n , on a $u_n e^{-n/u_n} = 1$, soit $u_n = e^{n/u_n}$, ce qui donne aussi $\ln(u_n) = \frac{n}{u_n}$ et don $u_n \ln(u_n) = n$.

(b) Étudier la fonction g définie sur $[1, +\infty[$ par $g(x) = x \ln(x)$. En déduire, en utilisant la fonction g^{-1} , que $\lim_{n \to +\infty} u_n = +\infty$.

g est dérivable sur $[1, +\infty[$; $\forall x \ge 1$, $g'(x) = \ln(x) + 1$. In est positive sur $[1, +\infty[$ donc g est strictement croissante sur cet intervalle; elle est continue donc c'est une bijection de $[1, +\infty[$ dans $[0, +\infty[$. Notons g^{-1} sa réciproque.

La question précédente donne $g(u_n) = n$, soit $u_n = g^{-1}(n)$. Comme $\lim_{x \to +\infty} g(x) = +\infty$, on a aussi $\lim_{x \to +\infty} g^{-1}(y) = +\infty$.

On en déduit

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} g^{-1}(n) = +\infty$$

(c) Justifier la relation $\ln(u_n) + \ln(\ln(u_n)) = \ln(n)$, puis montrer que $\ln(u_n) \sim \lim_{n \to +\infty} \ln(n)$.

Indication: on pourra s'intéresser à $\lim_{n\to+\infty} \frac{\ln(n)}{\ln(u_n)}$.

En déduire un équivalent de u_n lorsque n est au voisinage de $+\infty$.

Il suffit de passer au ln dans la relation $u_n \ln(u_n) = n$ trouvée à la question 4a (toutes les quantités en jeu sont strictement positives, car $u_n > 1$).

On forme alors le quotient suggéré par l'énoncé :

$$\frac{\ln(n)}{\ln(u_n)} = \frac{\ln(u_n) + \ln(\ln(u_n))}{\ln(u_n)} = 1 + \frac{\ln(\ln(u_n))}{\ln(u_n)}$$

Comme $u_n \to +\infty$, on a aussi $\ln(u_n) \to +\infty$; et par croissances comparées $\frac{\ln(\ln(u_n))}{\ln(u_n)} \to 0$. Ceci donne

$$\lim_{n \to +\infty} \frac{\ln(n)}{\ln(u_n)} = 1 + 0 = 1$$

et donc $\ln(n) \sim \lim_{n \to +\infty} \ln(u_n)$.

Fin de la question oubliée dans le corrigé distribué:

ON N'EN CONCLUT PAS QUE $u_n \sim n$!!!!

On reprend plutôt la relation $u_n \ln(u_n) = n$, qui fournit avec l'équivalent précédent

$$u_n = \frac{n}{\ln(u_n)} \underset{n \to +\infty}{\sim} \frac{n}{\ln(n)}$$

5. (a) **Montrer que**: $f_n(u_{n+1}) = \exp\left(\frac{1}{u_{n+1}}\right)$.

On a
$$f_n(u_{n+1}) = u_{n+1} \exp\left(-\frac{n}{u_{n+1}}\right) = \underbrace{u_{n+1} \exp\left(-\frac{n+1}{u_{n+1}}\right)}_{=f_{n+1}(u_{n+1})=1} \exp\left(\frac{1}{u_{n+1}}\right) = \exp\left(\frac{1}{u_{n+1}}\right).$$

(b) Montrer que la suite $(u_n)_{n\geqslant 1}$ est strictement croissante.

Pour tout $n \ge 1$, on a $\frac{1}{u_{n+1}} > 0$, et donc la question précédente montre que $f_n(u_{n+1}) > 1 = f_n(u_n)$; par stricte croissance de f_n ceci implique que $u_n < u_{n+1}$. La suite (u_n) est donc strictement croissante.

- 6. **On pose** $I_n = \int_{u_n}^{u_{n+1}} f_n(t) dt$.
 - (a) Montrer que : $1 \le \frac{I_n}{u_{n+1} u_n} \le \exp\left(\frac{1}{u_{n+1}}\right)$.

On a $f_n(u_n) = 1$ par définition; $f_n(u_{n+1}) = \exp\left(\frac{1}{u_{n+1}}\right)$ par la question 5a. f étant strictement croissante sur $[u_n, u_{n+1}]$, on en déduit :

$$\forall \ t \in [u_n, u_{n+1}], \ 1 \leq f_n(t) \leq f_n(u_{n+1}) = \exp\left(\frac{1}{u_{n+1}}\right)$$

On intègre cette inégalité sur $[u_n, u_{n+1}]$: les bornes sont dans l'ordre croissant et les fonctions en jeu sont continues. On trouve

$$\int_{u_n}^{u_{n+1}} 1 \, \mathrm{d}t \le \int_{u_n}^{u_{n+1}} f_n(t) \, \mathrm{d}t \le \int_{u_n}^{u_{n+1}} \exp\left(\frac{1}{u_{n+1}}\right) \, \mathrm{d}t$$

$$u_{n+1} - u_n \le I_n \le (u_{n+1} - u_n) \exp\left(\frac{1}{u_{n+1}}\right)$$

d'où la réponse en divisant par $u_{n+1} - u_n > 0$.

(b) En déduire un équivalent de I_n lorsque n est au voisinage de $+\infty$.

Comme $u_n \to +\infty$, on a $e^{1/u_{n+1}} \to 0$, et par le théorème des gendarmes :

$$\lim_{n\to +\infty}\frac{\mathrm{I}_n}{u_{n+1}-u_n}=0$$

Ceci donne : $I_n \underset{n \to +\infty}{\sim} (u_{n+1} - u_n)$.

(c) Montrer alors que la série de terme général \mathbf{I}_n est divergente.

 (u_n) étant strictement croissante, ce dernier équivalent est positif : par théorème de comparaison de SATP, $\sum I_n$ et $\sum (u_{n+1} - u_n)$ ont même nature. Or cette dernière série est téléscopique...

On rédige : soit N
$$\geqslant$$
 1 et $S_N = \sum_{n=1}^N (u_{n+1} - u_n)$.
Par téléscopage, $S_N = u_{N+1} - u_1 \to +\infty$; d'où la divergence de $\sum (u_{n+1} - u_n)$ puis celle de $\sum I_n$.

Exercice 2

On note $f: \mathbb{R} \to \mathbb{R}$ l'application de classe \mathscr{C}^2 , définie, pour tout $x \in \mathbb{R}$, par

$$f(x) = x - \ln\left(1 + x^2\right)$$

et $\mathscr C$ la courbe représentative de f dans un repère orthonormé. On donne la valeur approchée : $\ln(2) \simeq 0,69$.

Partie I : Étude de f et tracé de $\mathscr C$

1. (a) Calculer, pour tout $x \in \mathbb{R}$, f'(x).

f est dérivable sur $\mathbb R$ comme composée de fonctions dérivables $(1+x^2>0$ pour tout réel x); les formules de dérivation usuelles donnent:

$$\forall x \in \mathbb{R}, \ f'(x) = 1 - \frac{2x}{1 + x^2}$$

(b) En déduire le sens de variation de f.

On observe : $\forall x \in \mathbb{R}$, $f'(x) = \frac{1 + x^2 - 2x}{1 + x^2} = \frac{(x - 1)^2}{1 + x^2} \ge 0$ et donc f est croissante sur \mathbb{R} .

(c) Calculer, pour tout $x \in \mathbb{R}$, f''(x).

On reprend la première expression. De $f'(x) = 1 - \frac{2x}{1+x^2}$ on tire :

$$\forall x \in \mathbb{R}, \ f''(x) = -\frac{2(1+x^2)-2x\times 2x}{(1+x^2)^2} = -\frac{2-2x^2}{(1+x^2)^2} = 2\frac{x^2-1}{(1+x^2)^2}$$

2. Déterminer la limite de f en $-\infty$ et la limite de f en $+\infty$.

On trouve $\lim_{x \to -\infty} x - \ln(1 + x^2) = -\infty$ sans forme indéterminée ; et

$$\lim_{x \to +\infty} x - \ln(1 + x^2) = \lim_{x \to +\infty} x \left(1 - \frac{\ln(1 + x^2)}{x} \right) = +\infty$$

par croissances comparées.

3. Montrer que & admet deux points d'inflexion dont on déterminera les coordonnées.

D'après l'expression obtenue plus haut, on voit que f'' s'annule et change de signe deux fois : en x = -1 et x = 1. Les deux points d'inflexion de \mathcal{C}_f sont donc $(-1, f(-1)) = (-1, -1 - \ln(2))$ et $(1, f(1)) = (1, 1 - \ln(2))$.

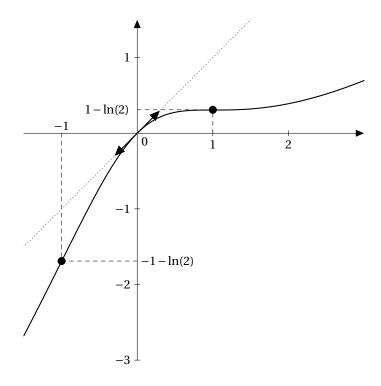
5

4. Tracer $\mathscr C$. On utilisera un repère orthonormé d'unité graphique 2 centimètres, et on représentera la tangente à $\mathscr C$ au point d'abscisse 0 après en avoir donnée l'équation.

Bien repérer les deux points d'inflexion de la question précédente (avec la valeur approchée $\ln(2) \approx 0.69$ donnée!); f(0) = 0; la croissance de f sur \mathbb{R} ; f'(1) = 0 qui donne une tangente horizontale au point d'abscisse 1.

La tangente au point d'abscisse 0 a pour équation y = f'(0)(x - 0) + f(0) ce qui donne y = x (« première bissectrice » représentée en pointillés).

Traditionnellement on met une double flèche au point concerné, de pente égale à la pente de la tangente (ici, f'(0) = 1).



Partie II : Étude d'une suite et d'une série associées à f

On considère la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=1$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$$

5. Montrer que la suite $(u_n)_{n \ge 0}$ est décroissante. Montrer : $\forall n \in \mathbb{N}, u_n \in [0,1]$.

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = -\ln(1 + (u_n)^2)$. $1 + (u_n)^2 \ge 1$ donc $\ln(1 + (u_n)^2) \ge 0$; on en déduit que

$$\forall n \in \mathbb{N}, u_{n+1} - u_{\leq} 0$$

et donc que (u_n) décroît.

6. Établir que la suite $(u_n)_{n \ge 0}$ converge et déterminer sa limite.

Montrons que pour tout $n \in \mathbb{N}$, $u_n \ge 0$:

- $u_0 = 1 \ge 0$
- Soit $n \in \mathbb{N}$; on suppose $u_n \ge 0$. Alors $f(u_n) \ge f(0) = 0$ donc $u_{n+1} \ge 0$.

Par récurrence on conclut : pour tout $n \in \mathbb{N}$: $u_n \ge 0$.

Dès lors la suite (u_n) est décroissante et minorée par 0, elle converge donc vers une limite $\ell \ge 0$. f est continue sur \mathbb{R} , donc en ℓ , et le théorème du point fixe donne $f(\ell) = \ell$.

Or:

$$f(\ell) = \ell \Leftrightarrow \ln(1 + \ell^2) = 0 \Leftrightarrow \ell^2 = 0 \Leftrightarrow \ell = 0$$

et on conclut que la suite (u_n) converge vers 0.

7. (a) **Établir**: $\forall x \in [0,1], f(x) \le x - \frac{1}{2}x^2$.

On pose $g(x) = f(x) - x + \frac{1}{2}x^2$. g est dérivable sur [0,1] et

$$\forall x \in [0,1], \ g'(x) = f'(x) - 1 + x = \frac{(x-1)^2}{1+x^2} - 1 + x = \frac{x^3 - x}{1+x^2} = \frac{x^2(x-1)}{1+x^2}$$

g est donc décroissante sur [0,1]. Comme g(0)=f(0)-0=0, on a g négative sur [0,1] ce qui donne bien

$$\forall x \in [0,1], \ f(x) \le x - \frac{1}{2}x^2$$

(b) **En déduire**: $\forall n \in \mathbb{N}, (u_n)^2 \le 2(u_n - u_{n+1}).$

On l'applique l'inégalité précédente à u_n ; mais il faut montrer que $u_n \in [0,1]$! $u_0 = 1$, et (u_n) est décroissante minorée par 0 ce qui montre : $\forall n \in \mathbb{N} : u_n \in [0,1]$. On en déduit :

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \le u_n - \frac{1}{2}(u_n)^2$$

ce qui donne après quelques manipulations $(u_n)^2 \le 2(u_n - u_{n+1})$.

(c) **Démontrer que la série** $\sum_{n>0} (u_n)^2$ **converge.**

 $\sum (u_n)^2$ est une série à termes positifs donc on va utiliser la comparaison qu'on vient d'obtenir. $\sum (u_{n+1} - u_n)$ est téléscopique. On écrit , pour $N \in \mathbb{N}$:

$$\sum_{n=0}^{N} (u_n - u_{n+1}) = u_0 - u_{N+1} \to u_0 \text{ car } u_N \to 0$$

Donc la série $\sum (u_n - u_{n+1})$ est convergente. Par comparaison de série termes positifs, la série $\sum (u_n)^2$ converge.

Partie III : Un équivalent de u_n

Dans cette partie, on rappelle que $\lim_{n\to+\infty} u_n = 0$.

8. Déterminer $\lim_{n\to+\infty} \frac{\ln(1+(u_n)^2)}{u_n}$. En déduire $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = 1$.

Avec $u_n \rightarrow 0$ on utilise l'équivalent classique :

$$\frac{\ln\left(1+(u_n)^2\right)}{u_n} \underset{n \to +\infty}{\sim} \frac{(u_n)^2}{u_n} = u_n$$

Comme $u_n \to 0$ on en déduit $\lim_{n \to +\infty} \frac{\ln(1 + (u_n)^2)}{u_n} = 0$. Ensuite

$$\frac{u_{n+1}}{u_n} = \frac{u_n - \ln(1 + (u_n)^2)}{u_n} = 1 - \frac{\ln(1 + (u_n)^2)}{u_n} \xrightarrow{n \to +\infty} 1$$

9. Montrer que

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{\ln(1 + (u_n)^2)}{u_n u_{n+1}}$$

En déduire $\lim_{n\to+\infty} \left(\frac{1}{u_{n+1}} - \frac{1}{u_n} \right) = 1$.

Calcul direct, en utilisant la relation de récurrence définissant (u_n) :

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{u_n - u_{n+1}}{u_n u_{n+1}} = \frac{\ln(1 + (u_n)^2)}{u_n u_{n+1}}$$

7

On cherche un équivalent ; la question précédente donne $u_n \sim u_{n+1}$. On trouve alors

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{\ln(1 + (u_n)^2)}{u_n u_{n+1}} \underset{n \to +\infty}{\sim} \frac{(u_n)^2}{u_n u_{n+1}} = \frac{u_n}{u_{n+1}}$$

Ce dernier quotient tend vers 1; ce qui permet bien de conclure que $\lim_{n\to+\infty} \left(\frac{1}{u_{n+1}} - \frac{1}{u_n}\right) = 1$.

On admet ici le théorème de Cesàro:

Soit (u_n) une suite convergente, de limite $\ell \in \mathbb{R}$. Alors :

$$\lim_{n \to +\infty} \frac{1}{n} \left(\sum_{k=0}^{n-1} u_k \right) = \ell$$

10. Montrer que $\lim_{n\to +\infty} \frac{1}{nu_n} = 1$, et en déduire un équivalent de u_n pour $n\to +\infty$.

On applique Cesàro à la suite $\left(\frac{1}{u_{n+1}} - \frac{1}{u_n}\right)_{n \in \mathbb{N}}$, qui tend vers 1. Par téléscopage :

$$\sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) = \frac{1}{u_n} - \frac{1}{u_0} = \frac{1}{u_n} - 1$$

et on a donc

$$\lim_{n \to +\infty} \frac{1}{n} \left(\frac{1}{u_n} - 1 \right) = 1$$

$$\lim_{n \to +\infty} \left(\frac{1}{nu_n} - \frac{1}{n} \right) = 1$$

et comme $\frac{1}{n} \to 0$ on conclut $\lim_{n \to +\infty} \frac{1}{nu_n} = 1$.

Ceci s'écrit encore (car $1 \neq 0$) : $\frac{1}{nu_n} \underset{n \to +\infty}{\sim} 1$, donc $nu_n \underset{n \to +\infty}{\sim} 1$ par passage à l'inverse ; et donc

$$u_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$$

Partie IV: Python

11. Écrire une fonction Python liste_termes (N) qui renvoie le np.array $[u_0, u_1, ..., u_N]$ où (u_n) est la suite définie dans les questions précédentes. (faute de frappe dans le sujet)

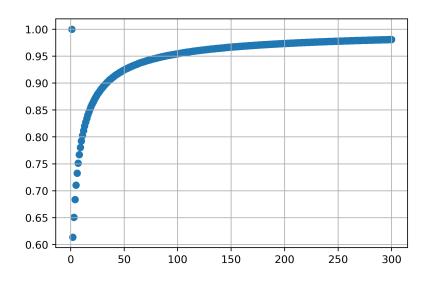
Classique:

```
def liste_termes(N):
    u=1
    L=[1]
    for k in range(N):
        u = u - np.log(1+u**2)
        L.append(u)
    return L
```

12. On tape alors

```
N = np.arange(1,301)
U = liste_termes(300)
L = N*U[1:]
plt.scatter(N,L)
plt.show()
```

et on obtient le dessin suivant :



(a) Décrire le contenu des listes N, U et L après exécution de ces commandes.

Le code définit des objets de type array :

- np.arange(1,301) est l'array [1,2,3,...,300]
- U est l'array $[u_0, u_1, ..., u_{300}]$; donc U[1:] est l'array $[u_1, ..., u_{300}]$
- Par opérations, L est donc l'array $[1 u_1, 2 u_2, ..., 300 u_{300}]$.

(b) Quel résultat obtenu dans les questions précédentes est illustré par ce dessin ? Expliquer.

D'après le contenu des listes N et L, le graphique donne la valeur de nu_n en fonction de n pour $n \in [1,300]$.

À sa vue, il semble que $\lim_{n\to+\infty} nu_n = 1$. Cela confirme donc que $u_n \sim \frac{1}{n}$.

Exercice 3

Soit $(u_n)_{n\geqslant 0}$ une suite à termes >0. On pose, pour $n\in\mathbb{N},\ \mathrm{S}_n=\sum\limits_{k=0}^nu_k$.

On suppose que la série de terme général u_n diverge.

1. Que vaut
$$\lim_{n\to+\infty} S_n$$
 ?

Comme la série de terme général u_n est à termes positifs, (S_n) est croissante ; or elle diverge donc $\lim_{n\to+\infty} S_n = +\infty$.

2. Montrer que :
$$\forall n \ge 1$$
, $\frac{u_n}{S_n} = 1 - \frac{S_{n-1}}{S_n}$.

Pour $n \ge 1$, $S_n - S_{n-1} = \sum_{k=0}^n u_k - \sum_{k=0}^{n-1} u_k = u_n$; on a donc

$$\frac{u_n}{S_n} = \frac{S_n - S_{n-1}}{S_n} = 1 - \frac{S_{n-1}}{S_n}$$

3. On suppose que $\frac{S_{n-1}}{S_n}$ ne tend pas vers 1 pour $n \to +\infty$.

Donner la nature de $\sum \frac{u_n}{S_n}$.

Si $\left(\frac{S_{n-1}}{S_n}\right)$ ne tend pas vers 1, alors avec la question 2, $\left(\frac{u_n}{S_n}\right)$ ne tend pas vers 0; donc la série $\sum \frac{u_n}{S_n}$ diverge grossièrement.

4. On suppose maintenant $\lim_{n\to+\infty} \frac{S_{n-1}}{S_n} = 1$.

(a) Montrer que

$$\ln\left(\frac{S_n}{S_{n-1}}\right) \underset{n \to +\infty}{\sim} \frac{u_n}{S_{n-1}} \underset{n \to +\infty}{\sim} \frac{u_n}{S_n}$$

On écrit

$$\ln\left(\frac{S_n}{S_{n-1}}\right) = \ln\left(\frac{S_{n-1} + (S_n - S_{n-1})}{S_{n-1}}\right) = \ln\left(1 + \frac{u_n}{S_{n-1}}\right)$$

Or $\frac{u_n}{S_{n-1}} = \frac{S_n - S_{n-1}}{S_{n-1}} = \underbrace{\frac{S_n}{S_{n-1}}}_{-1}$ est de limite nulle (erreur dans le corrigé distribué)

; avec l'équivalent classique du ln on a :

$$\ln\left(1+\frac{u_n}{S_{n-1}}\right) \underset{n\to+\infty}{\sim} \frac{u_n}{S_{n-1}}$$

De plus $\frac{S_{n-1}}{S_n} \to 1$ donc $S_{n-1} \sim S_n$; ce qui donne finalement

$$\ln\left(\frac{S_n}{S_{n-1}}\right) \underset{n \to +\infty}{\sim} \frac{u_n}{S_{n-1}} \underset{n \to +\infty}{\sim} \frac{u_n}{S_n}$$

(b) Conclure que $\sum \frac{u_n}{S_n}$ diverge.

On vient de voir que $\frac{u_n}{S_n} \underset{n \to +\infty}{\sim} \ln \left(\frac{S_n}{S_{n-1}} \right)$. $\frac{u_n}{S_n} > 0$ donc le théorème de comparaison de SATP s'applique, et on en déduit que $\sum \frac{u_n}{S_n}$ et $\sum \ln \left(\frac{S_n}{S_{n-1}} \right)$ sont de même nature.

Or $\ln\left(\frac{S_n}{S_{n-1}}\right) = \ln(S_n) - \ln(S_{n-1})$ est téléscopique!

Comme dans l'exercice 1, on en déduit que $\sum \ln \left(\frac{S_n}{S_{n-1}} \right)$ a même nature que la suite $\left(\ln(S_n) \right)$; et avec $S_n \to +\infty$ on a $\ln(S_n) \to +\infty$. On en conclut que $\sum \frac{u_n}{S_n}$ diverge.

5. Soit $\sum u_n$ une suite à termes strictement positifs, divergente. Construire une série $\sum v_n$ à termes strictement positifs telle que:

- $v_n = o(u_n)$;
- $\sum v_n$ diverge.

Montrons que $v_n = \frac{u_n}{S_n}$ convient. L'exercice précédent, qui s'applique car $\sum u_n$ est supposée à termes > 0 et divergente, montre que $\sum v_n$ diverge; de plus $\frac{v_n}{u_n} = \frac{1}{S_n} \to 0$ car on a vu $S_n \to +\infty$. Ceci donne bien $v_n = o(u_n)$.

NB: on a montré que pour toute SATP divergente, on peut trouver une autre SATP de terme général infiniment plus petit, qui diverge encore!

10