Devoir surveillé n°2 Corrigé

Exercice 1 (Probabilités)

On dispose d'un dé équilibré à 6 faces et d'une pièce truquée telle que la probabilité d'apparition de « Pile » soit égale à p, avec $p \in]0,1[$. On note q=1-p.

Soit N un entier naturel non nul fixé.

On effectue N lancers du dé ; si n est le nombre de « 6 » obtenus, on lance alors n fois la pièce.

On définit trois variables aléatoires X, Y, Z de la manière suivante :

- Z indique le nombre de «6» obtenus aux lancers du dé,
- X indique le nombre de « Pile » obtenus aux lancers de la pièce,
- Y indique le nombre de « Face » obtenues aux lancers de la pièce.

Ainsi, X + Y = Z et, si Z prend la valeur 0, alors X et Y prennent la valeur 0.

1. Préciser la loi de Z, son espérance et sa variance.

Z compte le nombre de « succès » (obtenir 6) dans une succession de N épreuves de Bernoulli indépendantes (lancers de dé successifs).

Le succès a pour probabilité $\frac{1}{6}$ (dé équilibré).

On en déduit que $Z \hookrightarrow \mathscr{B}\left(N, \frac{1}{6}\right)$.

D'après le cours on a donc $\mathbb{E}(Z) = \frac{N}{6}$ et $V(Z) = N\frac{1}{6}\left(1 - \frac{1}{6}\right) = \frac{5N}{36}$.

- 2. Pour $k \in \mathbb{N}$, $n \in \mathbb{N}$, déterminer la probabilité conditionnelle $\mathbb{P}_{(Z=n)}(X=k)$. On distinguera les cas : $k \le n$ et k > n.
 - Si k > n, il est impossible d'obtenir k Pile en n lancers : $\mathbb{P}_{(\mathbb{Z}=n)}(\mathbb{X}=k) = 0$.
 - Si *k* ≤ *n*, on compte le nombre de succès (obtenir Pile) au cours des *n* lancers de pièce indépendants. Le succès a pour probabilité *p* ; on est dans un schéma de loi binomiale.

Ainsi:
$$\forall k \in [0, n], \mathbb{P}_{(Z=n)}(X=k) = \binom{n}{k} p^k q^{n-k}.$$

- 3. Montrer, pour tout couple d'entiers naturels (k, n):
 - si $0 \le k \le n \le N$ alors $\mathbb{P}((X = k) \cap (Z = n)) = \binom{n}{k} \binom{N}{n} p^k (1 p)^{n k} \left(\frac{5}{6}\right)^{N n} \left(\frac{1}{6}\right)^n$
 - si n > N ou k > n alors $\mathbb{P}((X = k) \cap (Z = n)) = 0$.

On a toujours : $\forall (n, k) \in \mathbb{N}^2$, $\mathbb{P}((X = k) \cap (Z = n)) = \mathbb{P}_{(Z = n)}(X = k) \times \mathbb{P}(Z = n)$.

- Si k > n, le résultat précédent montre que $\mathbb{P}(X = k) \cap (Z = n) = 0$.
- $Z \hookrightarrow \mathcal{B}\left(N, \frac{1}{6}\right)$: si n > N, $\mathbb{P}(Z = n) = 0$ et donc $\mathbb{P}\left((X = k) \cap (Z = n)\right) = 0$.

• Considérons maintenant k et n tels que $0 \le k \le n \le N$.

On a alors :
$$\mathbb{P}(Z=n) = \binom{N}{n} \left(\frac{1}{6}\right)^n \left(\frac{5}{6}\right)^{\tilde{N}-n}$$
; d'où :

$$\begin{split} \mathbb{P}\big((\mathbf{X}=k)\cap(\mathbf{Z}=n)\big) &= \mathbb{P}_{(\mathbf{Z}=n)}(\mathbf{X}=k) \times \mathbb{P}(\mathbf{Z}=n) = \binom{n}{k} p^k (1-p)^{n-k} \binom{\mathbf{N}}{n} \left(\frac{1}{6}\right)^n \left(\frac{5}{6}\right)^{\mathbf{N}-n} \\ &= \binom{n}{k} \binom{\mathbf{N}}{n} p^k (1-p)^{n-k} \left(\frac{5}{6}\right)^{\mathbf{N}-n} \left(\frac{1}{6}\right)^n \end{split}$$

4. Calculer la probabilité $\mathbb{P}(X = 0)$.

erreur corrigée : mauvaise indexation du SCE.

On applique la formule des probabilités totales, avec le SCE $((Z = n))_{n \in [0,N]}$:

$$P(X = 0) = \sum_{n=0}^{N} \mathbb{P}(X = 0) \cap (Z = n)$$

$$= \sum_{n=0}^{N} \binom{N}{n} (1-p)^n \left(\frac{5}{6}\right)^{N-n} \left(\frac{1}{6}\right)^n$$

$$= \sum_{n=0}^{N} \binom{N}{n} \left(\frac{5}{6}\right)^{N-n} \left(\frac{1-p}{6}\right)^n$$

$$= \left(\frac{5}{6} + \frac{1-p}{6}\right)^N \qquad \text{(formule du binôme)}$$

$$\mathbb{P}(X = 0) = \left(1 - \frac{p}{6}\right)^N$$

5. Montrer pour tout couple d'entiers naturels (k, n) tel que $0 \le k \le n \le N$:

$$\binom{n}{k} \binom{N}{n} = \binom{N}{k} \binom{N-k}{n-k}$$

En déduire la probabilité $\mathbb{P}(X = k)$.

Soient (k,n) tels que $0 \le k \le n \le N$; on écrit les coefficients binomiaux sous forme de factorielles :

$$\binom{n}{k} \binom{N}{n} = \frac{n!}{k!(n-k)!} \frac{N!}{n!(N-n)!} = \frac{N!}{k!(n-k)!(N-n)!}$$

$$\binom{N}{k} \binom{N-k}{n-k} = \frac{N!}{k!(N-k)!} \frac{(N-k)!}{(n-k)!(N-n)!} = \frac{N!}{k!(n-k)!(N-n)!}$$

et on a bien l'égalité recherchée.

On remarque déjà qu'en N lancers de dé, on ne pourra pas obtenir plus de N Pile à l'issue de l'expérience : $X(\Omega) = I0$, NI.

 $\mathbb{P}(X=0)$ étant déterminée : soit $k\in [\![1,N]\!].$ Toujours avec les probas totales :

erreur corrigée : la première somme allait

jusqu'à +∞...

$$\mathbb{P}(\mathbf{X}=k) = \sum_{n=0}^{\mathbf{N}} \mathbb{P}\left((\mathbf{X}=k) \cap (\mathbf{Z}=n)\right)$$

$$= \sum_{n=k}^{\mathbf{N}} \binom{n}{k} \binom{\mathbf{N}}{n} p^k (1-p)^{n-k} \left(\frac{5}{6}\right)^{\mathbf{N}-n} \left(\frac{1}{6}\right)^n \quad \text{(proba nulle si } n \notin \llbracket k, \mathbf{N} \rrbracket)$$

$$= \sum_{n=k}^{\mathbf{N}} \binom{\mathbf{N}}{k} \binom{\mathbf{N}-k}{n-k} p^k (1-p)^{n-k} \left(\frac{5}{6}\right)^{\mathbf{N}-n} \left(\frac{1}{6}\right)^n$$

$$= \binom{\mathbf{N}}{k} p^k \sum_{m=0}^{\mathbf{N}-k} \binom{\mathbf{N}-k}{m} (1-p)^m \left(\frac{5}{6}\right)^{\mathbf{N}-m-k} \left(\frac{1}{6}\right)^{m+k} \quad \text{(avec } m=n-k \text{, et en sortant les facteurs indépendants de } n)$$

$$= \binom{\mathbf{N}}{k} p^k \left(\frac{1}{6}\right)^k \sum_{m=0}^{\mathbf{N}-k} \binom{\mathbf{N}-k}{m} (1-p)^m \left(\frac{5}{6}\right)^{\mathbf{N}-k-m} \left(\frac{1}{6}\right)^m$$

$$= \binom{\mathbf{N}}{k} \left(\frac{p}{6}\right)^k \left(\frac{5}{6} + \frac{1-p}{6}\right)^{\mathbf{N}-k} \quad \text{(binôme)}$$

$$\mathbb{P}(\mathbf{X}=k) = \binom{\mathbf{N}}{k} \left(\frac{p}{6}\right)^k \left(1-\frac{p}{6}\right)^{\mathbf{N}-k}$$

On remarque que ce résultat est encore valable pour k = 0 (voir la question précédente).

6. Montrer que la variable aléatoire X suit une loi binomiale de paramètres $\left(N,\frac{p}{6}\right)$. Quelle est la loi de la variable aléatoire Y?

La question précédente montre que $X(\Omega) = [0, N]$, et : $\forall k \in [0, N]$, $P(X = k) = \binom{N}{k} \left(\frac{p}{6}\right)^k \left(1 - \frac{p}{6}\right)^{N-k}$: on a bien $X \hookrightarrow \mathcal{B}\left(N, \frac{p}{6}\right)$.

En échangeant « Pile » et « Face » , et donc p en q, les mêmes calculs donneront $Y \hookrightarrow \mathcal{B}\left(N, \frac{q}{6}\right)$.

7. Est-ce que les variables aléatoires X et Y sont indépendantes ? Déterminer la loi du couple (X, Y).

On se doute que X et Y ne sont pas indépendantes... comment le montrer ?

On voit que $X + Y = Z \in [0, N]$, alors que X = N et Y = N sont possibles. Donc $\mathbb{P}(X = N) \neq 0$, $\mathbb{P}(Y = N) \neq 0$, mais $\mathbb{P}(X = N) \cap (Y = N) = 0$ (N lancers de pièce sont effectuées au maximum, on ne peut pas avoir N Pile et N Face...).

Ainsi $\mathbb{P}((X = N) \cap (Y = N)) \neq \mathbb{P}(X = N)\mathbb{P}(Y = N) : X \text{ et } Y \text{ ne sont pas indépendantes.}$

On cherche maintenant à déterminer les probabilités $\mathbb{P}((X = i) \cap (Y = j))$ pour $(i, j) \in [0, N]^2$. On a :

$$\mathbb{P}((X = i) \cap (Y = j)) = \mathbb{P}((X = i) \cap (Z = i + j)) = 0 \text{ si } i + j > N$$

et si $0 \le i + j \le N$:

$$\mathbb{P}\big((\mathbf{X}=i)\cap(\mathbf{Y}=j)\big) = \mathbb{P}\big((\mathbf{X}=i)\cap(\mathbf{Z}=i+j)\big) = \binom{i+j}{i} \binom{\mathbf{N}}{i+j} p^i (1-p)^j \left(\frac{5}{6}\right)^{\mathbf{N}-i-j} \left(\frac{1}{6}\right)^{i+j}$$

8. En comparant les variances de Z et de X+Y, montrer que $Cov(X,Y) = -\frac{Npq}{36}$; puis que $Cov(X,Z) = \frac{5Np}{36}$.

3

On a X+Y=Z donc $V(X+Y)=V(Z)=\frac{5N}{36}$ d'après la loi suivie par Z. Or V(X+Y)=V(X)+V(Y)+2Cov(X,Y) : on en déduit

$$\begin{aligned} \operatorname{Cov}(\mathbf{X},\mathbf{Y}) &= \frac{1}{2} \left(\frac{5\mathbf{N}}{36} - \mathbf{N} \frac{p}{6} \left(1 - \frac{p}{6} \right) - \mathbf{N} \frac{q}{6} \left(1 - \frac{q}{6} \right) \right) \\ &= \frac{\mathbf{N}}{72} \left(5 - p(6 - p) - q(6 - q) \right) \\ &= \frac{\mathbf{N}}{72} \left(5 - 6p + p^2 - 6q + q^2 \right) \\ &= \frac{\mathbf{N}}{72} \left(5 - 6(p + q) + p^2 + (1 - p)^2 \right) \\ &= \frac{\mathbf{N}}{72} \left(5 - 6 + p^2 + p^2 - 2p + 1 \right) \\ &= \frac{\mathbf{N}}{72} \left(2p^2 - 2p \right) \\ &= \frac{2\mathbf{N}p}{72} \left(p - 1 \right) \\ \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) &= -\frac{\mathbf{N}pq}{36} \end{aligned}$$

(NB : il est raisonnable que cette covariance soit négative : grosso modo, plus on obtient de Pile, moins on obtient de Face).

Ensuite par bilinéarité:

$$Cov(X,Z) = Cov(X,X+Y) = Cov(X,X) + Cov(X,Y) = V(X) + Cov(X,Y) = N\frac{p}{6}\left(1 - \frac{p}{6}\right) - \frac{Npq}{36} = \frac{Np}{36}\left(6 - p - q\right) = \frac{5Np}{36}$$

- 9. Simulation informatique.
 - (a) Écrire les lignes permettant d'importer sous leurs alias usuels :
 - le package numpy de calcul numérique;
 - le package numpy . random de modélisation de l'aléatoire ;
 - le package matplotlib.pyplot de tracés graphiques.

On supposera ces imports effectués dans tout le reste du sujet.

```
import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt
```

(b) Programmer une fonction XYZ(N,p) qui modélise cette expérience et renvoie un triplet (X,Y,Z) correspondant aux valeurs de ces trois variables.

On simule deux variables binomiales successives:

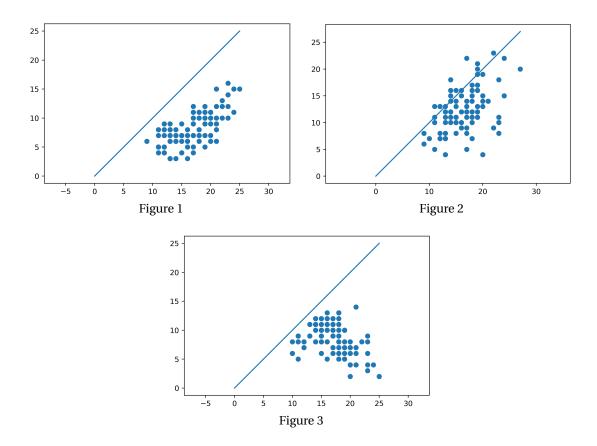
```
def XYZ(N,p):
    Z = rd.binomial(N,1/6)
    X = rd.binomial(Z,p)
    Y = Z-X
    return X,Y,Z
```

(c) Cette fonction étant supposée programmée, on écrit ensuite les commandes :

```
tirages=[XYZ(100,0.4) for k in range(100)]
X = [t[0] for t in tirages]
Z = [t[2] for t in tirages]
plt.scatter(Z,X)
plt.plot([0,max(Z)],[0,max(Z)]) # trace la droite d'équation y=x
plt.show()
```

L'ordinateur renvoie un des graphiques suivants : lequel ? Justifier votre réponse.

Ici on commence par effectuer 100 expériences, où chaque expérience consiste en N = 100 lancers de dé ; et où la proba de Pile est p = 0.4.



La liste L contient les 100 résultats ; une composante de L est de la forme (x,y,z).

La liste X est donc la liste de toutes les premières composantes des éléments de L (donc les 100 valeurs de X obtenues sur les 100 expériences) ; la liste Z regroupe les troisièmes composantes, soit les 100 valeurs de Z.

Le graphique est donc le nuage de points des tirages du couple (Z,X) (en citant les abscisses en premier).

On a toujours $Z \geqslant X$ donc la figure 2 est incorrecte (points au-dessus de la première bissectrice) ; et comme Cov(X,Z) > 0 on doit avoir « une tendance à la hausse » ce qui disqualifie la figure 3. La bonne figure est la figure 1.

Exercice 2 (Probabilités)

Dans tout l'exercice, p désigne un réel de]0,1[et on pose q=1-p.

Toutes les variables aléatoires considérées dans cet exercice sont supposées définies sur un même espace probabilisé noté $(\Omega, \mathcal{A}, \mathbb{P})$.

On considère en particulier une variable aléatoire X à valeurs dans N, dont la loi est donnée par :

$$\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = q^k p = (1 - p)^k p.$$

PARTIE A:

1. Montrer que la variable aléatoire Y = X + 1 suit une loi géométrique dont on précisera le paramètre.

```
Comme X(\Omega) = \mathbb{N}, on a : Y(\Omega) = \mathbb{N}^*.
Pour tout k \in \mathbb{N}^* :
```

$$\mathbb{P}(Y = k) = \mathbb{P}(X + 1 = k) = \mathbb{P}(X = k - 1) = q^{k-1}p.$$

Ainsi, la variable aléatoire Y suit la loi géométrique de paramètre p.

2. En déduire que X admet une espérance et une variance, et préciser $\mathbb{E}(X)$ et V(X).

Y admet une espérance et une variance et on a :

$$\mathbb{E}(Y) = \frac{1}{p} \quad ; \quad V(Y) = \frac{q}{p^2}.$$

X = Y - 1 admet donc elle aussi une espérance et une variance. On a, par linéarité de l'espérance :

$$\mathbb{E}(\mathbf{X}) = \mathbb{E}(\mathbf{Y}) - 1 = \frac{1}{p} - 1 = \frac{q}{p}$$

et par invariance par translation de la variance :

$$V(X) = V(Y) = \frac{q}{p^2}$$

3. À l'aide de ce qui précède, programmer, sans utiliser rd. geometric, une fonction Python simule_X(p) qui, prenant en entrée le réel p, renvoie une simulation de la variable aléatoire X.

```
def simule_X(p):
    # on simule d'abord une géométrique
    Y = 1
    while rd.random()>p # échec ; on peut aussi mettre rd.random()<1-p
        Y = Y+1
    # et on renvoie X = Y-1
    return Y-1</pre>
```

PARTIE B:

On modélise l'évolution d'une population de la manière suivante. Si à un instant donné la population est composée de k individus, alors :

- si k est égal à zéro, alors la population est éteinte ;
- si k est un entier supérieur ou égal à 1 , on définit k variables aléatoires X₁,...,X_k, toutes indépendantes et de même loi que la variable aléatoire X étudiée dans la partie A.
 Chaque individu i engendre alors X_i enfants ; puis meurt. Ainsi, à l'étape suivante, la population est composée de X₁ + ··· + X_k individus ;
- les tirages des X_i associés aux générations successives sont supposés indépendants les uns des autres.

On cherche ici à examiner la probabilité d'extinction de cette population après un certain nombre de générations.

On note, pour tout n de \mathbb{N} , \mathbf{Z}_n la variable aléatoire égale au nombre d'individus dans la population après n étapes.

On suppose que la population initiale est constituée d'un seul individu ; ainsi $Z_0 = 1$.

On remarque en particulier que Z_1 suit la même loi que X.

4. Compléter la fonction Python suivante afin que, prenant en entrée un entier n de \mathbb{N} et le réel p, elle simule l'expérience aléatoire et renvoie la valeur de \mathbb{Z}_n .

Cette fonction devra utiliser la fonction simule_X.

```
def simule_Z(n,p):
    Z = 1 # pop initiale
    for i in range(n): # n étapes de temps
        s = 0 # on somme les enfants de tous les membres d'une génération
        for j in range(Z):
            s = s + simule_X
        Z = s
    return Z
```

NB: $\sin Z = 0$ à une certaine étape du programme, le second for ne tourne pas: range (0) est la liste vide. Ainsi la population restera bien nulle aux générations suivantes.

On définit, pour tout n de \mathbb{N} , u_n la probabilité que la population soit éteinte après n générations ; ainsi :

$$\forall n \in \mathbb{N}, u_n = \mathbb{P}(\mathbb{Z}_n = 0)$$

On note également R l'événement : « la population s'éteint après un certain nombre d'étapes » .

5. (a) Préciser les valeurs de u_0 et de u_1 .

```
u_0 = \mathbb{P}(Z_0 = 0) = 0 car Z_0 est supposée constante égale à 1.

u_1 = \mathbb{P}(Z_1 = 0) = \mathbb{P}(X = 0) = p car Z_1 suit la même loi que X.
```

(b) Comparer, pour tout n de \mathbb{N} , les événements $(Z_n = 0)$ et $(Z_{n+1} = 0)$. En déduire que la suite $(u_n)_{n \in \mathbb{N}}$ est monotone et convergente.

Si la population est éteinte au bout de n générations... elle le reste à la génération suivante ! Ainsi, $Z_n = 0 \Rightarrow Z_{n+1} = 0$ ce qui donne, au niveau des événements :

$$(\mathbf{Z}_n=0)\subset (\mathbf{Z}_{n+1}=0)$$

En prenant les probabilités on obtient $\mathbb{P}(Z_n=0) \leq \mathbb{P}(Z_{n+1}=0)$ soit $u_{n+1} \geq u_n$: la suite (u_n) est croissante

Étant majorée par 1 (ce sont des probabilités) elle est convergente.

Dans la suite de l'exercice, on note $\ell = \lim_{n \to +\infty} u_n$. On admet que $\mathbb{P}(\mathbb{R}) = \ell$.

6. (a) Montrer que, pour tout k de \mathbb{N} , on a : $\mathbb{P}_{(Z_1=k)}(Z_2=0)=(u_1)^k$.

Sachant $(Z_1 = k)$ il y a k individus à la première génération ; la population sera éteinte à la seconde génération **si et seulement si** aucun de ces individus n'a d'enfants. Autrement dit

$$\mathbb{P}_{(Z_1=k)}(Z_2=0) = \mathbb{P}\left(\bigcap_{i=1}^k (X_i=0)\right)$$

Or les X_i sont indépendants par hypothèse ; ainsi :

$$\mathbb{P}_{(Z_1=k)}(Z_2=0) = \prod_{i=1}^k \mathbb{P}(X_i=0) = p^k = (u_1)^k$$
 d'après 5a)

On admet que, pour tout n de \mathbb{N} et pour tout k de \mathbb{N} , on a : $\mathbb{P}_{(\mathbb{Z}_1=k)}(\mathbb{Z}_{n+1}=0)=(u_n)^k$.

NB : c'est un peu pénible à formaliser mais l'idée est la suivante : sachant qu'il y a k enfants à la première génération, la population est éteinte à la (n+1)-ème génération ssi les k lignées de ces k enfants sont toutes éteintes au bout de n générations. On conclut par indépendance de ces lignées.

(b) **En déduire**:
$$\forall n \in \mathbb{N}, \ u_{n+1} = \sum_{k=0}^{+\infty} \mathbb{P}(Z_1 = k) (u_n)^k = \frac{p}{1 - qu_n}.$$

Soit $n \in \mathbb{N}$. Appliquons la formule des probabilités totales au système complet d'événements $\{(Z_1 = k)\}_{k \in \mathbb{N}}$:

$$\mathbb{P}(Z_{n+1} = 0) = \sum_{k=0}^{+\infty} \mathbb{P}(Z_1 = k) \times \mathbb{P}_{(Z_1 = k)} (Z_{n+1} = 0)$$

$$= \sum_{k=0}^{+\infty} q^k p \times (u_n)^k \quad \text{avec } \mathbb{P}(Z_1 = k) = \mathbb{P}(X = k) = q^k p$$

$$= p \sum_{k=0}^{+\infty} (q \times u_n)^k$$

Avec $0 \le qu_n < 1$ (puisque 0 < q < 1 et $0 \le u_n \le 1$) on a:

$$u_{n+1} = \mathbb{P}(Z_{n+1} = 0) = p \sum_{k=0}^{+\infty} (q \times u_n)^k = \frac{p}{1 - qu_n}$$

7. (a) Montrer que ℓ vérifie : $(\ell-1)(q\ell-p)=0$.

Comme 0 < q < 1 et $0 \le \ell \le 1$, on a $q\ell < 1$ et donc $1 - q\ell \ne 0$. D'après 6b), par théorème du point fixe (la fonction $x \mapsto \frac{p}{1 - qx}$ est continue sur [0, 1], $\underline{\operatorname{car si} \ x \in [0, 1], \ 1 - qx \ne 0}$) la limite ℓ de (u_n) vérifie :

$$\ell = \frac{p}{1 - a\ell} \Leftrightarrow \ell - q\ell^2 = p \Leftrightarrow q\ell^2 - \ell + p = 0.$$

Par ailleurs l'expression donnée dans l'énoncé s'écrit:

$$(\ell-1)(q\ell-p) = q\ell^2 - p\ell - q\ell + p = q\ell^2 - \underbrace{(p+q)}_{-1}\ell + p = q\ell^2 - \ell + p.$$

Par conséquent, ℓ vérifie :

$$(\ell-1)(a\ell-p)=0.$$

(b) **On suppose** $p \ge \frac{1}{2}$. **Montrer:** $\mathbb{P}(\mathbb{R}) = 1$.

 $(\ell-1)(q\ell-p)=0$ donc on a $\ell=1$ ou $\ell=\frac{p}{q}$. Par l'absurde, si $\ell\neq 1$ alors $\ell<1$ ($\ell\in [0,1]$ car c'est une limite de suite à éléments dans [0,1]).

limite de suite à éléments dans [0,1]). On a aussi $\ell = \frac{p}{q}$; mais si $p \ge \frac{1}{2}$ on a $p \ge q$ et donc $\frac{p}{q} \ge 1$.

C'est absurde : on a donc bien $\ell = 1$

(c) **On suppose** $p < \frac{1}{2}$. **Montrer**: $\forall n \in \mathbb{N}$, $u_n \in \left[0, \frac{p}{q}\right]$. En déduire: $\mathbb{P}(\mathbb{R}) < 1$.

La suite (u_n) est positive (pour tout n, u_n est une probabilité). Montrons par récurrence :

8

$$\forall n \in \mathbb{N}, \quad u_n \leq \frac{p}{q}.$$

• $u_0 = 0$ d'après 5a);

• Supposons pour un entier $n \in \mathbb{N}$ fixé que $u_n \in \left[0, \frac{p}{q}\right]$. Alors :

$$u_n \le \frac{p}{q}$$

$$\Rightarrow qu_n \le p$$

$$\Rightarrow 1 - qu_n \ge 1 - p = q$$

$$\Rightarrow \frac{1}{1 - qu_n} \le \frac{1}{q} \quad \text{décroissance de l'inverse sur } \mathbb{R}_+^*$$

$$\Rightarrow u_{n+1} = \frac{p}{1 - qu_n} \le \frac{p}{q} \quad (p > 0)$$

D'où l'hérédité.

On a ainsi prouvé le résultat souhaité. Par passage à la limite (qui préserve les inégalités larges) :

$$\mathbb{P}(\mathbf{R}) = \ell \le \frac{p}{a}$$

Mais comme $p < \frac{1}{2}$ on a p < q; donc $\mathbb{P}(\mathbb{R}) < 1$.

(d) À quelle condition sur p la population finira presque sûrement par s'éteindre (c'est-à-dire que la probabilité d'extinction est égale à 1) ?

En relisant ce qui précède on voit que $\mathbb{P}(\mathbb{R}) = 1$ ssi $p \ge \frac{1}{2}$.

PARTIE C:

On suppose à présent que $p \ge \frac{1}{2}$.

On note T la variable aléatoire égale au premier instant où la population s'éteint (la partie B montre alors que T est bien définie avec probabilité 1) On pose, pour tout n de \mathbb{N} , $v_n = 1 - u_n$.

8. **Justifier**: $\forall n \in \mathbb{N}, u_n = \mathbb{P}(T \le n)$ **puis** $\forall n \in \mathbb{N}^*, \mathbb{P}(T = n) = v_{n-1} - v_n$.

 $u_n = \mathbb{P}(Z_n = 0)$. $(Z_n = 0)$ est l'événement « la population est éteinte au bout de n générations » , ce qui équivaut à dire qu'elle s'est éteinte à un nombre de générations inférieur ou égal à n ; donc à $(T \le n)$. Ainsi $u_n = \mathbb{P}(T \le n)$.

Classiquement on a alors $\mathbb{P}(T=n) = \mathbb{P}(T \le n) - \mathbb{P}(T \le n-1) = u_n - u_{n-1} = (1-v_n) - (1-v_{n-1}) = v_{n-1} - v_n$.

9. Montrer, pour tout N de \mathbb{N}^* : $\sum_{n=1}^{N} n \mathbb{P} (T=n) = \sum_{n=0}^{N-1} \nu_n - N \nu_N$.

On écrit:

$$\begin{split} \sum_{n=1}^{N} n \mathbb{P} (T = n) &= \sum_{n=1}^{N} n(v_{n-1} - v_n) \\ &= \sum_{n=1}^{N} n v_{n-1} - \sum_{n=1}^{N} n v_n \\ &= \sum_{n=0}^{N-1} (n+1) v_n - \sum_{n=1}^{N} n v_n \quad \text{(changement d'indice)} \\ &= v_0 + \sum_{n=1}^{N-1} (n+1) v_n - \sum_{n=1}^{N-1} n v_n - N v_N \\ &= v_0 + \sum_{n=1}^{N-1} (n+1-n) v_n - N v_N \quad \text{(on regroupe les sommes)} \\ &= v_0 + \sum_{n=1}^{N-1} v_n - N v_N \\ &= \sum_{n=0}^{N-1} v_n - N v_N \quad \text{(le terme } n = 0 \text{ est incorporé dans la somme)} \end{split}$$

- 10. On suppose dans cette question que $p = \frac{1}{2}$.
 - (a) **Montrer**: $\forall n \in \mathbb{N}, u_n = \frac{n}{n+1}$.

Récurrence avec la relation de 6b) qui donne, pour $p = \frac{1}{2}$, $u_{n+1} = \frac{1/2}{1 - u_n/2} = \frac{1}{2 - u_n}$. Dès lors :

- $u_0 = 0$ (5a) donc $u_n = \frac{n}{n+1}$ est vraie pour n = 0;
- si $u_n = \frac{n}{n+1}$ alors

$$u_{n+1} = \frac{1}{2 - \frac{n}{n+1}} = \frac{1}{\frac{2n+2-n}{n+1}} = \frac{n+1}{n+2}$$

ce qui donne l'hérédité et achève la récurrence.

(b) En déduire que la variable aléatoire T n'admet pas d'espérance.

On examine la convergence absolue de $\sum n\mathbb{P}(T=n)$ (les termes à sommer sont positifs donc la convergence suffit).

La question précédente nous parle des sommes partielles : examinons la limite $N \to +\infty$ dans la propriété $\sum_{n=1}^{N} n \mathbb{P}(T=n) = \sum_{n=0}^{N-1} v_n - Nv_N$.

• $u_n = \frac{n}{n+1}$ donc $v_n = 1 - u_n = \frac{1}{n+1} \sim \frac{1}{n-1}$: par comparaison de SATP $\sum v_n$ diverge donc

$$\lim_{N \to +\infty} \left(\sum_{n=0}^{N-1} \nu_n \right) = +\infty$$

•
$$N \nu_N = \frac{N}{N+1} \xrightarrow{N \to +\infty} 1$$
.

On déduit de cela que

$$\lim_{N \to +\infty} \left(\sum_{n=1}^{N} n \mathbb{P} (T = n) \right) = +\infty$$

ce qui donne la divergence de $\sum n \mathbb{P}(T = n)$: T n'admet pas d'espérance.

- 11. On suppose maintenant que $p > \frac{1}{2}$.

 On pose, pour tout n de \mathbb{N} , $w_n = \frac{1 u_n}{\frac{p}{2} u_n}$.
 - (a) **Montrer:** $\forall n \in \mathbb{N}, \ w_{n+1} = \frac{q}{p} w_n$.

C'est un peu calculatoire. On rappelle que $u_{n+1}=\frac{p}{1-qu_n}$; on a aussi $w_n=\frac{q-qu_n}{p-qu_n}$ Alors

$$w_{n+1} = \frac{q - qu_{n+1}}{p - qu_{n+1}} = \frac{q - \frac{pq}{1 - qu_n}}{p - \frac{pq}{1 - qu_n}} = \frac{q(1 - qu_n) - pq}{p(1 - qu_n) - pq} = \frac{q(1 - p) - q^2u_n}{p(1 - q) - pqu_n} = \frac{q^2(1 - u_n)}{p^2 - pqu_n}$$
$$= \frac{q}{p} \frac{q(1 - u_n)}{p - qu_n} = \frac{q}{p} w_n$$

(b) **En déduire**: $\forall n \in \mathbb{N}, \ u_n = \frac{1 - \left(\frac{q}{p}\right)^n}{1 - \left(\frac{q}{p}\right)^{n+1}}, \ \mathbf{puis}: \ \forall n \in \mathbb{N}, \ 0 \le v_n \le \left(\frac{q}{p}\right)^n.$

 (w_n) est géométrique de raison $\frac{q}{p}$; et $w_0 = \frac{1-u_0}{\frac{p}{q}-u_0} = \frac{q}{p}$. On en déduit

$$\forall n \in \mathbb{N}, \ w_n = \left(\frac{q}{p}\right)^{n+1}$$

10

Ensuite on retourne la relation entre u_n et w_n : on obtient

$$u_n = \frac{1 - \frac{p}{q} w_n}{1 - w_n} = \frac{1 - \left(\frac{q}{p}\right)^n}{1 - \left(\frac{q}{p}\right)^{n+1}}$$

Comme $p > \frac{1}{2}$ on a p > q puis $0 < \frac{q}{p} < 1$ ce qui donne $0 < 1 - \left(\frac{q}{p}\right)^{n+1} \le 1$.

On en déduit que

$$u_n = \frac{1 - \left(\frac{q}{p}\right)^n}{1 - \left(\frac{q}{p}\right)^{n+1}} \le 1 - \left(\frac{q}{p}\right)^n$$

puis avec $v_n = 1 - u_n$:

$$0 \le v_n \le \left(\frac{q}{p}\right)^n$$

(c) Montrer que la variable aléatoire T admet une espérance et que l'on a : $\mathbb{E}(T) \le \frac{1}{1 - \frac{q}{p}}$.

On remonte aux sommes partielles calculées en question 9.

$$\sum_{n=1}^{N} n \mathbb{P} (\mathrm{T} = n) = \sum_{n=0}^{N-1} v_n$$

Par la majoration qu'on vient d'obtenir et $0 < \frac{q}{p} < 1$ on a que $\sum v_n$ converge (comparaison à une géométrique) ; et que $Nv_N \to 0$ par croissances comparées. T admet bien une espérance. En passant à la limite $N \to +\infty$:

$$\mathbb{E}(\mathsf{T}) = \sum_{n=1}^{+\infty} n \, \mathbb{P}\left(\mathsf{T} = n\right) = \sum_{n=0}^{+\infty} \nu_n \leq \sum_{n=0}^{+\infty} \left(\frac{q}{p}\right)^n \leq \frac{1}{1 - \frac{q}{p}}$$

Exercice 3 (Analyse)

Partie I - Étude d'une suite récurrente

On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par son premier terme $u_0>0$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2}{n+1}$$

On introduit également la suite $(v_n)_{n\in\mathbb{N}}$ définie, pour tout $n\in\mathbb{N}$, par

$$v_n = \frac{\ln{(u_n)}}{2^n}$$

1. Écrire une fonction Python qui prend en argument un entier $n \in \mathbb{N}$ et un réel $u_0 > 0$, et renvoie la valeur de u_n .

Attention, ce n'est pas de la forme $u_{n+1} = f(u_n)$ (mais plutôt $u_{n+1} = f(n, u_n)$).

Bon au final ça ne change pas grand chose : il faut juste faire attention à la valeur de la variable sur laquelle on boucle.

```
def suite(u0,n):
    u = u0
    for k in range(n):
        u = u**2/(k+1)
    return u
```

erreur corrigée : u^ 2 ne fonctionne pas

Bien compter : au premier tour de boucle k vaut 0, ce qui colle bien avec la relation $u_{0+1} = \frac{(u_0)^2}{n+1}$ qui permet le calcul de u_1 .

2. Montrer que, pour tout $n \in \mathbb{N}$, $u_n > 0$. En déduire que la suite (v_n) est bien définie.

C'est une récurrence dans difficulté : $u_0 > 0$ d'après l'énoncé ; et si $u_n > 0$ on a clairement $u_{n+1} = \frac{(u_n)^2}{n+1} > 0$. Comme $u_n > 0$, $\ln(u_n)$ existe ; ce qui assure la bonne définition de (v_n) .

3. Trouver un réel $q \in]0,1[$ tel que $\frac{\ln(k)}{2^k} = o\left(q^k\right)$. En déduire que la série $\sum_{k\geqslant 1} \frac{\ln(k)}{2^k}$ converge.

On n'a pas $\frac{\ln(k)}{2^k} = o((1/2)^k)$ mais toute autre suite géométrique à peine plus grande devrait faire l'affaire : prenons $q = \frac{3}{4}$.

$$\frac{\frac{\ln(k)}{2^k}}{\left(\frac{3}{4}\right)^k} = \frac{\ln(k)}{2^k} \frac{4^k}{3^k} = \ln(k) \left(\frac{2}{3}\right)^k \xrightarrow{k \to +\infty} 0$$

par croissances comparées.

On a donc

$$\frac{\ln(k)}{2^k} \underset{k \to +\infty}{=} o\left(\left(\frac{3}{4}\right)^k\right)$$

 $\sum \left(\frac{3}{4}\right)^k$ converge (série géométrique, $\left|\frac{3}{4}\right| < 1$) donc par comparaison de séries à termes positifs, $\sum_{k>1} \frac{\ln(k)}{2^k}$ converge.

Dans toute la suite, on note $\sigma = \sum_{k=1}^{+\infty} \frac{\ln(k)}{2^k}$.

4. (a) Pour tout entier $k \ge 1$, exprimer $v_k - v_{k-1}$ en fonction de k.

Pour $k \ge 1$:

$$\begin{split} v_k - v_{k-1} &= \ln{(u_k)} - \ln{(u_{k-1})} \\ &= \frac{1}{2^k} \ln{\left(\frac{u_{k-1}^2}{k}\right)} - \frac{1}{2^{k-1}} \ln{(u_{k-1})} \\ &= \frac{2}{2^k} \ln{(u_{k-1})} - \frac{\ln{(k)}}{2^k} - \frac{1}{2^{k-1}} \ln{(u_{k-1})} \\ &= -\frac{\ln{(k)}}{2^k} \end{split}$$

(b) Déterminer alors la nature de la série $\sum_{k>1} (v_k - v_{k-1})$.

C'est le résultat de 3) (si une série converge, son opposée converge aussi).

(c) En déduire la convergence de la suite (v_n) et exprimer sa limite ℓ en fonction de u_0 et σ .

Série téléscopique ! On écrit les sommes partielles de la série $\sum (v_k - v_{k-1})$. Soit $n \ge 1$:

12

$$\sum_{k=1}^{n} (\nu_k - \nu_{k-1}) = \nu_n - \nu_0 \ \Rightarrow \ \nu_n = \nu_0 - \sum_{k=1}^{n} \frac{\ln(k)}{2^k}$$

et cette dernière somme convergeant, on a la convergence de la SUITE (v_n) et :

$$\ell = \lim_{n \to +\infty} v_n = v_0 - \sum_{k=1}^{+\infty} \frac{\ln(k)}{2^k} = \ln(u_0) - \sigma$$

- 5. On suppose dans cette question que $u_0 \neq e^{\sigma}$.
 - (a) En distinguant les cas $u_0 < e^{\sigma}$ et $u_0 > e^{\sigma}$, déterminer le signe de ℓ .

Si $u_0 < e^{\sigma}$ on a $\ell = \ln(u_0) - \sigma < 0$ par croissance stricte du ln. Si $u_0 > e^{\sigma}$ on a de même $\ell > 0$.

(b) En déduire, dans ces deux cas, la limite de la suite $(\ln(u_n))_{n\in\mathbb{N}}$ puis le comportement en $+\infty$ de $(u_n)_{n\in\mathbb{N}}$.

Par définition de v_n , on a $\ln(u_n) = 2^n v_n$. Dans les deux cas qui suivent, $\ell \neq 0$ ce qui justifie le passage aux équivalents.

• Si $u_0 < e^{\sigma}$ alors

$$\ln(u_n) = 2^n v_n \underset{n \to +\infty}{\sim} 2^n \ell \to -\infty$$

ce qui donne ensuite

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \exp\left(\frac{\ln(u_n)}{-\infty}\right) = 0$$

• Si $u_0 > e^{\sigma}$ alors

$$\ln(u_n) \underset{n \to +\infty}{\sim} 2^n \ell \to +\infty$$

ce qui donne cette fois

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \exp\left(\underbrace{\ln(u_n)}_{-+\infty}\right) = +\infty$$

- 6. On suppose dans cette question que $u_0 = e^{\sigma}$.
 - (a) Vérifier que, pour tout $n \in \mathbb{N}$,

$$v_n = \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k}$$

Si $u_0 = e^{\sigma}$ alors en reprenant le téléscopage

$$v_n = v_0 - \sum_{k=1}^n \frac{\ln(k)}{2^k} = \ln(u_0) - \sum_{k=1}^n \frac{\ln(k)}{2^k}$$
$$= \sigma - \sum_{k=1}^n \frac{\ln(k)}{2^k}$$
$$= \sum_{k=1}^{+\infty} \frac{\ln(k)}{2^k} - \sum_{k=1}^n \frac{\ln(k)}{2^k}$$
$$= \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k}$$

(b) Montrer alors que, pour tout $n \in \mathbb{N}$,

$$\ln\left(u_n\right) \geqslant \frac{\ln(n+1)}{2}$$

$$\ln(u_n) = 2^n v_n = 2^n \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k}.$$

On cherche alors à minorer l'expression précédente. Les termes à sommer étant positifs, il suffit de minorer par le premier terme de la somme :

$$\sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k} \ge \frac{\ln(n+1)}{2^{n+1}}$$

et il sut que

$$\ln(u_n) = 2^n \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k} \ge \frac{\ln(n+1)}{2}$$

13

(c) **Déterminer alors** $\lim_{n\to+\infty} u_n$.

 $\frac{\ln(n+1)}{2} \to +\infty \text{ donc par minoration } \ln(u_n) \to +\infty, \text{ puis } u_n = \exp(\ln(u_n)) \to +\infty.$

Partie II - Approximation de σ

7. (a) Montrer que, pour tout $x \in \mathbb{R}_+^*$, $\ln(x) \le x$.

On étudie $g: x \mapsto \ln(x) - x$ sur \mathbb{R}_+^* ; ou on utilise la concavité du ln qui donne (avec la tangente en 1): $\ln(x) \le x - 1 \le x$.

(b) En déduire

$$\forall n \in \mathbb{N}^*, \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k} \le \frac{n+2}{2^n}$$

La majoration précédente donne :

$$\forall k \in \mathbb{N}^*, \ \frac{\ln(k)}{2^k} \le \frac{k}{2^k}$$

On a deux termes de séries convergentes (celle de droite est un géométrique dérivée de raison $1/2 \in]-1,1[$; donc on peut sommer de k=n+1 à $+\infty$:

$$\sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k} \le \sum_{k=n+1}^{+\infty} \frac{k}{2^k}$$

Ensuite il faut s'énerver un peu :

$$\sum_{k=n+1}^{+\infty} \frac{k}{2^k} = \sum_{i=1}^{+\infty} \frac{i+n}{2^{i+n}} \quad \text{changement } i = k-n$$

$$= \frac{1}{2^n} \sum_{i=1}^{+\infty} \frac{i+n}{2^i}$$

$$= \frac{1}{2^n} \left(\sum_{i=1}^{+\infty} \frac{i}{2^i} + \sum_{i=1}^{+\infty} \frac{n}{2^i} \right)$$

(les deux sommes convergent séparément!)

$$\begin{split} &= \frac{1}{2^n} \left(\frac{1}{2} \sum_{i=1}^{+\infty} i \left(\frac{1}{2} \right)^{i-1} + n \sum_{i=1}^{+\infty} \left(\frac{1}{2} \right)^i \right) \\ &= \frac{1}{2^n} \left(\frac{1}{2} \frac{1}{\left(1 - \frac{1}{2} \right)^2} + n \frac{\frac{1}{2}}{1 - \frac{1}{2}} \right) \\ &= \frac{1}{2^n} \left(2 + n \right) \end{split}$$

et on trouve bien

$$\sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k} \leq \frac{n+2}{2^n}$$

8. Écrire alors une fonction Python approx(eps) prenant en argument un réel eps et renvoyant une approximation de σ à eps près.

On approxime σ (somme de la série de tg $\frac{\ln(k)}{2^k}$) par les sommes partielles de cette même série ; la précision de l'approximation est donnée par le reste partiel :

$$|\sigma - S_n| = R_n$$

où
$$S_n = \sum_{k=1}^n \frac{\ln(k)}{2^k}$$
 et $R_n = \sum_{k=n+1}^{+\infty} \frac{\ln(k)}{2^k}$.

Avec la majoration qui précède :

$$|\sigma - S_n| = R_n \le \frac{n+2}{2^n}$$

de sorte que

```
pour\,que\,|\sigma-S_n|\leq \varepsilon,\,\textit{il suffit}\,que\,\frac{n+2}{2^n}\leq \varepsilon.
```

D'où deux choses:

- ε étant donné, trouver un tel n (en testant brutalement tous les entiers successivement) ;
- calculer la somme partielle d'indice n.

```
def approx(eps):
    # recherche de l'entier n
    n = 1
    while (n+2)/(2**n)>eps:
        n = n+1
    # ici n a donc une valeur qui convient
    # calcul de la somme partielle
    S = 0
    for k in range(1,n+1):
        S = S + np.log(k)/(2**k)
    return S
```