TD5

Applications linéaires

Les bases

Exercice 1. (*)

- 1. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ telle que $\operatorname{Mat}(f, \mathcal{B}_c) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$. Donner l'expression de f(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$.
- 2. Soit $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ telle que $\operatorname{Mat}(f,\mathcal{B}_c) = \begin{pmatrix} 1 & 0 & 0 & -2 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & -3 & -1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$. Donner l'expression de f(M) pour tout $\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$
- 3. Soit $f \in \mathcal{L}(\mathbb{R}_2[X])$ telle que $\operatorname{Mat}(f, \mathcal{B}_c) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 3 & 0 & 1 \end{pmatrix}$. Donner l'expression de f(P), où $P = a + bX + cX^2$ est un polynôme de $\mathbb{R}_2[X]$.
- 4. Soit $f \in \mathcal{L}(\mathbb{R}^2, \mathcal{M}_2(\mathbb{R}))$ telle que la matrice de f dans les bases canoniques est $M = \begin{pmatrix} 0 & 0 \\ -4 & 4 \\ 1 & 0 \\ 0 & -2 \end{pmatrix}$. Donner l'expression de f((x, y)) pour tout $(x, y) \in \mathbb{R}^2$.
- 5. Soit $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}_3[X])$ telle que la matrice de f dans les bases canoniques est $M = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 1 & 4 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 3 & 3 & 3 & 3 \end{pmatrix}$. Donner l'expression de f(M) pour tout $M \in \mathcal{M}_2(\mathbb{R})$.

Exercice 2. (*)

Les applications suivantes sont-elle linéaires?

$$f_1: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^3 \qquad \qquad f_2: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2 \qquad \qquad f_3: \quad \mathcal{M}_2(\mathbb{R}) \quad \longrightarrow \quad \mathbb{R}^2 \qquad \qquad (a+d,c-b)$$

$$f_6: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$$

$$M \longmapsto {}^t(M+I_n)$$

Exercice 3. (*) Dans cet exercice on admet la linéarité des applications introduites (rien de bien compliqué mais c'est long et redondant avec l'exo précédent). Donner, pour chacune d'entre elles :

- La matrice dans les bases canoniques;
- Le noyau (et une base de celui-ci s'il n'est pas réduit à 0), l'image (et une base de celle-ci en cas de nonsurjectivité) et les dimensions de ces deux espaces ;
- Le caractère injectif / surjectif / bijectif.

$$f_1: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3$$

$$(x, y, z) \quad \longmapsto \quad (5x + y - 3z, -x + y + z, 5x + 2y - 3z)$$

On donnera la matrice de f_1 dans $\mathscr{B}_c(\mathbb{R}^3)$ puis dans la base $\mathscr{B} = \{(2,0,3), (1,0,1), (-1,1,-2)\}.$

$$\begin{array}{cccc} f_2: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^4 \\ & (x,y,z) & \longmapsto & (-x+2y-4z,x-4y+6z,2x+4z,x+5y-3z) \end{array}$$

On donnera la matrice de f_4 dans $\mathcal{B}_c(\mathcal{M}_2(\mathbb{R}))$ puis dans la base $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}.$

$$f_5: \mathbb{R}^4 \longrightarrow \mathcal{M}_{2,3}(\mathbb{R})$$

$$(x, y, z, t) \longmapsto \begin{pmatrix} x - 2y + 3z & -2x + 4y + 4t & z - t \\ z + 2t & x - y & x + 2y + z \end{pmatrix}$$

$$f_8: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R}) \text{ où } A = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$$

$$M \longmapsto AM$$

(indic pour aller plus vite sur f_8 : on pourra étudier l'inversibilité de A)

Exercice 4. Soit f l'application définie sur \mathbb{R}^2 par :

$$\forall (x, y) \in \mathbb{R}^2, \ f((x, y)) = (2x - y, x + 3y)$$

- 1. Montrer que f est un automorphisme de \mathbb{R}^2 . Déterminer f^{-1} .
- 2. Donner A = Mat (f, \mathcal{B}_c) . Reprendre les questions précédentes en étudiant A.

Études « concrètes » d'applications linéaires

Exercice 5. Soit
$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $(x,y) \longmapsto \frac{1}{2}(x+y,x+y)$

- 1. Montrer que φ est linéaire ; montrer que $\varphi \circ \varphi = \varphi$.
- 2. En déduire : $\forall n \in \mathbb{N}^*$, $\varphi^n = \varphi$.

- 3. Soit $s = 2\varphi \mathrm{Id}_{\mathbb{R}^2}$. Donner la valeur de s(x, y) pour tout $(x, y) \in \mathbb{R}^2$.
- 4. Montrer que $s^2 = \mathrm{Id}_{\mathbb{R}^2}$. En déduire, pour $n \in \mathbb{N}$, la valeur de s^n (on discutera suivant la parité de n).

Exercice 6. Soit $\mathcal{B} = (e_1, e_2, e_3, e_4)$ une base de \mathbb{R}^4 , et f l'endomorphisme de \mathbb{R}^4 tel que

$$\forall i \in \{1,2,3\}, f(e_i) = e_{i+1} \text{ et } f(e_4) = e_1$$

- 1. Que vaut l'endomorphisme f^4 ? En déduire que f est un automorphisme, et donner f^{-1} .
- 2. Déterminer $M = Mat(f, \mathcal{B})$.
- 3. Pour $i \in [1,3]$ et $j \in [1,4]$, calculer $f^i(e_i)$. En déduire, sans calcul matriciel, les matrices M^2, M^3, M^4 .

Exercice 7. Soit la matrice $A = \begin{pmatrix} 2 & 10 & 7 \\ 1 & 4 & 3 \\ -2 & -8 & -6 \end{pmatrix}$ et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A.

1. Calculer Ker(f). f est-elle injective? surjective?

On note u = (2, 1, -2).

- 2. Déterminer $v \in \mathbb{R}^3$ de la forme (a, 1, b) tel que f(v) = u.
- 3. Déterminer $w \in \mathbb{R}^3$ de la forme (c, 1, d) tel que f(w) = v.
- 4. Montrer que $\mathcal{B} = (u, v, w)$ est une base de \mathbb{R}^3 . Donner la matrice B de f dans cette base (sans utiliser la matrice de passage!).
- 5. Montrer que $\operatorname{Im}(f) = \operatorname{Vect}(u, v)$.
- 6. Donner la matrice de passage $P = P_{\mathscr{B}_c,\mathscr{B}}$ entre la base canonique et la base \mathscr{B} . Donner une relation entre A,B, et P; la vérifier par le calcul.
- 7. Montrer que $f^3 = \widetilde{0}$.

Exercice 8. On considère les éléments suivants de $\mathcal{M}_3(\mathbb{R})$:

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & -1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & 1 & 1 \end{pmatrix}$$

On pose $u = (1, -\sqrt{2}, 1), v = (-1, 0, 1)$ et $w = (1, \sqrt{2}, 1)$. On admet que (u, v, w) forme une base de \mathbb{R}^3 , notée \mathscr{B} .

- 1. Justifier que la matrice P est inversible.
- 2. Sans calculer P^{-1} , montrer que la matrice $P^{-1}JP$ est une matrice diagonale D que l'on explicitera.
- 3. Calculer J^2 , et exprimer J^2 en fonction de I et de K. En déduire que $P^{-1}KP$ est une matrice diagonale que l'on explicitera.
- 4. Soit $(a, b, c) \in \mathbb{R}^3$. On considère l'élément suivant de $\mathcal{M}_3(\mathbb{R})$:

$$\mathbf{M} = \begin{pmatrix} a & b & c \\ b & a+c & b \\ c & b & a \end{pmatrix}$$

3

- (a) Montrer que M s'exprime simplement à l'aide de I, J, K et *a*, *b*, *c*.
- (b) En déduire que P⁻¹MP est une matrice diagonale que l'on explicitera.

Exercice 9. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice :

$$\mathbf{M} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix}$$

Id désigne l'endomorphisme identité de \mathbb{R}^3 .

On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . On considère les vecteurs u = (0, 1, 1), v = (1, 1, 1) et w = (1, 0, 1) de \mathbb{R}^3 ; on admet que $\mathscr{B} = (u, v, w)$ est une base de \mathbb{R}^3 .

- 1. Calculer f(u), f(v) et f(w) en fonction de u, v et w.
- 2. Écrire la matrice de f dans la base \mathscr{B} .
- 3. Montrer que f est un automorphisme de \mathbb{R}^3 , et donner la matrice de f^{-1} dans la base \mathscr{B} .
- 4. Montrer que $f^2 = 3f 2$ Id. Retrouver les résultats de la question précédente à l'aide de cette égalité.
- 5. Démontrer que pour tout $n \in \mathbb{N}$, $f^n = (2^n 1) f + (2 2^n) Id$.

Exercice 10 (EDHEC 2017). On note E l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 2 et on rappelle que la famille (e_0, e_1, e_2) est une base de E, les fonctions e_0, e_1e_2 étant définies par :

$$\forall t \in \mathbb{R}, \ e_0(t) = 1 \ ; \ e_1(t) = t \ ; \ e_2(t) = t^2$$

On considère l'application ϕ qui, à toute fonction P de E, associe la fonction, notée $\phi(P)$, définie par :

$$\forall x \in \mathbb{R}, \ (\varphi(P))(x) = \int_0^1 P(x+t) dt$$

- 1. (a) Montrer que φ est linéaire.
 - (b) Déterminer $(\varphi(e_0))(x)$, $(\varphi(e_1))(x)$ et $(\varphi(e_2))(x)$ en fonction de x, puis écrire $\varphi(e_0)$, $\varphi(e_1)$ et $\varphi(e_2)$ comme combinaison linéaire de e_0 , e_1 et e_2 .
 - (c) Déduire des questions précédentes que φ est un endomorphisme de E.
- 2. (a) Écrire la matrice A de φ dans la base (e_0, e_1, e_2) . On vérifiera que la première ligne de A est :

$$\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3} \end{array}\right)$$

(b) Justifier que ϕ est un automorphisme de E.

Exercice 11. On considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$ et l'endomorphisme f de \mathbb{R}^4 dont la matrice dans la

4

base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$ de \mathbb{R}^4 est A.

- 1. Déterminer Ker(f); en déduire rg(f) et une base de Im(f).
- 2. Calculer f^4 .
- 3. On note $\varepsilon_1 = e_1$, $\varepsilon_2 = f(\varepsilon_1)$, $\varepsilon_3 = f(\varepsilon_2)$, $\varepsilon_4 = f(\varepsilon_3)$ et $\mathscr{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$.
 - (a) Montrer que \mathscr{C} est une base de \mathbb{R}^4 .
 - (b) Déterminer la matrice N de f relativement à la base \mathscr{C} de \mathbb{R}^4 .
- 4. Existe-t-il un automorphisme g de l'espace vectoriel \mathbb{R}^4 tel que $g \circ f \circ g^{-1} = f^2$?

Plus théorique

Exercice 12. Soit $f \in \mathcal{L}(\mathbb{R}^3)$, non nulle, telle que $f^2 = \widetilde{0}$.

- 1. Sans calcul: f est-il un automorphisme?
- 2. Montrer: $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.
- 3. En déduire les dimensions de ces deux sous-espaces vectoriels.
- 4. Soit $u \in \mathbb{R}^3$, tels que $u \notin \text{Ker } f$.
 - (a) Montrer que (u, f(u)) est libre.
 - (b) Montrer que $f(u) \in \text{Ker}(f)$.
 - (c) Montrer qu'il existe $v \in \text{Ker}(f)$, non colinéaire à f(u).
 - (d) Montrer que (u, f(u), v) est une base de \mathbb{R}^3 .
 - (e) Donner la matrice de f dans cette base.

Exercice 13. Soient $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(F, G)$. Montrer que $g \circ f = \widetilde{0} \Leftrightarrow \text{Im } f \subset \text{Ker } g$.

Exercice 14. Soit f un endomorphisme. Démontrer :

$$\operatorname{Ker}(f) = \operatorname{Ker}(f^2) \Leftrightarrow \operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0_{\mathrm{E}}\}$$

Exercice 15 (Noyaux itérés). Soit E un espace vectoriel de dimension n, et $f \in \mathcal{L}(E)$. Pour $p \in \mathbb{N}$, on note $\mathbb{N}_p = \operatorname{Ker}(f^p)$ et $\mathbb{I}_p = \operatorname{Im}(f^p)$.

- 1. Préciser les sev N₀ et I₀.
- 2. Montrer: $\forall p \in \mathbb{N}, N_p \subset N_{p+1}, \text{ et } I_{p+1} \subset I_p$.
- 3. En raisonnant sur les dimensions, montrer qu'il existe $m \in \mathbb{N}$ tel que $N_m = N_{m+1}$.
- 4. Montrer alors que : $\forall n \ge m$, $N_n = N_m$.
- 5. Montrer que : $\forall n \ge m$, $I_n = I_m$.

Indications

1

3 Réponses (on donne à chaque fois des bases des Ker/Im)

•
$$\operatorname{Mat}(f_1, \mathcal{B}_c) = \begin{pmatrix} 5 & 1 & -3 \\ -1 & 1 & 1 \\ 5 & 2 & -3 \end{pmatrix}$$
, $\operatorname{Ker}(f_1) = \{(0,0,0)\}$, $\operatorname{Im}(f) = \mathbb{R}^3$; $\operatorname{Mat}(f_1, \mathcal{B}) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$; bijective.

•
$$\operatorname{Mat}(f_2, \mathcal{B}_c(\mathbb{R}^3), \mathcal{B}_c(\mathbb{R}^4)) = \begin{pmatrix} -1 & 2 & 4 \\ 1 & -4 & 6 \\ 2 & 0 & 4 \\ 1 & 5 & -3 \end{pmatrix}$$
; $\operatorname{Ker}(f_2) = \operatorname{Vect}((-2, 1, 1))$; $\operatorname{Im}(f_2) = \operatorname{Vect}((-1, 1, 2, 1), (2, -4, 0, 5))$; non inj / non surj

$$\bullet \ \operatorname{Mat}(f_3, \mathcal{B}_{\mathcal{C}}) = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ -2 & 4 & -2 & 0 \end{pmatrix}; \operatorname{Ker}(f_4) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Im}(f_3) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ -1 & 4 \end{pmatrix}\right); \operatorname{non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_4\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right); \operatorname{Non}\operatorname{inj}/\operatorname{non}\operatorname{surj}\left(f_$$

$$\bullet \ \operatorname{Mat}(f_4, \mathcal{B}_c) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}; \ \operatorname{Mat}(f_4, \mathcal{B}) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \ \operatorname{Ker}(f_4) = \operatorname{Vect}\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right) \text{ (peut se lire immédiatement dans la proposition of the propositi$$

 $\text{seconde matrice !!) ; } \operatorname{Im}\left(f_{4}\right) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) \text{ (ensemble des matrices symétriques). Non inj / non surj.}$

•
$$\operatorname{Mat}(f_5, \mathcal{B}_c) = \begin{pmatrix} 1 & -2 & 3 & 0 \\ -2 & 4 & 0 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2 \\ 1 & -1 & 0 & 0 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$
; $\operatorname{Ker}(f_5) = \{(0,0,0,0)\} \text{ et } f_5 \text{ est injective }; \text{ une base de } \operatorname{Im}(f_5) \text{ est engendrée par les images des }$

4 vecteurs de la base canonique de \mathbb{R}^4 . f_4 non surj.

•
$$\operatorname{Mat}(f_6,\mathcal{B}_c) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{A}$$
; $\operatorname{Ker}(f_6) = \operatorname{Vect}(1 - 2\operatorname{X} + \operatorname{X}^2)$; f_6 n'est pas injective; $\operatorname{Im}(f_6) = \operatorname{Vect}(2, 1 + \operatorname{X}, 2\operatorname{X}) = \mathbb{R}_1[\operatorname{X}]$. f_6 n'est pas surjective.

•
$$\operatorname{Mat}(f_7, \mathcal{B}_c) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$
. $\operatorname{Ker}(f_7) = \operatorname{Vect}(X - X^3)$; f_7 n'est pas injective; $\operatorname{Im}(f_7) = \mathbb{R}^3$; f_7 est surjective.

$$\operatorname{Mat}(f_8, \mathcal{B}_c) = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix}$$

A est de déterminant non nul donc est inversible donc $AM = 0_2 \Leftrightarrow M = 0_2 \text{ Ker}(f_8) = \{0_2\}$ et f_8 est injective ; comme c'est un endomorphisme elle est aussi surjective et bijective.

- 4 1. Montrer la linéarité! Ensuite il y a plusieurs méthodes ; on peut revenir à la définition d'une bijection réciproque.
 - 2. À quelle condition (nécessaire et suffisante) sur A f est-il un autom. ? Et dans ce cas-là, quelle est la matrice de f^{-1} dnas \mathscr{B}_c ?
- 5 1. $\varphi \circ \varphi = \varphi$: procéder en calculant $\varphi(\varphi((x, y)))$; ou utiliser une matrice.

2.

3.

- 4. Regarder s^3 , s^4 , ... pour se faire une idée.
- 6 1. calculer les images des vecteurs de la base canonique. Puis reconnaître une propriété $f \circ (...) = Id$.

2.

- 3.
- 7 1
 - 2. Pas de subtilité, se ramener à un syst. linéaire.
 - 3. idem
 - 4. Revenir à la méthode de construction de $\mathrm{Mat}(f, \mathcal{B})$. Zéro calcul !!
 - 5. Zéro calcul non plus si on se met dans la bonne base.

6.

- 7. Encore une fois le choix de la base fait la différence.
- **8** 1

- 2. Interpréter $P^{-1}JP$ comme la matrice d'un certain endomorphisme dans une certaine base.
- 3. Il faut à un moment montrer que $(P^{-1}JP)^2 = P^{-1}J^2P$.
- 4.
- **9** 1.
 - 2
 - 3. La propriété d'automorphisme peut se lire sur la matrice de f dans la base... de votre choix.
 - 4. Raisonner sur des matrices.
 - 5. Et ici encore.

10 Il faut bien se souvenir ici que les polynômes sont des fonctions polynômiales. Par exemple, $e_1: t \mapsto t$ est ce qu'on appelle ailleurs le polynôme X.

- 1. (a)
 - (b) Par exemple, e_2 est la fonction $t \mapsto t^2$, alors $e_2(x+t) = (x+t)^2$.
 - (c) Il ne reste plus qu'à montrer « endo » ...
- 2. (a) Réponse : A = $\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$
 - (b) Regarder une propriété de A.
- 11 1.
 - 2. On peut calculer l'image par f^4 de chaque vecteur de base ; ou utiliser la matrice A.
 - 3. (a)
 - (b) Appliquer la méthode de construction colonne par colonne. Il y a peu de calculs!
 - 4. Si une telle chose existe, que dire des matrices A et A² ? Montrer que c'est impossible.
- 1. S'il l'était, que dire de f^2 ?
 - 2. Démo d'inclusion usuelle. Il faut juste se souvenir des définitions de Im(f) et Ker(f).
 - 3. On est en dimension 3 : il n'y a qu'une possibilité.
 - 4. (a) Soient λ_1, λ_2 réels tq $\lambda_1 u + \lambda_2 f(u) = 0$. Montrer que $\lambda_1 f(u) = 0$.
 - (b)
 - (c) Que vaut $\dim(\text{Ker}(f))$?
 - (d) Soient $\lambda_1, \lambda_2, \lambda_3$ réels tels que $\lambda_1 u + \lambda_2 f(u) = 0 + \lambda_3 v = 0$. Appliquer f à cet égalité pour montrer $\lambda_1 = 0$.
 - (e)

 $\textbf{13} \quad \text{Double inclusion} \ ; \ il \ faut \ juste \ traduire \ les \ hypoth\`eses \ et \ savoir \ ce \ qu'on \ veut \ démontrer \ !$

- 14 ⇒ : en prenant $x \in \text{Ker}(f) \cap \text{Im}(f)$ on introduit assez rapidement un vecteur de $\text{Ker}(f^2)$...
 - \Leftarrow : pour Ker (f^2) \subset Ker(f): si $x \in$ Ker (f^2) , que dire de f(x)?
- **15** 1.
 - 2.
 - 3. Si F_1 et F_2 sont tels que $F_1 \subset F_2$, et $F_1 \neq F_2$, que dire de leurs dimensions? La suite des noyaux peut-elle alors «croître strictement» indéfiniment?
 - 4. Récurrence ; si $x \in N_{n+1}$, à quoi appartient f(x) ?
 - 5. Commencer par montrer une inclusion; puis.....