
ECG2B Année scolaire 2025-2026
Lycée Marcelin Berthelot Informatique

TP 4

Simulation « générale » d’une chaîne de Markov

Dans tout ce qui suit on aura importé les packages usuels de Python par :

import numpy as np
import numpy. random as rd
import numpy. linalg as al

Le but de ce TP est de coder une fonction qui prendra en entrée la matrice de transition d’une chaîne de Markov,
et permettra de simuler des trajectoires sur le graphe associé.
On utilisera ensuite cette fonction pour effectuer des statistiques et observer divers phénomènes.

1 Simulation d’une variable à valeurs dans �1,n� de loi quelconque

On considère ici un entier n ∈N∗, et une variable X à valeurs dans �1,n�, telle que P(X = i) = pi . Les pi vérifient

donc : ∀ i ∈ �1,n�, pi Ê 0 ; et
n∑

i=1
pi = 1. On cherche à simuler des tirages de X.

On procède de la manière suivante :

• On pose q0 = 0, qk =
k∑

i=1
pi jusqu’à qn = p1 +·· ·+pn = 1.

• On découpe l’intervalle [0,1] en une union disjointe :

]0,1] =]q0, q1]∪]q1, q2]∪·· ·∪]qn−2, qn−1]∪]qn−1,1]

On note Ik =]qk−1, qk] pour i ∈ �1,n�.

• On effectue un tirage aléatoire U ,→ U (]0,1]) (obtenu avec la commande rd.random()) et on regarde à
quel intervalle Ik appartient la valeur tirée.

On définit alors la variable aléatoire X de la manière suivante : pour ω ∈ Ω, on sait qu’un existe un unique
intervalle Ik tel que U(ω) ∈ Ik . On pose X(ω) = k.
Autrement dit, X est « le numéro de l’intervalle dans lequel se trouve la valeur de U tirée » .
On justifie dans l’exercice suivant (à faire chez soi) que la variable aléatoire X est telle que X(Ω) = �1,n�, et
∀k ∈ �1,n�, P(X = k) = pk .

Exercice 1.
Soit U le nombre aléatoire renvoyé par un appel à rd.random (plus tard dans l’année on notera U ,→U ([0,1])).
On définit la variable X comme dans le paragraphe ci-dessus.

1. Montrer que X(Ω) = �1,n�.

2. En se souvenant que pour tout p ∈ [0,1], P(U É p) = p, montrer que P(qk−1 < U É qk) = pk .

3. En déduire que ∀k ∈ �1,n�, P(X = k) = pk .

On va maintenant programmer une fonction réalisant ce tirage. On observe que X = k ssi k est le plus petit

entier tel que U É
k∑

i=1
pi .

Exercice 2.

1. Compléter la fonction Python suivante pour qu’elle prenne en argument une liste [p1,...,pn] de réels
positifs, de somme 1 ; et renvoie un tirage de X décrite en début de partie.

def tirage (L):
"""L=[p1 ,p2 ,... , pn] est la loi de proba : P(X=i)=pi """
U = rd. random ()
k = 1 # contiendra la valeur de X à renvoyer
s = L[0] # contiendra la somme des pi de i=1 à k
while :

s =
k =

return k

2. Généraliser cette fonction pour générer des tirages d’une variable aléatoire quelconque d’univers-image
fini, ie une variable de loi :

x x1 x2 ... xn

P(X = x) p1 p2 ... pn

où les xi sont des réels quelconques, et les pi sont positifs de somme 1. La fonction recevra comme
arguments les listes X = [x1, . . . , xn] et P = [p1, . . . pn].
NB : cette généralisation ne servira pas dans la suite du TP.

2 Un exemple illustratif

Pour tester les codes des sections suivantes, on pourra utiliser le graphe probabiliste dont la matrice de transi-
tion est

M0 =
1/3 1/6 1/2

1/2 1/2 0
1 0 0


On n’oubliera pas de manipuler un np.array :

M0=np.array ([[1/3 ,1/6 ,1/2] ,[1/2 ,1/2 ,0] ,[1 ,0 ,0]])

Exercice 3.

1. Dessiner le graphe probabiliste associé à la matrice M0.

2. À l’aide de l’outil de réduction matricielle al.eig, déterminer l’unique état stable de la chaîne de Markov
associé à M0.
On doit trouver approximativement :

(
0.5455 0.1818 0.2727

)
.

3. On prend pour état initial V0 = (
1/3 1/3 1/3

)
. À l’aide de la commande np.dot, afficher les états

V0,V1,V2, ...,V20. Quelle semble être la limite de V pour un grand nombre d’itérations ? Ce résultat
semble-t-il être modifié si on prend une valeur initiale de V différente ?

3 Balade sur le graphe probabiliste

3.1 Quelques rappels sur la manipulation des matrices en Python

On définit en Python une matrice comme le np.array dont les composantes sont ses lignes. Ainsi la matrice

A =
1 1

2 4
3 −1

 est encodée par

A=np.array ([[1 ,1] ,[2 ,4] ,[3 , -1]])

On remarque donc qu’on obtient facilement une ligne de la matrice par A[i] :

>>> A[1]
array ([2, 4])

On peut modifier une matrice tout simplement en réaffectant des composantes ; ainsi :

>>> A[0 ,0]=888
>>> A
array ([[888, 1],

[2, 4],
[3, -1]])

et on peut même faire ça sur une ligne entière en un coup !

>>> A[0]= np.array ([100 ,200])
>>> A
array ([[100 , 200] ,

[2, 4],
[3, -1]])

(ou sur une colonne mais la syntaxe est un peu moins naturelle)

>>> A[: ,1]= np.array ([10 ,20 ,30])
>>> A
array ([[100 , 10],

[2, 20],
[3, 30]])

3.2 Programmation

On considère un graphe probabiliste de matrice d’adjacence M ∈ Mn(R). Les sommets de ce graphe sont
numérotés 1,2, ...,n. On rappelle que l’indexation en Python commence à 0 : ainsi, pour tous (i , j) ∈ �0,n −1�2,
M[i,j] est donc la probabilité de passer de l’état i+1 à l’état j+1.

Exercice 4.

1. Compléter la fonction trajectoire(M,etat_initial,nb_etapes) suivante qui prend en arguments :

• la matrice de transition M ∈Mn(R) de la chaîne ;

• un état initial qui est un entier de �1,n� ;

• le nombre d’étapes de temps nb_etapes à simuler

et simule un parcours sur le graphe probabiliste, en partant de l’état initial spécifié.

def trajectoire (M, etat_initial , nb_etapes):
etat = ... # etat dans lequel se trouve le système
traj = ... # liste des états successifs
for k ... :

etat = ... # calcul du nouvel état
.... # qu’on ajoute à la trajectoire

return np.array(traj) # manipuler des np.array pour pouvoir
extraire des lignes / colonnes facilement

On notera que si on est dans l’état i, les probabilités de transition vers les autres états de la chaîne se lisent
sur la ligne i-1 de la matrice de transition.

2. À l’aide de la fonction trajectoire, programmer une fonction trajectoires(M,etats,nb_etapes)
qui modélise les trajectoires de plusieurs individus se déplaçant indépendamment les uns des autres sur
le graphe.
Cette fonction prend en arguments :

• la matrice de transition M ∈Mn(R) de la chaîne ;

• la liste des états initiaux des individus, rangée dans un np.array ;

• le nombre d’étapes de temps nb_etapes à simuler

Elle renverra un np.array avec autant de lignes que d’individus, et nb_etapes+1 colonnes (la première
colonne donne les états initiaux et les nb_etapes colonnes suivantes les états aux instants 1,2, ...,nb_etapes).

Pour ce faire on créera une matrice de la taille voulue dès le départ (remplie de 0 par exemple) ; et on
rangera dans chaque ligne de la matrice la trajectoire d’un individu.

NB : une liste d’états initiaux doit être constituée d’entiers, sinon Python refusera de les considérer comme
des numéros d’état. Si vous voulez passer un np.ones() comme liste d’états initiaux, il faut que les « 1 » qui
le composent soient reconnus comme des entiers et non comme des décimaux (affichage 1.0). Pour ce faire,
utiliser np.ones(k,dtype=int).

À ce stade nous sommes capables de simuler l’évolution de plusieurs individus ; donc de faire des statistiques
d’évolution des individus au cours du temps.

4 Statistiques

On se place ici dans le cas de la chaîne de Markov à 3 états décrite précédemment ; on suppose que X0 (position
initiale) est la variable constante égale à 1.
Nous avons vu que l’état stable de cette chaîne de Markov est la matrice-ligne approximativement égale à :(

0.5455 0.1818 0.2727
)

Nous allons observer de manière empirique la convergence de la chaîne de Markov vers son état stable.

Si n ∈ N∗ et k est un état de la chaîne, la loi faible des grands nombres montre qu’on obtient une bonne ap-
proximation de P(Xn = k) en faisant évoluer un grand nombre d’individus initialement dans l’état 1, pendant
n étapes de temps, et en mesurant la fraction de ces individus dans l’état k à l’issue de ces n étapes.

Exercice 5 (Statistiques « spatiales » : tous les individus, à un temps fixé).

1. Justifier que si L est un np.array et a un réel, la commande

np.sum(L==a)

renvoie le nombre d’éléments de L égaux à a.

2. Écrire une fonction frequences qui prend en argument un np.array de nombres, et renvoie sa fraction
de composantes égales à 1 (resp à 2, à 3).
Par exemple, L=[1,1,2,3,1,2] a la moitié de ses composantes égales à 1 ; un tiers de ses composantes
égales à 2, et un sixième égales à 3 : frequences(L) doit renvoyer

[
1/2,1/3,1/6

]
.

3. À l’aide de la fonction trajectoires, construire une matrice evol encodant l’évolution sur 20 étapes
de temps d’un million (106) d’individus initialement dans l’état 1.

4. Exécuter la commande suivante : la ligne suivante

[frequences (evol [:,k]) for k in range (21)]

et commenter le résultat obtenu.

5. Relancer la simulation en considérant cette fois que les 106 individus sont au départ dans un état choisi
aléatoirement (avec un randint). Que dire du résultat final ?

On s’intéresse enfin à une autre observable : regarder, sur un temps d’évolution long, la fraction de temps
passée par un individu dans chaque état.

Exercice 6 (Statistiques « temporelles » : un individu au cours du temps).
Générer la trajectoire d’un individu pendant un grand nombre d’étapes de temps ; calculer la fraction du temps
passé par l’individu dans l’état 1 (resp. l’état 2, l’état 3) à l’aide de la fonction frequences. Que remarque-t-on ?
On parle de propriété ergodique.

