Covariance et corrélation

Exercices

Exercice 1. On considère n clients se répartissant aléatoirement dans 3 hôtels H_1, H_2, H_3 de manière équiprobable. Les choix des clients sont indépendants. On note X_i le nombre de personnes ayant choisi l'hôtel i.

- 1. Déterminer les lois de X₁, X₂, X₃ ; leurs espérances et variances.
- 2. Déterminer loi, espérance et variance de $X_1 + X_2$.
- 3. Calculer la covariance de X_1, X_2 , puis leur coefficient de corrélation linéaire. Le signe de ce coefficient vous paraît-il raisonnable?
- 4. On considère maintenant un problème similaire, avec n clients et p hôtels. Montrer que $\rho(X_1, X_2) \xrightarrow{p \to +\infty} 0$. Interpréter.

Exercice 2. On considère trois vad A,B,C indépendantes telles que $A \hookrightarrow \mathcal{P}(\lambda)$, $B \hookrightarrow \mathcal{P}(\mu)$, $C \hookrightarrow \mathcal{P}(\lambda)$. On pose X = A + B et Y = B + C.

- 1. Rappeler les lois de X et Y.
- 2. Montrer que X et Y admettent une covariance, et la calculer.
- 3. En déduire le coefficient de corrélation linéaire de X et Y.

Exercice 3. Soient $n \ge 3$, et $X_1, ..., X_n$ n vad mutuellement indépendantes suivant $\mathcal{B}(p)$. Pour tout $i \in [1, n-1]$, on pose $Y_i = X_i X_{i+1}$.

- 1. Donner la loi de Y_i . Montrer que si |i-j| > 1, Y_i et Y_j sont indépendantes.
- 2. Pour $i \in [1, n-2]$, calculer la covariance et le coefficient de corrélation linéaire de (Y_i, Y_{i+1}) .

Exercice 4. On considère n joueurs qui tirent à la carabine sur une cible. Chaque joueur dispose de 2 coups, et touche la cible avec une probabilité p.

Les différents joueurs et les différents tirs sont supposés indépendants.

- 1. On note X_1 le nombre de tireurs qui touchent la cible au premier tir, et X_2 le nombre de tireurs qui touchent au second tir. Donner les lois de X_1 , X_2 , $X_1 + X_2$.
- 2. On note A le nombre de tireurs touchant la cible lors de leurs deux essais ; et B le nombre de tireurs touchant la cible sur un seul des deux essais.

 Donner les lois de A et B. Montrer que le couple (A, B) admet une covariance.
- 3. Exprimer X₁ + X₂ en fonction de A et B; en déduire Cov(A, B). Interpréter son signe.

Indications

- 1 1. Lois usuelles
 - 2. Loi usuelle, encore!
 - 3. Partir de $V(X_1 + X_2)$.
 - 4. ...
- **2** 1. Cours!
 - 2. Cov(A+B,B+C) avec A,B,C indép : en développant il ne reste plus grand chose.
 - 3
- - 2. Pour une fois, aller chercher $\mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$.
- 4 1. Lois usuelles ; stabilité (justifier qu'elle s'applique !!)
 - 2. Encore des lois usuelles ; avec la bonne « expérience » et le bon « succès » .
 - 3. Justifier que $X_1 + X_2 = A + 2B$. Ensuite on a $V(X_1 + X_2)$ facilement; et Cov(A, B) sortira du développement de V(2A + B). Les expressions ne sont pas très jolies. On trouve $Cov(A, B) = -2np^3q$.