TD4

Espaces vectoriels

1 Géneralités

Exercice 1. Les ensembles suivants sont-ils des espaces vectoriels ? (on démontrera ce qu'on affirme)

1. **(*)**
$$F_1 = \{(x, y) \in \mathbb{R}^2 \mid x = y\}$$

2. **(*)**
$$F_2 = \{(x, y) \in \mathbb{R}^2 \mid x \le y\}$$

3. (*)
$$F_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$$

4. (*)
$$F_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x - 4y - z = 1\}$$

5. **(*)**
$$F_5 = \left\{ M = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid x + t = 0 \right\}$$

6. (*)
$$F_6 = \{M \in \mathcal{M}_n(\mathbb{R}) \mid MX = 2X\}$$
 (où $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est fixé non nul).

7. (*)
$$F_{6bis} = \{M \in \mathcal{M}_n(\mathbb{R}) \mid MX = 0\}$$
 (où $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est fixé non nul).

8. **(*)**
$$F_7 = \{ P \in \mathbb{R}_3[x] \mid P(1) = 0 \}$$

9. (*) F_8 : l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ inversibles.

10. F_9 : L'ensemble des polynômes $P \in \mathbb{R}_3[x]$ tels que P(0) = P(1).

11. F₁₀ : L'ensemble des polynômes de degré 3.

(*) Pour les ensembles parmi les neuf premiers (sauf F_6 et F_{6bis}) qui sont des sev, en donner une base.

Exercice 2. Déterminer si les familles suivantes sont libres ; si elles ne le sont pas, en extraire une famille libre engendrant le même espace vectoriel.

1.
$$\{(1,0,1),(0,2,2),(3,7,1)\}\$$
 dans \mathbb{R}^3 .

2.
$$\{(1,0,0),(0,1,1),(1,1,1)\}$$
 dans \mathbb{R}^3 .

3.
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\2\\4 \end{pmatrix}, \begin{pmatrix} -1\\-3\\-5 \end{pmatrix} \right\} \operatorname{dans} \mathcal{M}_{3,1}(\mathbb{R}).$$

4.
$$\{X-1, X+1, X^2-1\}$$
 dans $\mathbb{R}_2[X]$

5.
$$\{P_1, P_2, P_3, P_4\}$$
 dans $\mathbb{R}_2[x]$, où pour tout réel $x : P_1(x) = x - 1$, $P_2(x) = x + 1$, $P_3(x) = x^2 - 1$, $P_4(x) = 2x + 3$

Exercice 3. Soit E un espace vectoriel, et $(u_1, u_2) \in E^2$. Montrer que si (u_1, u_2) est libre, alors $(u_1 + u_2, u_1 - u_2)$ est libre.

Exercice 4. (*) Écrire les ensembles suivants comme des espaces engendrés ; en donner à chaque fois une base.

1.
$$F_1 = \{(3y - z, z + y, 4y) \mid (y, z) \in \mathbb{R}^2\}$$

2.
$$F_2 = \left\{ (x, y, z, t) \in \mathbb{R}^3 \mid \left\{ \begin{array}{l} 2x + 3t = 0 \\ z - x = 0 \end{array} \right\} \right.$$

3. $F_3 = \{P \in \mathbb{R}_3[X] \mid P(0) = P(1) = 0\}$ (on pourra écrire un polynôme P sous la forme $aX^3 + bX^2 + cX + d$ et déterminer des conditions sur a, b, c, d pour que P appartienne à F_3).

4.
$$F_4 = \left\{ \begin{pmatrix} x+2z & x-y \\ 7y-z & 3x-z \end{pmatrix} \mid (x,y,z) \in \mathbb{R}^3 \right\}$$

5. L'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que ${}^tM = -M$ (appelées matrices antisymétriques; cet ensemble est noté $A_3(\mathbb{R})$).

2 Avec les dimensions

Exercice 5. On reprend l'espace $F_7 = \{P \in \mathbb{R}_3[X] \mid P(1) = 0\}$ défini dans le premier exercice.

On note $P_1 = X - 1$, $P_2 = X^2 - X$, $P_3 = X^3 - X^2$.

Donner la dimension de F₇, et montrer que (P₁, P₂, P₃) est une base de F₇.

Exercice 6. Donner le rang des familles de l'exercice 2.

Exercice 7. Soient les deux sev de \mathbb{R}^3 donnés par $F_1 = \text{Vect}((2,3,-1),(1,-1,2))$, et $F_2 = \text{Vect}((8,7,1),(6,-1,7))$.

- 1. Montrer que $(8,7,1) \in F_1$ et $(6,-1,7) \in F_1$.
- 2. Déterminer $dim(F_1)$ et $dim(F_2)$.
- 3. En déduire $F_1 = F_2$.

Exercice 8. (*)

- 1. Montrer que la famille $\{(1,3,-2),(-1,-2,5),(0,1,2)\}$ est une base de \mathbb{R}^3 . Donner les coordonnées dans cette base du vecteur (a,b,c).
- 2. Soient $P_1 = 1$ et $P_2 = X 1$. Montrer que la famille $(P_1, P_2, (P_2)^2)$ est une base de $\mathbb{R}_2[X]$. Donner les coordonnées dans cette base de $O = X^2 + X + 1$.
- 3. Montrer que la famille $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ est une base de $\mathcal{M}_2(\mathbb{R})$. Donner les coordonnées dans cette base de la matrice I_2 .

Exercice 9.

Donner le rang des matrices suivantes :

$$M_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad M_2 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix} \quad M_3 = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{pmatrix} \quad M_4 = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & 4 \\ -6 & -2 & 0 \end{pmatrix} \quad M_5 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -9 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Exercice 10.

- 1. Déterminer les réels x et y tels que v = (x, 1, -1, y) appartienne au sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs $v_1 = (1, 1, 2, 1)$ et $v_2 = (2, 1, 5, 3)$.
- 2. À quelle condition sur (x, y, z) le vecteur v = (x, y, z) appartient-il au sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs $v_1 = (3, -1, 3)$ et $v_2 = (-1, 2, 4)$?

Exercice 11. Soit $K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$; on note E l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ vérifiant MK = KM = M.

- 1. Montrer que E est un espace vectoriel.
- 2. Montrer que toute matrice de E est non inversible.
- 3. Soit $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Donner des conditions nécessaires et suffisantes sur a, b, ..., h, i pour que $M \in E$. En déduire une base de E, et dim(E).

3 Plus difficile

Exercice 12. On rappelle le résultat essentiel suivant sur les polynômes : soit P un polynôme de degré inférieur ou égal à n. Si P admet (au moins) n+1 racines deux à deux distinctes, alors c'est le polynôme nul.

1. Soient P et Q deux polynômes de $\mathbb{R}_2[X]$ tels que : P(0) = Q(0) ; P(1) = Q(1) ; P(2) = Q(2). Montrer que P = Q.

Soient les polynômes suivants :
$$L_0 = \frac{1}{2}(X - 1)(X - 2)$$
, $L_1 = -X(X - 2)$, $L_2 = \frac{1}{2}X(X - 1)$.

- 2. Calculer les $L_i(j)$ pour $(i, j) \in [0, 2]^2$.
- 3. En utilisant la question 1, montrer : $\forall P \in \mathbb{R}_2[X], \ P = P(0)L_0 + P(1)L_1 + P(2)L_2$. Qu'a-t-on montré sur la famille (L_0, L_1, L_2) ?
- 4. Montrer que (L_0, L_1, L_2) est une base de $\mathbb{R}_2[X]$. Déterminer les coordonnées du polynôme X dans cette base.
- 5. Soient $(a, b, c) \in \mathbb{R}^3$ quelconques. Déterminer un polynôme $R \in \mathbb{R}_2[X]$ (qu'on exprimera en fonction des L_i) tel que R(0) = a, R(1) = b, R(2) = c. Montrer que ce polynôme est unique.

Indications

- 1 1. oui
 - 2. non: regarder l'opposé d'un vecteur
 - oui
 - 4. non : système linéaire non homogène
 - 5. oui
 - 6. oui
 - 7. oui
 - 8. non: penser à la matrice nulle
 - 9. oui
 - 10. non : par exemple trouver deux polynômes de degré 3 dont la somme ne l'est pas
- libre
 - 2. liée; il y a une famille géné à deux vecteurs
 - 3. liée (on le sait sans calcul! pourquoi?) ; il y a une famille géné à deux vecteurs
 - 4. libre
 - 5. liée; il y a une famille géné à trois vecteurs
- 3 Soit une combinaison linéaire nulle de $u_1 + u_2$ et $u_1 u_2$; la transformer en une combi lin nulle de u_1 et u_2 et utiliser la liberté de cette famille
- 4 RAS. Réponses possibles (on donne à chaque fois une base) :
 - 1. $F_1 = \text{Vect}((3,1,4),(-1,1,0))$
 - 2. $F_2 = \text{Vect}((1,0,1,-\frac{2}{3}),(0,1,0,0)).$
 - 3. $F_3 = Vect(X^3 X, X^2 X)$
 - 4. $F_4 = Vect(\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 7 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ -1 & -1 \end{pmatrix}).$
 - $5. \ \ F_5 = Vect \left(\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \right).$
- 5 dim(F) se déduit de la base trouvée précédemment ; et servira à montrer que la famille proposée est aussi une base.
- 6 Se souvenir de la définition du rang d'une famille de vecteurs. Il suffit alors de compter.
- Chercher à écrire ces vecteurs comme des combinaisons linéaires des vecteurs engendrant F₁.
 - 2. Trouver des bases de F₁ et F₂ (ne pas aller chercher trop loin!)
 - 3. Il suffit d'une inclusion. Pourquoi? Et laquelle?
- 8 Appliquer les diverses définitions du cours. On trouve les colonnes de coordonnées suivantes :

1.
$$\begin{pmatrix} 9a - 2b + c \\ 8a - 2b + c \\ -11a + 3b - c \end{pmatrix}$$

2.
$$\begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1/2 \\ 1/2 \\ 0 \\ -1/2 \end{pmatrix}$$

- **9** Se ramener à la définition : dimension du sev engendré par les lignes ; ou de celui engendré par les colonnes (parfois l'un est plus facile que l'autre).
 - 1. $rg(M_1) = 2$
 - 2. $rg(M_2) = 1$
 - 3. $rg(M_3) = 3$
 - 4. $rg(M_4) = 3$
 - 5. $rg(M_5) = 1$
- 1. On cherche donc s'il existe deux coefficients α et β tels que $(x,1,-1,y)=\alpha(1,1,2,1)+\beta(2,1,5,3)$.
 - On trouvera que ces coeff existent ssi x = 0 et y = -1.
 - NB : les valeurs de α et β ne sont pas demandées, seulement leur existence !

- 2. C'est le même principe ; trouver 2x + 3y z = 0.
- 1. Ici il n'est pas du tout habile de chercher une famille génératrice. Revenir à non vide / stable par c-lin.
 - 2. Par l'absurde : si KM = M avec M inversible, que dire de K?
 - 3. Cette fois il faut mettre les mains dans le cambouis!
- 12 1. Compter les racines de P Q
 - 2.
 - 3. Utiliser la question 1 avec P = P, et $Q = P(0)L_0 + P(1)L_1 + P(2)L_2$.
 - 4. Pour les coordonnées il n'y a presque aucun calcul : regarder la question précédente.
 - 5. Chercher R comme combinaison linéaire des L_i ; les coefficients seront solution d'un système simple! L'unicité découle d'une question précédente (s'il y en a deux qui prennent les mêmes valeurs en 0,1,2,...)